1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Support PCI/PCIe on PowerNV platforms
4 *
5 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
6 */
7
8#undef DEBUG
9
10#include <linux/kernel.h>
11#include <linux/pci.h>
12#include <linux/crash_dump.h>
13#include <linux/delay.h>
14#include <linux/string.h>
15#include <linux/init.h>
16#include <linux/memblock.h>
17#include <linux/irq.h>
18#include <linux/io.h>
19#include <linux/msi.h>
20#include <linux/iommu.h>
21#include <linux/rculist.h>
22#include <linux/sizes.h>
23
24#include <asm/sections.h>
25#include <asm/io.h>
26#include <asm/prom.h>
27#include <asm/pci-bridge.h>
28#include <asm/machdep.h>
29#include <asm/msi_bitmap.h>
30#include <asm/ppc-pci.h>
31#include <asm/opal.h>
32#include <asm/iommu.h>
33#include <asm/tce.h>
34#include <asm/xics.h>
35#include <asm/debugfs.h>
36#include <asm/firmware.h>
37#include <asm/pnv-pci.h>
38#include <asm/mmzone.h>
39
40#include <misc/cxl-base.h>
41
42#include "powernv.h"
43#include "pci.h"
44#include "../../../../drivers/pci/pci.h"
45
46#define PNV_IODA1_M64_NUM	16	/* Number of M64 BARs	*/
47#define PNV_IODA1_M64_SEGS	8	/* Segments per M64 BAR	*/
48#define PNV_IODA1_DMA32_SEGSIZE	0x10000000
49
50static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
51					      "NPU_OCAPI" };
52
53static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
54static void pnv_pci_configure_bus(struct pci_bus *bus);
55
56void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
57			    const char *fmt, ...)
58{
59	struct va_format vaf;
60	va_list args;
61	char pfix[32];
62
63	va_start(args, fmt);
64
65	vaf.fmt = fmt;
66	vaf.va = &args;
67
68	if (pe->flags & PNV_IODA_PE_DEV)
69		strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
70	else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
71		sprintf(pfix, "%04x:%02x     ",
72			pci_domain_nr(pe->pbus), pe->pbus->number);
73#ifdef CONFIG_PCI_IOV
74	else if (pe->flags & PNV_IODA_PE_VF)
75		sprintf(pfix, "%04x:%02x:%2x.%d",
76			pci_domain_nr(pe->parent_dev->bus),
77			(pe->rid & 0xff00) >> 8,
78			PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
79#endif /* CONFIG_PCI_IOV*/
80
81	printk("%spci %s: [PE# %.2x] %pV",
82	       level, pfix, pe->pe_number, &vaf);
83
84	va_end(args);
85}
86
87static bool pnv_iommu_bypass_disabled __read_mostly;
88static bool pci_reset_phbs __read_mostly;
89
90static int __init iommu_setup(char *str)
91{
92	if (!str)
93		return -EINVAL;
94
95	while (*str) {
96		if (!strncmp(str, "nobypass", 8)) {
97			pnv_iommu_bypass_disabled = true;
98			pr_info("PowerNV: IOMMU bypass window disabled.\n");
99			break;
100		}
101		str += strcspn(str, ",");
102		if (*str == ',')
103			str++;
104	}
105
106	return 0;
107}
108early_param("iommu", iommu_setup);
109
110static int __init pci_reset_phbs_setup(char *str)
111{
112	pci_reset_phbs = true;
113	return 0;
114}
115
116early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
117
118static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
119{
120	s64 rc;
121
122	phb->ioda.pe_array[pe_no].phb = phb;
123	phb->ioda.pe_array[pe_no].pe_number = pe_no;
124	phb->ioda.pe_array[pe_no].dma_setup_done = false;
125
126	/*
127	 * Clear the PE frozen state as it might be put into frozen state
128	 * in the last PCI remove path. It's not harmful to do so when the
129	 * PE is already in unfrozen state.
