18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 28c2ecf20Sopenharmony_ci 38c2ecf20Sopenharmony_ci#include <linux/kernel.h> 48c2ecf20Sopenharmony_ci#include <linux/ioport.h> 58c2ecf20Sopenharmony_ci#include <linux/bitmap.h> 68c2ecf20Sopenharmony_ci#include <linux/pci.h> 78c2ecf20Sopenharmony_ci 88c2ecf20Sopenharmony_ci#include <asm/opal.h> 98c2ecf20Sopenharmony_ci 108c2ecf20Sopenharmony_ci#include "pci.h" 118c2ecf20Sopenharmony_ci 128c2ecf20Sopenharmony_ci/* for pci_dev_is_added() */ 138c2ecf20Sopenharmony_ci#include "../../../../drivers/pci/pci.h" 148c2ecf20Sopenharmony_ci 158c2ecf20Sopenharmony_ci/* 168c2ecf20Sopenharmony_ci * The majority of the complexity in supporting SR-IOV on PowerNV comes from 178c2ecf20Sopenharmony_ci * the need to put the MMIO space for each VF into a separate PE. Internally 188c2ecf20Sopenharmony_ci * the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table". 198c2ecf20Sopenharmony_ci * The MBT historically only applied to the 64bit MMIO window of the PHB 208c2ecf20Sopenharmony_ci * so it's common to see it referred to as the "M64BT". 218c2ecf20Sopenharmony_ci * 228c2ecf20Sopenharmony_ci * An MBT entry stores the mapped range as an <base>,<mask> pair. This forces 238c2ecf20Sopenharmony_ci * the address range that we want to map to be power-of-two sized and aligned. 248c2ecf20Sopenharmony_ci * For conventional PCI devices this isn't really an issue since PCI device BARs 258c2ecf20Sopenharmony_ci * have the same requirement. 268c2ecf20Sopenharmony_ci * 278c2ecf20Sopenharmony_ci * For a SR-IOV BAR things are a little more awkward since size and alignment 288c2ecf20Sopenharmony_ci * are not coupled. The alignment is set based on the the per-VF BAR size, but 298c2ecf20Sopenharmony_ci * the total BAR area is: number-of-vfs * per-vf-size. The number of VFs 308c2ecf20Sopenharmony_ci * isn't necessarily a power of two, so neither is the total size. To fix that 318c2ecf20Sopenharmony_ci * we need to finesse (read: hack) the Linux BAR allocator so that it will 328c2ecf20Sopenharmony_ci * allocate the SR-IOV BARs in a way that lets us map them using the MBT. 338c2ecf20Sopenharmony_ci * 348c2ecf20Sopenharmony_ci * The changes to size and alignment that we need to do depend on the "mode" 358c2ecf20Sopenharmony_ci * of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above, 368c2ecf20Sopenharmony_ci * so as a baseline we can assume that we have the following BAR modes 378c2ecf20Sopenharmony_ci * available: 388c2ecf20Sopenharmony_ci * 398c2ecf20Sopenharmony_ci * NB: $PE_COUNT is the number of PEs that the PHB supports. 408c2ecf20Sopenharmony_ci * 418c2ecf20Sopenharmony_ci * a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized 428c2ecf20Sopenharmony_ci * segments. The n'th segment is mapped to the n'th PE. 438c2ecf20Sopenharmony_ci * b) An un-segmented BAR that maps the whole address range to a specific PE. 448c2ecf20Sopenharmony_ci * 458c2ecf20Sopenharmony_ci * 468c2ecf20Sopenharmony_ci * We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR 478c2ecf20Sopenharmony_ci * For comparison b) requires one entry per-VF per-BAR, or: 488c2ecf20Sopenharmony_ci * (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment 498c2ecf20Sopenharmony_ci * to equal the size of the per-VF BAR area. So: 508c2ecf20Sopenharmony_ci * 518c2ecf20Sopenharmony_ci * new_size = per-vf-size * number-of-PEs 528c2ecf20Sopenharmony_ci * 538c2ecf20Sopenharmony_ci * The alignment for the SR-IOV BAR also needs to be changed from per-vf-size 548c2ecf20Sopenharmony_ci * to "new_size", calculated above. Implementing this is a convoluted process 558c2ecf20Sopenharmony_ci * which requires several hooks in the PCI core: 568c2ecf20Sopenharmony_ci * 578c2ecf20Sopenharmony_ci * 1. In pcibios_add_device() we call pnv_pci_ioda_fixup_iov(). 588c2ecf20Sopenharmony_ci * 598c2ecf20Sopenharmony_ci * At this point the device has been probed and the device's BARs are sized, 608c2ecf20Sopenharmony_ci * but no resource allocations have been done. The SR-IOV BARs are sized 618c2ecf20Sopenharmony_ci * based on the maximum number of VFs supported by the device and we need 628c2ecf20Sopenharmony_ci * to increase that to new_size. 638c2ecf20Sopenharmony_ci * 648c2ecf20Sopenharmony_ci * 2. Later, when Linux actually assigns resources it tries to make the resource 658c2ecf20Sopenharmony_ci * allocations for each PCI bus as compact as possible. As a part of that it 668c2ecf20Sopenharmony_ci * sorts the BARs on a bus by their required alignment, which is calculated 678c2ecf20Sopenharmony_ci * using pci_resource_alignment(). 688c2ecf20Sopenharmony_ci * 698c2ecf20Sopenharmony_ci * For IOV resources this goes: 708c2ecf20Sopenharmony_ci * pci_resource_alignment() 718c2ecf20Sopenharmony_ci * pci_sriov_resource_alignment() 728c2ecf20Sopenharmony_ci * pcibios_sriov_resource_alignment() 738c2ecf20Sopenharmony_ci * pnv_pci_iov_resource_alignment() 748c2ecf20Sopenharmony_ci * 758c2ecf20Sopenharmony_ci * Our hook overrides the default alignment, equal to the per-vf-size, with 768c2ecf20Sopenharmony_ci * new_size computed above. 