130	 */
131	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
132				       OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
133	if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
134		pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
135			__func__, rc, phb->hose->global_number, pe_no);
136
137	return &phb->ioda.pe_array[pe_no];
138}
139
140static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
141{
142	if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
143		pr_warn("%s: Invalid PE %x on PHB#%x\n",
144			__func__, pe_no, phb->hose->global_number);
145		return;
146	}
147
148	mutex_lock(&phb->ioda.pe_alloc_mutex);
149	if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
150		pr_debug("%s: PE %x was reserved on PHB#%x\n",
151			 __func__, pe_no, phb->hose->global_number);
152	mutex_unlock(&phb->ioda.pe_alloc_mutex);
153
154	pnv_ioda_init_pe(phb, pe_no);
155}
156
157struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb, int count)
158{
159	struct pnv_ioda_pe *ret = NULL;
160	int run = 0, pe, i;
161
162	mutex_lock(&phb->ioda.pe_alloc_mutex);
163
164	/* scan backwards for a run of @count cleared bits */
165	for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
166		if (test_bit(pe, phb->ioda.pe_alloc)) {
167			run = 0;
168			continue;
169		}
170
171		run++;
172		if (run == count)
173			break;
174	}
175	if (run != count)
176		goto out;
177
178	for (i = pe; i < pe + count; i++) {
179		set_bit(i, phb->ioda.pe_alloc);
180		pnv_ioda_init_pe(phb, i);
181	}
182	ret = &phb->ioda.pe_array[pe];
183
184out:
185	mutex_unlock(&phb->ioda.pe_alloc_mutex);
186	return ret;
187}
188
189void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
190{
191	struct pnv_phb *phb = pe->phb;
192	unsigned int pe_num = pe->pe_number;
193
194	WARN_ON(pe->pdev);
195	WARN_ON(pe->npucomp); /* NPUs for nvlink are not supposed to be freed */
196	kfree(pe->npucomp);
197	memset(pe, 0, sizeof(struct pnv_ioda_pe));
198
199	mutex_lock(&phb->ioda.pe_alloc_mutex);
200	clear_bit(pe_num, phb->ioda.pe_alloc);
201	mutex_unlock(&phb->ioda.pe_alloc_mutex);
202}
203
204/* The default M64 BAR is shared by all PEs */
205static int pnv_ioda2_init_m64(struct pnv_phb *phb)
206{
207	const char *desc;
208	struct resource *r;
209	s64 rc;
210
211	/* Configure the default M64 BAR */
212	rc = opal_pci_set_phb_mem_window(phb->opal_id,
213					 OPAL_M64_WINDOW_TYPE,
214					 phb->ioda.m64_bar_idx,
215					 phb->ioda.m64_base,
216					 0, /* unused */
217					 phb->ioda.m64_size);
218	if (rc != OPAL_SUCCESS) {
219		desc = "configuring";
220		goto fail;
221	}
222
223	/* Enable the default M64 BAR */
224	rc = opal_pci_phb_mmio_enable(phb->opal_id,
225				      OPAL_M64_WINDOW_TYPE,
226				      phb->ioda.m64_bar_idx,
227				      OPAL_ENABLE_M64_SPLIT);
228	if (rc != OPAL_SUCCESS) {
229		desc = "enabling";
230		goto fail;
231	}
232
233	/*
234	 * Exclude the segments for reserved and root bus PE, which
235	 * are first or last two PEs.
236	 */
237	r = &phb->hose->mem_resources[1];
238	if (phb->ioda.reserved_pe_idx == 0)
239		r->start += (2 * phb->ioda.m64_segsize);
240	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
241		r->end -= (2 * phb->ioda.m64_segsize);
242	else
243		pr_warn("  Cannot strip M64 segment for reserved PE#%x\n",
244			phb->ioda.reserved_pe_idx);
245
246	return 0;
247
248fail:
249	pr_warn("  Failure %lld %s M64 BAR#%d\n",
250		rc, desc, phb->ioda.m64_bar_idx);
251	opal_pci_phb_mmio_enable(phb->opal_id,
252				 OPAL_M64_WINDOW_TYPE,
253				 phb->ioda.m64_bar_idx,
254				 OPAL_DISABLE_M64);
255	return -EIO;
256}
257
258static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
259					 unsigned long *pe_bitmap)
260{
261	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
262	struct resource *r;
263	resource_size_t base, sgsz, start, end;
264	int segno, i;
265
266	base = phb->ioda.m64_base;
267	sgsz = phb->ioda.m64_segsize;
268	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
269		r = &pdev->resource[i];
270		if (!r->parent || !pnv_pci_is_m64(phb, r))
271			continue;
272
273		start = ALIGN_DOWN(r->start - base, sgsz);
274		end = ALIGN(r->end - base, sgsz);
275		for (segno = start / sgsz; segno < end / sgsz; segno++) {
276			if (pe_bitmap)
277				set_bit(segno, pe_bitmap);
278			else
279				pnv_ioda_reserve_pe(phb, segno);
280		}
281	}
282}
283
284static int pnv_ioda1_init_m64(struct pnv_phb *phb)
285{
286	struct resource *r;
287	int index;
288
289	/*
290	 * There are 16 M64 BARs, each of which has 8 segments. So
291	 * there are as many M64 segments as the maximum number of
292	 * PEs, which is 128.