778c2ecf20Sopenharmony_ci * 788c2ecf20Sopenharmony_ci * 3. When userspace enables VFs for a device: 798c2ecf20Sopenharmony_ci * 808c2ecf20Sopenharmony_ci * sriov_enable() 818c2ecf20Sopenharmony_ci * pcibios_sriov_enable() 828c2ecf20Sopenharmony_ci * pnv_pcibios_sriov_enable() 838c2ecf20Sopenharmony_ci * 848c2ecf20Sopenharmony_ci * This is where we actually allocate PE numbers for each VF and setup the 858c2ecf20Sopenharmony_ci * MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena" 868c2ecf20Sopenharmony_ci * where each MBT segment is equal in size to the VF BAR so we can shift 878c2ecf20Sopenharmony_ci * around the actual SR-IOV BAR location within this arena. We need this 888c2ecf20Sopenharmony_ci * ability because the PE space is shared by all devices on the same PHB. 898c2ecf20Sopenharmony_ci * When using mode a) described above segment 0 in maps to PE#0 which might 908c2ecf20Sopenharmony_ci * be already being used by another device on the PHB. 918c2ecf20Sopenharmony_ci * 928c2ecf20Sopenharmony_ci * As a result we need allocate a contigious range of PE numbers, then shift 938c2ecf20Sopenharmony_ci * the address programmed into the SR-IOV BAR of the PF so that the address 948c2ecf20Sopenharmony_ci * of VF0 matches up with the segment corresponding to the first allocated 958c2ecf20Sopenharmony_ci * PE number. This is handled in pnv_pci_vf_resource_shift(). 968c2ecf20Sopenharmony_ci * 978c2ecf20Sopenharmony_ci * Once all that is done we return to the PCI core which then enables VFs, 988c2ecf20Sopenharmony_ci * scans them and creates pci_devs for each. The init process for a VF is 998c2ecf20Sopenharmony_ci * largely the same as a normal device, but the VF is inserted into the IODA 1008c2ecf20Sopenharmony_ci * PE that we allocated for it rather than the PE associated with the bus. 1018c2ecf20Sopenharmony_ci * 1028c2ecf20Sopenharmony_ci * 4. When userspace disables VFs we unwind the above in 1038c2ecf20Sopenharmony_ci * pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since 1048c2ecf20Sopenharmony_ci * we don't need to validate anything, just tear down the mappings and 1058c2ecf20Sopenharmony_ci * move SR-IOV resource back to its "proper" location. 1068c2ecf20Sopenharmony_ci * 1078c2ecf20Sopenharmony_ci * That's how mode a) works. In theory mode b) (single PE mapping) is less work 1088c2ecf20Sopenharmony_ci * since we can map each individual VF with a separate BAR. However, there's a 1098c2ecf20Sopenharmony_ci * few limitations: 1108c2ecf20Sopenharmony_ci * 1118c2ecf20Sopenharmony_ci * 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes 1128c2ecf20Sopenharmony_ci * it only usable for devices with very large per-VF BARs. Such devices are 1138c2ecf20Sopenharmony_ci * similar to Big Foot. They definitely exist, but I've never seen one. 1148c2ecf20Sopenharmony_ci * 1158c2ecf20Sopenharmony_ci * 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only 1168c2ecf20Sopenharmony_ci * 16 total and some are needed for. Most SR-IOV capable network cards can support 1178c2ecf20Sopenharmony_ci * more than 16 VFs on each port. 1188c2ecf20Sopenharmony_ci * 1198c2ecf20Sopenharmony_ci * We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO 1208c2ecf20Sopenharmony_ci * window of the PHB. 1218c2ecf20Sopenharmony_ci * 1228c2ecf20Sopenharmony_ci * 1238c2ecf20Sopenharmony_ci * 1248c2ecf20Sopenharmony_ci * PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It 1258c2ecf20Sopenharmony_ci * allowed the MBT to map 32bit MMIO space in addition to 64bit which allows 1268c2ecf20Sopenharmony_ci * us to support SR-IOV BARs in the 32bit MMIO window. This is useful since 1278c2ecf20Sopenharmony_ci * the Linux BAR allocation will place any BAR marked as non-prefetchable into 1288c2ecf20Sopenharmony_ci * the non-prefetchable bridge window, which is 32bit only. It also added two 1298c2ecf20Sopenharmony_ci * new modes: 1308c2ecf20Sopenharmony_ci * 1318c2ecf20Sopenharmony_ci * c) A segmented BAR similar to a), but each segment can be individually 1328c2ecf20Sopenharmony_ci * mapped to any PE. This is matches how the 32bit MMIO window worked on 1338c2ecf20Sopenharmony_ci * IODA1&2. 1348c2ecf20Sopenharmony_ci * 1358c2ecf20Sopenharmony_ci * d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a), 1368c2ecf20Sopenharmony_ci * but with fewer segments and configurable base PE. 1378c2ecf20Sopenharmony_ci * 1388c2ecf20Sopenharmony_ci * i.e. The n'th segment maps to the (n + base)'th PE. 1398c2ecf20Sopenharmony_ci * 1408c2ecf20Sopenharmony_ci * The base PE is also required to be a multiple of the window size. 1418c2ecf20Sopenharmony_ci * 1428c2ecf20Sopenharmony_ci * Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us 1438c2ecf20Sopenharmony_ci * to exploit any of the IODA3 features. 1448c2ecf20Sopenharmony_ci */ 1458c2ecf20Sopenharmony_ci 1468c2ecf20Sopenharmony_cistatic void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev) 1478c2ecf20Sopenharmony_ci{ 1488c2ecf20Sopenharmony_ci struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 1498c2ecf20Sopenharmony_ci struct resource *res; 1508c2ecf20Sopenharmony_ci int i; 1518c2ecf20Sopenharmony_ci resource_size_t vf_bar_sz; 1528c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 1538c2ecf20Sopenharmony_ci int mul; 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_ci iov = kzalloc(sizeof(*iov), GFP_KERNEL); 1568c2ecf20Sopenharmony_ci if (!iov) 1578c2ecf20Sopenharmony_ci goto disable_iov; 1588c2ecf20Sopenharmony_ci pdev->dev.archdata.iov_data = iov; 1598c2ecf20Sopenharmony_ci mul = phb->ioda.total_pe_num; 1608c2ecf20Sopenharmony_ci 1618c2ecf20Sopenharmony_ci for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 1628c2ecf20Sopenharmony_ci res = &pdev->resource[i + PCI_IOV_RESOURCES]; 1638c2ecf20Sopenharmony_ci if (!res->flags || res->parent) 1648c2ecf20Sopenharmony_ci continue; 1658c2ecf20Sopenharmony_ci if (!pnv_pci_is_m64_flags(res->flags)) { 1668c2ecf20Sopenharmony_ci dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n", 1678c2ecf20Sopenharmony_ci i, res); 1688c2ecf20Sopenharmony_ci goto disable_iov; 1698c2ecf20Sopenharmony_ci } 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_ci vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES); 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ci /* 1748c2ecf20Sopenharmony_ci * Generally, one segmented M64 BAR maps one IOV BAR. However, 1758c2ecf20Sopenharmony_ci * if a VF BAR is too large we end up wasting a lot of space. 1768c2ecf20Sopenharmony_ci * If each VF needs more than 1/4 of the default m64 segment 1778c2ecf20Sopenharmony_ci * then each VF BAR should be mapped in single-PE mode to reduce 1788c2ecf20Sopenharmony_ci * the amount of space required. This does however limit the 1798c2ecf20Sopenharmony_ci * number of VFs we can support. 1808c2ecf20Sopenharmony_ci * 1818c2ecf20Sopenharmony_ci * The 1/4 limit is arbitrary and can be tweaked. 1828c2ecf20Sopenharmony_ci */ 1838c2ecf20Sopenharmony_ci if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) { 1848c2ecf20Sopenharmony_ci /* 1858c2ecf20Sopenharmony_ci * On PHB3, the minimum size alignment of M64 BAR in 1868c2ecf20Sopenharmony_ci * single mode is 32MB. If this VF BAR is smaller than 1878c2ecf20Sopenharmony_ci * 32MB, but still too large for a segmented window 1888c2ecf20Sopenharmony_ci * then we can't map it and need to disable SR-IOV for 1898c2ecf20Sopenharmony_ci * this device. 1908c2ecf20Sopenharmony_ci */ 1918c2ecf20Sopenharmony_ci if (vf_bar_sz < SZ_32M) { 1928c2ecf20Sopenharmony_ci pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n", 1938c2ecf20Sopenharmony_ci i, res); 1948c2ecf20Sopenharmony_ci goto disable_iov; 1958c2ecf20Sopenharmony_ci } 1968c2ecf20Sopenharmony_ci 1978c2ecf20Sopenharmony_ci iov->m64_single_mode[i] = true; 1988c2ecf20Sopenharmony_ci continue; 1998c2ecf20Sopenharmony_ci } 2008c2ecf20Sopenharmony_ci 2018c2ecf20Sopenharmony_ci /* 2028c2ecf20Sopenharmony_ci * This BAR can be mapped with one segmented window, so adjust 2038c2ecf20Sopenharmony_ci * te resource size to accommodate. 2048c2ecf20Sopenharmony_ci */ 2058c2ecf20Sopenharmony_ci pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res); 2068c2ecf20Sopenharmony_ci res->end = res->start + vf_bar_sz * mul - 1; 2078c2ecf20Sopenharmony_ci pci_dbg(pdev, " %pR\n", res); 2088c2ecf20Sopenharmony_ci 2098c2ecf20Sopenharmony_ci pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)", 2108c2ecf20Sopenharmony_ci i, res, mul); 2118c2ecf20Sopenharmony_ci 2128c2ecf20Sopenharmony_ci iov->need_shift = true; 2138c2ecf20Sopenharmony_ci } 2148c2ecf20Sopenharmony_ci 2158c2ecf20Sopenharmony_ci return; 2168c2ecf20Sopenharmony_ci 2178c2ecf20Sopenharmony_cidisable_iov: 2188c2ecf20Sopenharmony_ci /* Save ourselves some MMIO space by disabling the unusable BARs */ 2198c2ecf20Sopenharmony_ci for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 2208c2ecf20Sopenharmony_ci res = &pdev->resource[i + PCI_IOV_RESOURCES]; 2218c2ecf20Sopenharmony_ci res->flags = 0; 2228c2ecf20Sopenharmony_ci res->end = res->start - 1; 2238c2ecf20Sopenharmony_ci } 2248c2ecf20Sopenharmony_ci 2258c2ecf20Sopenharmony_ci pdev->dev.archdata.iov_data = NULL; 2268c2ecf20Sopenharmony_ci kfree(iov); 2278c2ecf20Sopenharmony_ci} 2288c2ecf20Sopenharmony_ci 2298c2ecf20Sopenharmony_civoid pnv_pci_ioda_fixup_iov(struct pci_dev *pdev) 2308c2ecf20Sopenharmony_ci{ 2318c2ecf20Sopenharmony_ci if (WARN_ON(pci_dev_is_added(pdev))) 2328c2ecf20Sopenharmony_ci return; 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_ci if (pdev->is_virtfn) { 2358c2ecf20Sopenharmony_ci struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev); 2368c2ecf20Sopenharmony_ci 2378c2ecf20Sopenharmony_ci /* 2388c2ecf20Sopenharmony_ci * VF PEs are single-device PEs so their pdev pointer needs to 2398c2ecf20Sopenharmony_ci * be set. The pdev doesn't exist when the PE is allocated (in 2408c2ecf20Sopenharmony_ci * (pcibios_sriov_enable()) so we fix it up here. 2418c2ecf20Sopenharmony_ci */ 2428c2ecf20Sopenharmony_ci pe->pdev = pdev; 2438c2ecf20Sopenharmony_ci WARN_ON(!(pe->flags & PNV_IODA_PE_VF)); 2448c2ecf20Sopenharmony_ci } else if (pdev->is_physfn) { 2458c2ecf20Sopenharmony_ci /* 2468c2ecf20Sopenharmony_ci * For PFs adjust their allocated IOV resources to match what 2478c2ecf20Sopenharmony_ci * the PHB can support using it's M64 BAR table. 