293	 */
294	for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
295		unsigned long base, segsz = phb->ioda.m64_segsize;
296		int64_t rc;
297
298		base = phb->ioda.m64_base +
299		       index * PNV_IODA1_M64_SEGS * segsz;
300		rc = opal_pci_set_phb_mem_window(phb->opal_id,
301				OPAL_M64_WINDOW_TYPE, index, base, 0,
302				PNV_IODA1_M64_SEGS * segsz);
303		if (rc != OPAL_SUCCESS) {
304			pr_warn("  Error %lld setting M64 PHB#%x-BAR#%d\n",
305				rc, phb->hose->global_number, index);
306			goto fail;
307		}
308
309		rc = opal_pci_phb_mmio_enable(phb->opal_id,
310				OPAL_M64_WINDOW_TYPE, index,
311				OPAL_ENABLE_M64_SPLIT);
312		if (rc != OPAL_SUCCESS) {
313			pr_warn("  Error %lld enabling M64 PHB#%x-BAR#%d\n",
314				rc, phb->hose->global_number, index);
315			goto fail;
316		}
317	}
318
319	for (index = 0; index < phb->ioda.total_pe_num; index++) {
320		int64_t rc;
321
322		/*
323		 * P7IOC supports M64DT, which helps mapping M64 segment
324		 * to one particular PE#. However, PHB3 has fixed mapping
325		 * between M64 segment and PE#. In order to have same logic
326		 * for P7IOC and PHB3, we enforce fixed mapping between M64
327		 * segment and PE# on P7IOC.
328		 */
329		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
330				index, OPAL_M64_WINDOW_TYPE,
331				index / PNV_IODA1_M64_SEGS,
332				index % PNV_IODA1_M64_SEGS);
333		if (rc != OPAL_SUCCESS) {
334			pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
335				__func__, rc, phb->hose->global_number,
336				index);
337			goto fail;
338		}
339	}
340
341	/*
342	 * Exclude the segments for reserved and root bus PE, which
343	 * are first or last two PEs.
344	 */
345	r = &phb->hose->mem_resources[1];
346	if (phb->ioda.reserved_pe_idx == 0)
347		r->start += (2 * phb->ioda.m64_segsize);
348	else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
349		r->end -= (2 * phb->ioda.m64_segsize);
350	else
351		WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
352		     phb->ioda.reserved_pe_idx, phb->hose->global_number);
353
354	return 0;
355
356fail:
357	for ( ; index >= 0; index--)
358		opal_pci_phb_mmio_enable(phb->opal_id,
359			OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
360
361	return -EIO;
362}
363
364static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
365				    unsigned long *pe_bitmap,
366				    bool all)
367{
368	struct pci_dev *pdev;
369
370	list_for_each_entry(pdev, &bus->devices, bus_list) {
371		pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
372
373		if (all && pdev->subordinate)
374			pnv_ioda_reserve_m64_pe(pdev->subordinate,
375						pe_bitmap, all);
376	}
377}
378
379static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
380{
381	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
382	struct pnv_ioda_pe *master_pe, *pe;
383	unsigned long size, *pe_alloc;
384	int i;
385
386	/* Root bus shouldn't use M64 */
387	if (pci_is_root_bus(bus))
388		return NULL;
389
390	/* Allocate bitmap */
391	size = ALIGN(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
392	pe_alloc = kzalloc(size, GFP_KERNEL);
393	if (!pe_alloc) {
394		pr_warn("%s: Out of memory !\n",
395			__func__);
396		return NULL;
397	}
398
399	/* Figure out reserved PE numbers by the PE */
400	pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
401
402	/*
403	 * the current bus might not own M64 window and that's all
404	 * contributed by its child buses. For the case, we needn't
405	 * pick M64 dependent PE#.