2488c2ecf20Sopenharmony_ci */ 2498c2ecf20Sopenharmony_ci pnv_pci_ioda_fixup_iov_resources(pdev); 2508c2ecf20Sopenharmony_ci } 2518c2ecf20Sopenharmony_ci} 2528c2ecf20Sopenharmony_ci 2538c2ecf20Sopenharmony_ciresource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev, 2548c2ecf20Sopenharmony_ci int resno) 2558c2ecf20Sopenharmony_ci{ 2568c2ecf20Sopenharmony_ci resource_size_t align = pci_iov_resource_size(pdev, resno); 2578c2ecf20Sopenharmony_ci struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus); 2588c2ecf20Sopenharmony_ci struct pnv_iov_data *iov = pnv_iov_get(pdev); 2598c2ecf20Sopenharmony_ci 2608c2ecf20Sopenharmony_ci /* 2618c2ecf20Sopenharmony_ci * iov can be null if we have an SR-IOV device with IOV BAR that can't 2628c2ecf20Sopenharmony_ci * be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch). 2638c2ecf20Sopenharmony_ci * In that case we don't allow VFs to be enabled since one of their 2648c2ecf20Sopenharmony_ci * BARs would not be placed in the correct PE. 2658c2ecf20Sopenharmony_ci */ 2668c2ecf20Sopenharmony_ci if (!iov) 2678c2ecf20Sopenharmony_ci return align; 2688c2ecf20Sopenharmony_ci 2698c2ecf20Sopenharmony_ci /* 2708c2ecf20Sopenharmony_ci * If we're using single mode then we can just use the native VF BAR 2718c2ecf20Sopenharmony_ci * alignment. We validated that it's possible to use a single PE 2728c2ecf20Sopenharmony_ci * window above when we did the fixup. 2738c2ecf20Sopenharmony_ci */ 2748c2ecf20Sopenharmony_ci if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES]) 2758c2ecf20Sopenharmony_ci return align; 2768c2ecf20Sopenharmony_ci 2778c2ecf20Sopenharmony_ci /* 2788c2ecf20Sopenharmony_ci * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the 2798c2ecf20Sopenharmony_ci * SR-IOV. While from hardware perspective, the range mapped by M64 2808c2ecf20Sopenharmony_ci * BAR should be size aligned. 2818c2ecf20Sopenharmony_ci * 2828c2ecf20Sopenharmony_ci * This function returns the total IOV BAR size if M64 BAR is in 2838c2ecf20Sopenharmony_ci * Shared PE mode or just VF BAR size if not. 2848c2ecf20Sopenharmony_ci * If the M64 BAR is in Single PE mode, return the VF BAR size or 2858c2ecf20Sopenharmony_ci * M64 segment size if IOV BAR size is less. 2868c2ecf20Sopenharmony_ci */ 2878c2ecf20Sopenharmony_ci return phb->ioda.total_pe_num * align; 2888c2ecf20Sopenharmony_ci} 2898c2ecf20Sopenharmony_ci 2908c2ecf20Sopenharmony_cistatic int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs) 2918c2ecf20Sopenharmony_ci{ 2928c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 2938c2ecf20Sopenharmony_ci struct pnv_phb *phb; 2948c2ecf20Sopenharmony_ci int window_id; 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci phb = pci_bus_to_pnvhb(pdev->bus); 2978c2ecf20Sopenharmony_ci iov = pnv_iov_get(pdev); 2988c2ecf20Sopenharmony_ci 2998c2ecf20Sopenharmony_ci for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) { 3008c2ecf20Sopenharmony_ci opal_pci_phb_mmio_enable(phb->opal_id, 3018c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3028c2ecf20Sopenharmony_ci window_id, 3038c2ecf20Sopenharmony_ci 0); 3048c2ecf20Sopenharmony_ci 3058c2ecf20Sopenharmony_ci clear_bit(window_id, &phb->ioda.m64_bar_alloc); 3068c2ecf20Sopenharmony_ci } 3078c2ecf20Sopenharmony_ci 3088c2ecf20Sopenharmony_ci return 0; 3098c2ecf20Sopenharmony_ci} 3108c2ecf20Sopenharmony_ci 3118c2ecf20Sopenharmony_ci 3128c2ecf20Sopenharmony_ci/* 3138c2ecf20Sopenharmony_ci * PHB3 and beyond support segmented windows. The window's address range 3148c2ecf20Sopenharmony_ci * is subdivided into phb->ioda.total_pe_num segments and there's a 1-1 3158c2ecf20Sopenharmony_ci * mapping between PEs and segments. 3168c2ecf20Sopenharmony_ci */ 3178c2ecf20Sopenharmony_cistatic int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb, 3188c2ecf20Sopenharmony_ci int window_id, 3198c2ecf20Sopenharmony_ci resource_size_t start, 3208c2ecf20Sopenharmony_ci resource_size_t size) 3218c2ecf20Sopenharmony_ci{ 3228c2ecf20Sopenharmony_ci int64_t rc; 3238c2ecf20Sopenharmony_ci 3248c2ecf20Sopenharmony_ci rc = opal_pci_set_phb_mem_window(phb->opal_id, 3258c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3268c2ecf20Sopenharmony_ci window_id, 3278c2ecf20Sopenharmony_ci start, 3288c2ecf20Sopenharmony_ci 0, /* unused */ 3298c2ecf20Sopenharmony_ci size); 3308c2ecf20Sopenharmony_ci if (rc) 3318c2ecf20Sopenharmony_ci goto out; 3328c2ecf20Sopenharmony_ci 3338c2ecf20Sopenharmony_ci rc = opal_pci_phb_mmio_enable(phb->opal_id, 3348c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3358c2ecf20Sopenharmony_ci window_id, 3368c2ecf20Sopenharmony_ci OPAL_ENABLE_M64_SPLIT); 3378c2ecf20Sopenharmony_ciout: 3388c2ecf20Sopenharmony_ci if (rc) 3398c2ecf20Sopenharmony_ci pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc); 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci return rc; 3428c2ecf20Sopenharmony_ci} 3438c2ecf20Sopenharmony_ci 3448c2ecf20Sopenharmony_cistatic int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb, 3458c2ecf20Sopenharmony_ci int pe_num, 3468c2ecf20Sopenharmony_ci int window_id, 3478c2ecf20Sopenharmony_ci resource_size_t start, 3488c2ecf20Sopenharmony_ci resource_size_t size) 3498c2ecf20Sopenharmony_ci{ 3508c2ecf20Sopenharmony_ci int64_t rc; 3518c2ecf20Sopenharmony_ci 3528c2ecf20Sopenharmony_ci /* 3538c2ecf20Sopenharmony_ci * The API for setting up m64 mmio windows seems to have been designed 3548c2ecf20Sopenharmony_ci * with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed 3558c2ecf20Sopenharmony_ci * split of 8 equally sized segments each of which could individually 3568c2ecf20Sopenharmony_ci * assigned to a PE. 3578c2ecf20Sopenharmony_ci * 3588c2ecf20Sopenharmony_ci * The problem with this is that the API doesn't have any way to 3598c2ecf20Sopenharmony_ci * communicate the number of segments we want on a BAR. This wasn't 3608c2ecf20Sopenharmony_ci * a problem for p7-ioc since you didn't have a choice, but the 3618c2ecf20Sopenharmony_ci * single PE windows added in PHB3 don't map cleanly to this API. 3628c2ecf20Sopenharmony_ci * 3638c2ecf20Sopenharmony_ci * As a result we've got this slightly awkward process where we 3648c2ecf20Sopenharmony_ci * call opal_pci_map_pe_mmio_window() to put the single in single 3658c2ecf20Sopenharmony_ci * PE mode, and set the PE for the window before setting the address 3668c2ecf20Sopenharmony_ci * bounds. We need to do it this way because the single PE windows 3678c2ecf20Sopenharmony_ci * for PHB3 have different alignment requirements on PHB3. 3688c2ecf20Sopenharmony_ci */ 3698c2ecf20Sopenharmony_ci rc = opal_pci_map_pe_mmio_window(phb->opal_id, 3708c2ecf20Sopenharmony_ci pe_num, 3718c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3728c2ecf20Sopenharmony_ci window_id, 3738c2ecf20Sopenharmony_ci 0); 3748c2ecf20Sopenharmony_ci if (rc) 3758c2ecf20Sopenharmony_ci goto out; 3768c2ecf20Sopenharmony_ci 3778c2ecf20Sopenharmony_ci /* 3788c2ecf20Sopenharmony_ci * NB: In single PE mode the window needs to be aligned to 32MB 3798c2ecf20Sopenharmony_ci */ 3808c2ecf20Sopenharmony_ci rc = opal_pci_set_phb_mem_window(phb->opal_id, 3818c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3828c2ecf20Sopenharmony_ci window_id, 3838c2ecf20Sopenharmony_ci start, 3848c2ecf20Sopenharmony_ci 0, /* ignored by FW, m64 is 1-1 */ 3858c2ecf20Sopenharmony_ci size); 3868c2ecf20Sopenharmony_ci if (rc) 3878c2ecf20Sopenharmony_ci goto out; 3888c2ecf20Sopenharmony_ci 3898c2ecf20Sopenharmony_ci /* 3908c2ecf20Sopenharmony_ci * Now actually enable it. We specified the BAR should be in "non-split" 3918c2ecf20Sopenharmony_ci * mode so FW will validate that the BAR is in single PE mode. 3928c2ecf20Sopenharmony_ci */ 3938c2ecf20Sopenharmony_ci rc = opal_pci_phb_mmio_enable(phb->opal_id, 3948c2ecf20Sopenharmony_ci OPAL_M64_WINDOW_TYPE, 3958c2ecf20Sopenharmony_ci window_id, 3968c2ecf20Sopenharmony_ci OPAL_ENABLE_M64_NON_SPLIT); 3978c2ecf20Sopenharmony_ciout: 3988c2ecf20Sopenharmony_ci if (rc) 3998c2ecf20Sopenharmony_ci pr_err("Error mapping single PE BAR\n"); 4008c2ecf20Sopenharmony_ci 4018c2ecf20Sopenharmony_ci return rc; 4028c2ecf20Sopenharmony_ci} 4038c2ecf20Sopenharmony_ci 4048c2ecf20Sopenharmony_cistatic int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov) 4058c2ecf20Sopenharmony_ci{ 4068c2ecf20Sopenharmony_ci int win; 4078c2ecf20Sopenharmony_ci 4088c2ecf20Sopenharmony_ci do { 4098c2ecf20Sopenharmony_ci win = find_next_zero_bit(&phb->ioda.m64_bar_alloc, 4108c2ecf20Sopenharmony_ci phb->ioda.m64_bar_idx + 1, 0); 4118c2ecf20Sopenharmony_ci 4128c2ecf20Sopenharmony_ci if (win >= phb->ioda.m64_bar_idx + 1) 4138c2ecf20Sopenharmony_ci return -1; 4148c2ecf20Sopenharmony_ci } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc)); 4158c2ecf20Sopenharmony_ci 4168c2ecf20Sopenharmony_ci set_bit(win, iov->used_m64_bar_mask); 4178c2ecf20Sopenharmony_ci 4188c2ecf20Sopenharmony_ci return win; 4198c2ecf20Sopenharmony_ci} 4208c2ecf20Sopenharmony_ci 4218c2ecf20Sopenharmony_cistatic int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs) 4228c2ecf20Sopenharmony_ci{ 4238c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 4248c2ecf20Sopenharmony_ci struct pnv_phb *phb; 4258c2ecf20Sopenharmony_ci int win; 4268c2ecf20Sopenharmony_ci struct resource *res; 4278c2ecf20Sopenharmony_ci int i, j; 4288c2ecf20Sopenharmony_ci int64_t rc; 4298c2ecf20Sopenharmony_ci resource_size_t size, start; 4308c2ecf20Sopenharmony_ci int base_pe_num; 4318c2ecf20Sopenharmony_ci 4328c2ecf20Sopenharmony_ci phb = pci_bus_to_pnvhb(pdev->bus); 4338c2ecf20Sopenharmony_ci iov = pnv_iov_get(pdev); 4348c2ecf20Sopenharmony_ci 4358c2ecf20Sopenharmony_ci for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 4368c2ecf20Sopenharmony_ci res = &pdev->resource[i + PCI_IOV_RESOURCES]; 4378c2ecf20Sopenharmony_ci if (!res->flags || !res->parent) 4388c2ecf20Sopenharmony_ci continue; 4398c2ecf20Sopenharmony_ci 4408c2ecf20Sopenharmony_ci /* don't need single mode? map everything in one go! */ 4418c2ecf20Sopenharmony_ci if (!iov->m64_single_mode[i]) { 4428c2ecf20Sopenharmony_ci win = pnv_pci_alloc_m64_bar(phb, iov); 4438c2ecf20Sopenharmony_ci if (win < 0) 4448c2ecf20Sopenharmony_ci goto m64_failed; 4458c2ecf20Sopenharmony_ci 4468c2ecf20Sopenharmony_ci size = resource_size(res); 4478c2ecf20Sopenharmony_ci start = res->start; 4488c2ecf20Sopenharmony_ci 4498c2ecf20Sopenharmony_ci rc = pnv_ioda_map_m64_segmented(phb, win, start, size); 4508c2ecf20Sopenharmony_ci if (rc) 4518c2ecf20Sopenharmony_ci goto m64_failed; 4528c2ecf20Sopenharmony_ci 4538c2ecf20Sopenharmony_ci continue; 4548c2ecf20Sopenharmony_ci } 4558c2ecf20Sopenharmony_ci 4568c2ecf20Sopenharmony_ci /* otherwise map each VF with single PE BARs */ 4578c2ecf20Sopenharmony_ci size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i); 4588c2ecf20Sopenharmony_ci base_pe_num = iov->vf_pe_arr[0].pe_number; 4598c2ecf20Sopenharmony_ci 4608c2ecf20Sopenharmony_ci for (j = 0; j < num_vfs; j++) { 4618c2ecf20Sopenharmony_ci win = pnv_pci_alloc_m64_bar(phb, iov); 4628c2ecf20Sopenharmony_ci if (win < 0) 4638c2ecf20Sopenharmony_ci goto m64_failed; 4648c2ecf20Sopenharmony_ci 4658c2ecf20Sopenharmony_ci start = res->start + size * j; 4668c2ecf20Sopenharmony_ci rc = pnv_ioda_map_m64_single(phb, win, 4678c2ecf20Sopenharmony_ci base_pe_num + j, 4688c2ecf20Sopenharmony_ci start, 4698c2ecf20Sopenharmony_ci size); 4708c2ecf20Sopenharmony_ci if (rc) 4718c2ecf20Sopenharmony_ci goto m64_failed; 4728c2ecf20Sopenharmony_ci } 4738c2ecf20Sopenharmony_ci } 4748c2ecf20Sopenharmony_ci return 0; 4758c2ecf20Sopenharmony_ci 4768c2ecf20Sopenharmony_cim64_failed: 4778c2ecf20Sopenharmony_ci pnv_pci_vf_release_m64(pdev, num_vfs); 4788c2ecf20Sopenharmony_ci return -EBUSY; 4798c2ecf20Sopenharmony_ci} 4808c2ecf20Sopenharmony_ci 4818c2ecf20Sopenharmony_cistatic void pnv_ioda_release_vf_PE(struct pci_dev *pdev) 4828c2ecf20Sopenharmony_ci{ 4838c2ecf20Sopenharmony_ci struct pnv_phb *phb; 4848c2ecf20Sopenharmony_ci struct pnv_ioda_pe *pe, *pe_n; 4858c2ecf20Sopenharmony_ci 4868c2ecf20Sopenharmony_ci phb = pci_bus_to_pnvhb(pdev->bus); 4878c2ecf20Sopenharmony_ci 4888c2ecf20Sopenharmony_ci if (!pdev->is_physfn) 4898c2ecf20Sopenharmony_ci return; 4908c2ecf20Sopenharmony_ci 4918c2ecf20Sopenharmony_ci /* FIXME: Use pnv_ioda_release_pe()? */ 4928c2ecf20Sopenharmony_ci list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) { 4938c2ecf20Sopenharmony_ci if (pe->parent_dev != pdev) 4948c2ecf20Sopenharmony_ci continue; 4958c2ecf20Sopenharmony_ci 4968c2ecf20Sopenharmony_ci pnv_pci_ioda2_release_pe_dma(pe); 4978c2ecf20Sopenharmony_ci 4988c2ecf20Sopenharmony_ci /* Remove from list */ 4998c2ecf20Sopenharmony_ci mutex_lock(&phb->ioda.pe_list_mutex); 5008c2ecf20Sopenharmony_ci list_del(&pe->list); 5018c2ecf20Sopenharmony_ci mutex_unlock(&phb->ioda.pe_list_mutex); 5028c2ecf20Sopenharmony_ci 5038c2ecf20Sopenharmony_ci pnv_ioda_deconfigure_pe(phb, pe); 5048c2ecf20Sopenharmony_ci 5058c2ecf20Sopenharmony_ci pnv_ioda_free_pe(pe); 5068c2ecf20Sopenharmony_ci } 5078c2ecf20Sopenharmony_ci} 5088c2ecf20Sopenharmony_ci 5098c2ecf20Sopenharmony_cistatic int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset) 5108c2ecf20Sopenharmony_ci{ 5118c2ecf20Sopenharmony_ci struct resource *res, res2; 5128c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 5138c2ecf20Sopenharmony_ci resource_size_t size; 5148c2ecf20Sopenharmony_ci u16 num_vfs; 5158c2ecf20Sopenharmony_ci int i; 5168c2ecf20Sopenharmony_ci 5178c2ecf20Sopenharmony_ci if (!dev->is_physfn) 5188c2ecf20Sopenharmony_ci return -EINVAL; 5198c2ecf20Sopenharmony_ci iov = pnv_iov_get(dev); 5208c2ecf20Sopenharmony_ci 5218c2ecf20Sopenharmony_ci /* 5228c2ecf20Sopenharmony_ci * "offset" is in VFs. The M64 windows are sized so that when they 5238c2ecf20Sopenharmony_ci * are segmented, each segment is the same size as the IOV BAR. 5248c2ecf20Sopenharmony_ci * Each segment is in a separate PE, and the high order bits of the 5258c2ecf20Sopenharmony_ci * address are the PE number. Therefore, each VF's BAR is in a 5268c2ecf20Sopenharmony_ci * separate PE, and changing the IOV BAR start address changes the 5278c2ecf20Sopenharmony_ci * range of PEs the VFs are in. 5288c2ecf20Sopenharmony_ci */ 5298c2ecf20Sopenharmony_ci num_vfs = iov->num_vfs; 5308c2ecf20Sopenharmony_ci for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 5318c2ecf20Sopenharmony_ci res = &dev->resource[i + PCI_IOV_RESOURCES]; 5328c2ecf20Sopenharmony_ci if (!res->flags || !res->parent) 5338c2ecf20Sopenharmony_ci continue; 5348c2ecf20Sopenharmony_ci if (iov->m64_single_mode[i]) 5358c2ecf20Sopenharmony_ci continue; 5368c2ecf20Sopenharmony_ci 5378c2ecf20Sopenharmony_ci /* 5388c2ecf20Sopenharmony_ci * The actual IOV BAR range is determined by the start address 5398c2ecf20Sopenharmony_ci * and the actual size for num_vfs VFs BAR. This check is to 5408c2ecf20Sopenharmony_ci * make sure that after shifting, the range will not overlap 5418c2ecf20Sopenharmony_ci * with another device. 5428c2ecf20Sopenharmony_ci */ 5438c2ecf20Sopenharmony_ci size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 5448c2ecf20Sopenharmony_ci res2.flags = res->flags; 5458c2ecf20Sopenharmony_ci res2.start = res->start + (size * offset); 5468c2ecf20Sopenharmony_ci res2.end = res2.start + (size * num_vfs) - 1; 5478c2ecf20Sopenharmony_ci 5488c2ecf20Sopenharmony_ci if (res2.end > res->end) { 5498c2ecf20Sopenharmony_ci dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n", 5508c2ecf20Sopenharmony_ci i, &res2, res, num_vfs, offset); 5518c2ecf20Sopenharmony_ci return -EBUSY; 5528c2ecf20Sopenharmony_ci } 5538c2ecf20Sopenharmony_ci } 5548c2ecf20Sopenharmony_ci 5558c2ecf20Sopenharmony_ci /* 5568c2ecf20Sopenharmony_ci * Since M64 BAR shares segments among all possible 256 PEs, 5578c2ecf20Sopenharmony_ci * we have to shift the beginning of PF IOV BAR to make it start from 5588c2ecf20Sopenharmony_ci * the segment which belongs to the PE number assigned to the first VF. 5598c2ecf20Sopenharmony_ci * This creates a "hole" in the /proc/iomem which could be used for 5608c2ecf20Sopenharmony_ci * allocating other resources so we reserve this area below and 5618c2ecf20Sopenharmony_ci * release when IOV is released. 