406	 */
407	if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
408		kfree(pe_alloc);
409		return NULL;
410	}
411
412	/*
413	 * Figure out the master PE and put all slave PEs to master
414	 * PE's list to form compound PE.
415	 */
416	master_pe = NULL;
417	i = -1;
418	while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
419		phb->ioda.total_pe_num) {
420		pe = &phb->ioda.pe_array[i];
421
422		phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
423		if (!master_pe) {
424			pe->flags |= PNV_IODA_PE_MASTER;
425			INIT_LIST_HEAD(&pe->slaves);
426			master_pe = pe;
427		} else {
428			pe->flags |= PNV_IODA_PE_SLAVE;
429			pe->master = master_pe;
430			list_add_tail(&pe->list, &master_pe->slaves);
431		}
432	}
433
434	kfree(pe_alloc);
435	return master_pe;
436}
437
438static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
439{
440	struct pci_controller *hose = phb->hose;
441	struct device_node *dn = hose->dn;
442	struct resource *res;
443	u32 m64_range[2], i;
444	const __be32 *r;
445	u64 pci_addr;
446
447	if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
448		pr_info("  Not support M64 window\n");
449		return;
450	}
451
452	if (!firmware_has_feature(FW_FEATURE_OPAL)) {
453		pr_info("  Firmware too old to support M64 window\n");
454		return;
455	}
456
457	r = of_get_property(dn, "ibm,opal-m64-window", NULL);
458	if (!r) {
459		pr_info("  No <ibm,opal-m64-window> on %pOF\n",
460			dn);
461		return;
462	}
463
464	/*
465	 * Find the available M64 BAR range and pickup the last one for
466	 * covering the whole 64-bits space. We support only one range.
467	 */
468	if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
469				       m64_range, 2)) {
470		/* In absence of the property, assume 0..15 */
471		m64_range[0] = 0;
472		m64_range[1] = 16;
473	}
474	/* We only support 64 bits in our allocator */
475	if (m64_range[1] > 63) {
476		pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
477			__func__, m64_range[1], phb->hose->global_number);
478		m64_range[1] = 63;
479	}
480	/* Empty range, no m64 */
481	if (m64_range[1] <= m64_range[0]) {
482		pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
483			__func__, phb->hose->global_number);
484		return;
485	}
486
487	/* Configure M64 informations */
488	res = &hose->mem_resources[1];
489	res->name = dn->full_name;
490	res->start = of_translate_address(dn, r + 2);
491	res->end = res->start + of_read_number(r + 4, 2) - 1;
492	res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
493	pci_addr = of_read_number(r, 2);
494	hose->mem_offset[1] = res->start - pci_addr;
495
496	phb->ioda.m64_size = resource_size(res);
497	phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
498	phb->ioda.m64_base = pci_addr;
499
500	/* This lines up nicely with the display from processing OF ranges */
501	pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
502		res->start, res->end, pci_addr, m64_range[0],
503		m64_range[0] + m64_range[1] - 1);
504
505	/* Mark all M64 used up by default */
506	phb->ioda.m64_bar_alloc = (unsigned long)-1;
507
508	/* Use last M64 BAR to cover M64 window */
509	m64_range[1]--;
510	phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
511
512	pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
513
514	/* Mark remaining ones free */
515	for (i = m64_range[0]; i < m64_range[1]; i++)
516		clear_bit(i, &phb->ioda.m64_bar_alloc);
517
518	/*
519	 * Setup init functions for M64 based on IODA version, IODA3 uses
520	 * the IODA2 code.
521	 */
522	if (phb->type == PNV_PHB_IODA1)
523		phb->init_m64 = pnv_ioda1_init_m64;
524	else
525		phb->init_m64 = pnv_ioda2_init_m64;
526}
527
528static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
529{
530	struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
531	struct pnv_ioda_pe *slave;
532	s64 rc;
533
534	/* Fetch master PE */
535	if (pe->flags & PNV_IODA_PE_SLAVE) {
536		pe = pe->master;
537		if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
538			return;
539
540		pe_no = pe->pe_number;
541	}
542
543	/* Freeze master PE */
544	rc = opal_pci_eeh_freeze_set(phb->opal_id,
545				     pe_no,
546				     OPAL_EEH_ACTION_SET_FREEZE_ALL);
547	if (rc != OPAL_SUCCESS) {
548		pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
549			__func__, rc, phb->hose->global_number, pe_no);
550		return;
551	}
552
553	/* Freeze slave PEs */
554	if (!(pe->flags & PNV_IODA_PE_MASTER))
555		return;
556
557	list_for_each_entry(slave, &pe->slaves, list) {
558		rc = opal_pci_eeh_freeze_set(phb->opal_id,
559					     slave->pe_number,
560					     OPAL_EEH_ACTION_SET_FREEZE_ALL);
561		if (rc != OPAL_SUCCESS)
562			pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
563				__func__, rc, phb->hose->global_number,
564				slave->pe_number);
565	}
566}
567
568static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
569{
570	struct pnv_ioda_pe *pe, *slave;
571	s64 rc;
572
573	/* Find master PE */
574	pe = &phb->ioda.pe_array[pe_no];
575	if (pe->flags & PNV_IODA_PE_SLAVE) {
576		pe = pe->master;
577		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
578		pe_no = pe->pe_number;
579	}
580
581	/* Clear frozen state for master PE */
582	rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
583	if (rc != OPAL_SUCCESS) {
584		pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
585			__func__, rc, opt, phb->hose->global_number, pe_no);
586		return -EIO;
587	}
588
589	if (!(pe->flags & PNV_IODA_PE_MASTER))
590		return 0;
591
592	/* Clear frozen state for slave PEs */
593	list_for_each_entry(slave, &pe->slaves, list) {
594		rc = opal_pci_eeh_freeze_clear(phb->opal_id,
595					     slave->pe_number,
596					     opt);
597		if (rc != OPAL_SUCCESS) {
598			pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
599				__func__, rc, opt, phb->hose->global_number,
600				slave->pe_number);
601			return -EIO;
602		}
603	}
604
605	return 0;
606}
607
608static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
609{
610	struct pnv_ioda_pe *slave, *pe;
611	u8 fstate = 0, state;
612	__be16 pcierr = 0;
613	s64 rc;
614
615	/* Sanity check on PE number */
616	if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
617		return OPAL_EEH_STOPPED_PERM_UNAVAIL;
618
619	/*
620	 * Fetch the master PE and the PE instance might be
621	 * not initialized yet.
622	 */
623	pe = &phb->ioda.pe_array[pe_no];
624	if (pe->flags & PNV_IODA_PE_SLAVE) {
625		pe = pe->master;
626		WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
627		pe_no = pe->pe_number;
628	}
629
630	/* Check the master PE */
631	rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
632					&state, &pcierr, NULL);
633	if (rc != OPAL_SUCCESS) {
634		pr_warn("%s: Failure %lld getting "
635			"PHB#%x-PE#%x state\n",
636			__func__, rc,
637			phb->hose->global_number, pe_no);
638		return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
639	}
640
641	/* Check the slave PE */
642	if (!(pe->flags & PNV_IODA_PE_MASTER))
643		return state;
644
645	list_for_each_entry(slave, &pe->slaves, list) {
646		rc = opal_pci_eeh_freeze_status(phb->opal_id,
647						slave->pe_number,
648						&fstate,
649						&pcierr,
650						NULL);
651		if (rc != OPAL_SUCCESS) {
652			pr_warn("%s: Failure %lld getting "
653				"PHB#%x-PE#%x state\n",
654				__func__, rc,
655				phb->hose->global_number, slave->pe_number);
656			return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
657		}
658
659		/*
660		 * Override the result based on the ascending
661		 * priority.