5628c2ecf20Sopenharmony_ci */ 5638c2ecf20Sopenharmony_ci for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) { 5648c2ecf20Sopenharmony_ci res = &dev->resource[i + PCI_IOV_RESOURCES]; 5658c2ecf20Sopenharmony_ci if (!res->flags || !res->parent) 5668c2ecf20Sopenharmony_ci continue; 5678c2ecf20Sopenharmony_ci if (iov->m64_single_mode[i]) 5688c2ecf20Sopenharmony_ci continue; 5698c2ecf20Sopenharmony_ci 5708c2ecf20Sopenharmony_ci size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES); 5718c2ecf20Sopenharmony_ci res2 = *res; 5728c2ecf20Sopenharmony_ci res->start += size * offset; 5738c2ecf20Sopenharmony_ci 5748c2ecf20Sopenharmony_ci dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n", 5758c2ecf20Sopenharmony_ci i, &res2, res, (offset > 0) ? "En" : "Dis", 5768c2ecf20Sopenharmony_ci num_vfs, offset); 5778c2ecf20Sopenharmony_ci 5788c2ecf20Sopenharmony_ci if (offset < 0) { 5798c2ecf20Sopenharmony_ci devm_release_resource(&dev->dev, &iov->holes[i]); 5808c2ecf20Sopenharmony_ci memset(&iov->holes[i], 0, sizeof(iov->holes[i])); 5818c2ecf20Sopenharmony_ci } 5828c2ecf20Sopenharmony_ci 5838c2ecf20Sopenharmony_ci pci_update_resource(dev, i + PCI_IOV_RESOURCES); 5848c2ecf20Sopenharmony_ci 5858c2ecf20Sopenharmony_ci if (offset > 0) { 5868c2ecf20Sopenharmony_ci iov->holes[i].start = res2.start; 5878c2ecf20Sopenharmony_ci iov->holes[i].end = res2.start + size * offset - 1; 5888c2ecf20Sopenharmony_ci iov->holes[i].flags = IORESOURCE_BUS; 5898c2ecf20Sopenharmony_ci iov->holes[i].name = "pnv_iov_reserved"; 5908c2ecf20Sopenharmony_ci devm_request_resource(&dev->dev, res->parent, 5918c2ecf20Sopenharmony_ci &iov->holes[i]); 5928c2ecf20Sopenharmony_ci } 5938c2ecf20Sopenharmony_ci } 5948c2ecf20Sopenharmony_ci return 0; 5958c2ecf20Sopenharmony_ci} 5968c2ecf20Sopenharmony_ci 5978c2ecf20Sopenharmony_cistatic void pnv_pci_sriov_disable(struct pci_dev *pdev) 5988c2ecf20Sopenharmony_ci{ 5998c2ecf20Sopenharmony_ci u16 num_vfs, base_pe; 6008c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 6018c2ecf20Sopenharmony_ci 6028c2ecf20Sopenharmony_ci iov = pnv_iov_get(pdev); 6038c2ecf20Sopenharmony_ci if (WARN_ON(!iov)) 6048c2ecf20Sopenharmony_ci return; 6058c2ecf20Sopenharmony_ci 6068c2ecf20Sopenharmony_ci num_vfs = iov->num_vfs; 6078c2ecf20Sopenharmony_ci base_pe = iov->vf_pe_arr[0].pe_number; 6088c2ecf20Sopenharmony_ci 6098c2ecf20Sopenharmony_ci /* Release VF PEs */ 6108c2ecf20Sopenharmony_ci pnv_ioda_release_vf_PE(pdev); 6118c2ecf20Sopenharmony_ci 6128c2ecf20Sopenharmony_ci /* Un-shift the IOV BARs if we need to */ 6138c2ecf20Sopenharmony_ci if (iov->need_shift) 6148c2ecf20Sopenharmony_ci pnv_pci_vf_resource_shift(pdev, -base_pe); 6158c2ecf20Sopenharmony_ci 6168c2ecf20Sopenharmony_ci /* Release M64 windows */ 6178c2ecf20Sopenharmony_ci pnv_pci_vf_release_m64(pdev, num_vfs); 6188c2ecf20Sopenharmony_ci} 6198c2ecf20Sopenharmony_ci 6208c2ecf20Sopenharmony_cistatic void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs) 6218c2ecf20Sopenharmony_ci{ 6228c2ecf20Sopenharmony_ci struct pnv_phb *phb; 6238c2ecf20Sopenharmony_ci struct pnv_ioda_pe *pe; 6248c2ecf20Sopenharmony_ci int pe_num; 6258c2ecf20Sopenharmony_ci u16 vf_index; 6268c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 6278c2ecf20Sopenharmony_ci struct pci_dn *pdn; 6288c2ecf20Sopenharmony_ci 6298c2ecf20Sopenharmony_ci if (!pdev->is_physfn) 6308c2ecf20Sopenharmony_ci return; 6318c2ecf20Sopenharmony_ci 6328c2ecf20Sopenharmony_ci phb = pci_bus_to_pnvhb(pdev->bus); 6338c2ecf20Sopenharmony_ci pdn = pci_get_pdn(pdev); 6348c2ecf20Sopenharmony_ci iov = pnv_iov_get(pdev); 6358c2ecf20Sopenharmony_ci 6368c2ecf20Sopenharmony_ci /* Reserve PE for each VF */ 6378c2ecf20Sopenharmony_ci for (vf_index = 0; vf_index < num_vfs; vf_index++) { 6388c2ecf20Sopenharmony_ci int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index); 6398c2ecf20Sopenharmony_ci int vf_bus = pci_iov_virtfn_bus(pdev, vf_index); 6408c2ecf20Sopenharmony_ci struct pci_dn *vf_pdn; 6418c2ecf20Sopenharmony_ci 6428c2ecf20Sopenharmony_ci pe = &iov->vf_pe_arr[vf_index]; 6438c2ecf20Sopenharmony_ci pe->phb = phb; 6448c2ecf20Sopenharmony_ci pe->flags = PNV_IODA_PE_VF; 6458c2ecf20Sopenharmony_ci pe->pbus = NULL; 6468c2ecf20Sopenharmony_ci pe->parent_dev = pdev; 6478c2ecf20Sopenharmony_ci pe->mve_number = -1; 6488c2ecf20Sopenharmony_ci pe->rid = (vf_bus << 8) | vf_devfn; 6498c2ecf20Sopenharmony_ci 6508c2ecf20Sopenharmony_ci pe_num = pe->pe_number; 6518c2ecf20Sopenharmony_ci pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n", 6528c2ecf20Sopenharmony_ci pci_domain_nr(pdev->bus), pdev->bus->number, 6538c2ecf20Sopenharmony_ci PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num); 6548c2ecf20Sopenharmony_ci 6558c2ecf20Sopenharmony_ci if (pnv_ioda_configure_pe(phb, pe)) { 6568c2ecf20Sopenharmony_ci /* XXX What do we do here ? */ 6578c2ecf20Sopenharmony_ci pnv_ioda_free_pe(pe); 6588c2ecf20Sopenharmony_ci