662		 */
663		if (fstate > state)
664			state = fstate;
665	}
666
667	return state;
668}
669
670struct pnv_ioda_pe *pnv_pci_bdfn_to_pe(struct pnv_phb *phb, u16 bdfn)
671{
672	int pe_number = phb->ioda.pe_rmap[bdfn];
673
674	if (pe_number == IODA_INVALID_PE)
675		return NULL;
676
677	return &phb->ioda.pe_array[pe_number];
678}
679
680struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
681{
682	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
683	struct pci_dn *pdn = pci_get_pdn(dev);
684
685	if (!pdn)
686		return NULL;
687	if (pdn->pe_number == IODA_INVALID_PE)
688		return NULL;
689	return &phb->ioda.pe_array[pdn->pe_number];
690}
691
692static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
693				  struct pnv_ioda_pe *parent,
694				  struct pnv_ioda_pe *child,
695				  bool is_add)
696{
697	const char *desc = is_add ? "adding" : "removing";
698	uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
699			      OPAL_REMOVE_PE_FROM_DOMAIN;
700	struct pnv_ioda_pe *slave;
701	long rc;
702
703	/* Parent PE affects child PE */
704	rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705				child->pe_number, op);
706	if (rc != OPAL_SUCCESS) {
707		pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
708			rc, desc);
709		return -ENXIO;
710	}
711
712	if (!(child->flags & PNV_IODA_PE_MASTER))
713		return 0;
714
715	/* Compound case: parent PE affects slave PEs */
716	list_for_each_entry(slave, &child->slaves, list) {
717		rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
718					slave->pe_number, op);
719		if (rc != OPAL_SUCCESS) {
720			pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
721				rc, desc);
722			return -ENXIO;
723		}
724	}
725
726	return 0;
727}
728
729static int pnv_ioda_set_peltv(struct pnv_phb *phb,
730			      struct pnv_ioda_pe *pe,
731			      bool is_add)
732{
733	struct pnv_ioda_pe *slave;
734	struct pci_dev *pdev = NULL;
735	int ret;
736
737	/*
738	 * Clear PE frozen state. If it's master PE, we need
739	 * clear slave PE frozen state as well.
740	 */
741	if (is_add) {
742		opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
743					  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
744		if (pe->flags & PNV_IODA_PE_MASTER) {
745			list_for_each_entry(slave, &pe->slaves, list)
746				opal_pci_eeh_freeze_clear(phb->opal_id,
747							  slave->pe_number,
748							  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
749		}
750	}
751
752	/*
753	 * Associate PE in PELT. We need add the PE into the
754	 * corresponding PELT-V as well. Otherwise, the error
755	 * originated from the PE might contribute to other
756	 * PEs.
757	 */
758	ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
759	if (ret)
760		return ret;
761
762	/* For compound PEs, any one affects all of them */
763	if (pe->flags & PNV_IODA_PE_MASTER) {
764		list_for_each_entry(slave, &pe->slaves, list) {
765			ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
766			if (ret)
767				return ret;
768		}
769	}
770
771	if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
772		pdev = pe->pbus->self;
773	else if (pe->flags & PNV_IODA_PE_DEV)
774		pdev = pe->pdev->bus->self;
775#ifdef CONFIG_PCI_IOV
776	else if (pe->flags & PNV_IODA_PE_VF)
777		pdev = pe->parent_dev;
778#endif /* CONFIG_PCI_IOV */
779	while (pdev) {
780		struct pci_dn *pdn = pci_get_pdn(pdev);
781		struct pnv_ioda_pe *parent;
782
783		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
784			parent = &phb->ioda.pe_array[pdn->pe_number];
785			ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
786			if (ret)
787				return ret;
788		}
789
790		pdev = pdev->bus->self;
791	}
792
793	return 0;
794}
795
796static void pnv_ioda_unset_peltv(struct pnv_phb *phb,
797				 struct pnv_ioda_pe *pe,
798				 struct pci_dev *parent)
799{
800	int64_t rc;
801
802	while (parent) {
803		struct pci_dn *pdn = pci_get_pdn(parent);
804
805		if (pdn && pdn->pe_number != IODA_INVALID_PE) {
806			rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
807						pe->pe_number,
808						OPAL_REMOVE_PE_FROM_DOMAIN);
809			/* XXX What to do in case of error ? */
810		}
811		parent = parent->bus->self;
812	}
813
814	opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
815				  OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
816
817	/* Disassociate PE in PELT */
818	rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
819				pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
820	if (rc)
821		pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