pe->pdev = NULL; 6598c2ecf20Sopenharmony_ci continue; 6608c2ecf20Sopenharmony_ci } 6618c2ecf20Sopenharmony_ci 6628c2ecf20Sopenharmony_ci /* Put PE to the list */ 6638c2ecf20Sopenharmony_ci mutex_lock(&phb->ioda.pe_list_mutex); 6648c2ecf20Sopenharmony_ci list_add_tail(&pe->list, &phb->ioda.pe_list); 6658c2ecf20Sopenharmony_ci mutex_unlock(&phb->ioda.pe_list_mutex); 6668c2ecf20Sopenharmony_ci 6678c2ecf20Sopenharmony_ci /* associate this pe to it's pdn */ 6688c2ecf20Sopenharmony_ci list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) { 6698c2ecf20Sopenharmony_ci if (vf_pdn->busno == vf_bus && 6708c2ecf20Sopenharmony_ci vf_pdn->devfn == vf_devfn) { 6718c2ecf20Sopenharmony_ci vf_pdn->pe_number = pe_num; 6728c2ecf20Sopenharmony_ci break; 6738c2ecf20Sopenharmony_ci } 6748c2ecf20Sopenharmony_ci } 6758c2ecf20Sopenharmony_ci 6768c2ecf20Sopenharmony_ci pnv_pci_ioda2_setup_dma_pe(phb, pe); 6778c2ecf20Sopenharmony_ci } 6788c2ecf20Sopenharmony_ci} 6798c2ecf20Sopenharmony_ci 6808c2ecf20Sopenharmony_cistatic int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 6818c2ecf20Sopenharmony_ci{ 6828c2ecf20Sopenharmony_ci struct pnv_ioda_pe *base_pe; 6838c2ecf20Sopenharmony_ci struct pnv_iov_data *iov; 6848c2ecf20Sopenharmony_ci struct pnv_phb *phb; 6858c2ecf20Sopenharmony_ci int ret; 6868c2ecf20Sopenharmony_ci u16 i; 6878c2ecf20Sopenharmony_ci 6888c2ecf20Sopenharmony_ci phb = pci_bus_to_pnvhb(pdev->bus); 6898c2ecf20Sopenharmony_ci iov = pnv_iov_get(pdev); 6908c2ecf20Sopenharmony_ci 6918c2ecf20Sopenharmony_ci /* 6928c2ecf20Sopenharmony_ci * There's a calls to IODA2 PE setup code littered throughout. We could 6938c2ecf20Sopenharmony_ci * probably fix that, but we'd still have problems due to the 6948c2ecf20Sopenharmony_ci * restriction inherent on IODA1 PHBs. 6958c2ecf20Sopenharmony_ci * 6968c2ecf20Sopenharmony_ci * NB: We class IODA3 as IODA2 since they're very similar. 6978c2ecf20Sopenharmony_ci */ 6988c2ecf20Sopenharmony_ci if (phb->type != PNV_PHB_IODA2) { 6998c2ecf20Sopenharmony_ci pci_err(pdev, "SR-IOV is not supported on this PHB\n"); 7008c2ecf20Sopenharmony_ci return -ENXIO; 7018c2ecf20Sopenharmony_ci } 7028c2ecf20Sopenharmony_ci 7038c2ecf20Sopenharmony_ci if (!iov) { 7048c2ecf20Sopenharmony_ci dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n"); 7058c2ecf20Sopenharmony_ci return -ENOSPC; 7068c2ecf20Sopenharmony_ci } 7078c2ecf20Sopenharmony_ci 7088c2ecf20Sopenharmony_ci /* allocate a contigious block of PEs for our VFs */ 7098c2ecf20Sopenharmony_ci base_pe = pnv_ioda_alloc_pe(phb, num_vfs); 7108c2ecf20Sopenharmony_ci if (!base_pe) { 7118c2ecf20Sopenharmony_ci pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs); 7128c2ecf20Sopenharmony_ci return -EBUSY; 7138c2ecf20Sopenharmony_ci } 7148c2ecf20Sopenharmony_ci 7158c2ecf20Sopenharmony_ci iov->vf_pe_arr = base_pe; 7168c2ecf20Sopenharmony_ci iov->num_vfs = num_vfs; 7178c2ecf20Sopenharmony_ci 7188c2ecf20Sopenharmony_ci /* Assign M64 window accordingly */ 7198c2ecf20Sopenharmony_ci ret = pnv_pci_vf_assign_m64(pdev, num_vfs); 7208c2ecf20Sopenharmony_ci if (ret) { 7218c2ecf20Sopenharmony_ci dev_info(&pdev->dev, "Not enough M64 window resources\n"); 7228c2ecf20Sopenharmony_ci goto m64_failed; 7238c2ecf20Sopenharmony_ci } 7248c2ecf20Sopenharmony_ci 7258c2ecf20Sopenharmony_ci /* 7268c2ecf20Sopenharmony_ci * When using one M64 BAR to map one IOV BAR, we need to shift 7278c2ecf20Sopenharmony_ci * the IOV BAR according to the PE# allocated to the VFs. 7288c2ecf20Sopenharmony_ci * Otherwise, the PE# for the VF will conflict with others. 7298c2ecf20Sopenharmony_ci */ 7308c2ecf20Sopenharmony_ci if (iov->need_shift) { 7318c2ecf20Sopenharmony_ci ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number); 7328c2ecf20Sopenharmony_ci if (ret) 7338c2ecf20Sopenharmony_ci goto shift_failed; 7348c2ecf20Sopenharmony_ci } 7358c2ecf20Sopenharmony_ci 7368c2ecf20Sopenharmony_ci /* Setup VF PEs */ 7378c2ecf20Sopenharmony_ci pnv_ioda_setup_vf_PE(pdev, num_vfs); 7388c2ecf20Sopenharmony_ci 7398c2ecf20Sopenharmony_ci return 0; 7408c2ecf20Sopenharmony_ci 7418c2ecf20Sopenharmony_cishift_failed: 7428c2ecf20Sopenharmony_ci pnv_pci_vf_release_m64(pdev, num_vfs); 7438c2ecf20Sopenharmony_ci 7448c2ecf20Sopenharmony_cim64_failed: 7458c2ecf20Sopenharmony_ci for (i = 0; i < num_vfs; i++) 7468c2ecf20Sopenharmony_ci pnv_ioda_free_pe(&iov->vf_pe_arr[i]); 7478c2ecf20Sopenharmony_ci 7488c2ecf20Sopenharmony_ci return ret; 7498c2ecf20Sopenharmony_ci} 7508c2ecf20Sopenharmony_ci 7518c2ecf20Sopenharmony_ciint pnv_pcibios_sriov_disable(struct pci_dev *pdev) 7528c2ecf20Sopenharmony_ci{ 7538c2ecf20Sopenharmony_ci pnv_pci_sriov_disable(pdev); 7548c2ecf20Sopenharmony_ci 7558c2ecf20Sopenharmony_ci /* Release PCI data */ 7568c2ecf20Sopenharmony_ci remove_sriov_vf_pdns(pdev); 7578c2ecf20Sopenharmony_ci return 0; 7588c2ecf20Sopenharmony_ci} 7598c2ecf20Sopenharmony_ci 7608c2ecf20Sopenharmony_ciint pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs) 7618c2ecf20Sopenharmony_ci{ 7628c2ecf20Sopenharmony_ci /* Allocate PCI data */ 7638c2ecf20Sopenharmony_ci add_sriov_vf_pdns(pdev); 7648c2ecf20Sopenharmony_ci 7658c2ecf20Sopenharmony_ci return pnv_pci_sriov_enable(pdev, num_vfs); 7668c2ecf20Sopenharmony_ci} 767