822}
823
824int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
825{
826	struct pci_dev *parent;
827	uint8_t bcomp, dcomp, fcomp;
828	int64_t rc;
829	long rid_end, rid;
830
831	/* Currently, we just deconfigure VF PE. Bus PE will always there.*/
832	if (pe->pbus) {
833		int count;
834
835		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
836		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
837		parent = pe->pbus->self;
838		if (pe->flags & PNV_IODA_PE_BUS_ALL)
839			count = resource_size(&pe->pbus->busn_res);
840		else
841			count = 1;
842
843		switch(count) {
844		case  1: bcomp = OpalPciBusAll;         break;
845		case  2: bcomp = OpalPciBus7Bits;       break;
846		case  4: bcomp = OpalPciBus6Bits;       break;
847		case  8: bcomp = OpalPciBus5Bits;       break;
848		case 16: bcomp = OpalPciBus4Bits;       break;
849		case 32: bcomp = OpalPciBus3Bits;       break;
850		default:
851			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
852			        count);
853			/* Do an exact match only */
854			bcomp = OpalPciBusAll;
855		}
856		rid_end = pe->rid + (count << 8);
857	} else {
858#ifdef CONFIG_PCI_IOV
859		if (pe->flags & PNV_IODA_PE_VF)
860			parent = pe->parent_dev;
861		else
862#endif
863			parent = pe->pdev->bus->self;
864		bcomp = OpalPciBusAll;
865		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
866		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
867		rid_end = pe->rid + 1;
868	}
869
870	/* Clear the reverse map */
871	for (rid = pe->rid; rid < rid_end; rid++)
872		phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
873
874	/*
875	 * Release from all parents PELT-V. NPUs don't have a PELTV
876	 * table
877	 */
878	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
879		pnv_ioda_unset_peltv(phb, pe, parent);
880
881	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
882			     bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
883	if (rc)
884		pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
885
886	pe->pbus = NULL;
887	pe->pdev = NULL;
888#ifdef CONFIG_PCI_IOV
889	pe->parent_dev = NULL;
890#endif
891
892	return 0;
893}
894
895int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
896{
897	uint8_t bcomp, dcomp, fcomp;
898	long rc, rid_end, rid;
899
900	/* Bus validation ? */
901	if (pe->pbus) {
902		int count;
903
904		dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
905		fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
906		if (pe->flags & PNV_IODA_PE_BUS_ALL)
907			count = resource_size(&pe->pbus->busn_res);
908		else
909			count = 1;
910
911		switch(count) {
912		case  1: bcomp = OpalPciBusAll;		break;
913		case  2: bcomp = OpalPciBus7Bits;	break;
914		case  4: bcomp = OpalPciBus6Bits;	break;
915		case  8: bcomp = OpalPciBus5Bits;	break;
916		case 16: bcomp = OpalPciBus4Bits;	break;
917		case 32: bcomp = OpalPciBus3Bits;	break;
918		default:
919			dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
920			        count);
921			/* Do an exact match only */
922			bcomp = OpalPciBusAll;
923		}
924		rid_end = pe->rid + (count << 8);
925	} else {
926		bcomp = OpalPciBusAll;
927		dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
928		fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
929		rid_end = pe->rid + 1;
930	}
931
932	/*
933	 * Associate PE in PELT. We need add the PE into the
934	 * corresponding PELT-V as well. Otherwise, the error
935	 * originated from the PE might contribute to other
936	 * PEs.
937	 */
938	rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
939			     bcomp, dcomp, fcomp, OPAL_MAP_PE);
940	if (rc) {
941		pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
942		return -ENXIO;
943	}
944
945	/*
946	 * Configure PELTV. NPUs don't have a PELTV table so skip
947	 * configuration on them.
948	 */
949	if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
950		pnv_ioda_set_peltv(phb, pe, true);
951
952	/* Setup reverse map */
953	for (rid = pe->rid; rid < rid_end; rid++)
954		phb->ioda.pe_rmap[rid] = pe->pe_number;
955
956	/* Setup one MVTs on IODA1 */
957	if (phb->type != PNV_PHB_IODA1) {
958		pe->mve_number = 0;
959		goto out;
960	}
961
962	pe->mve_number = pe->pe_number;
963	rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
964	if (rc != OPAL_SUCCESS) {
965		pe_err(pe, "OPAL error %ld setting up MVE %x\n",
966		       rc, pe->mve_number);
967		pe->mve_number = -1;
968	} else {
969		rc = opal_pci_set_mve_enable(phb->opal_id,
970					     pe->mve_number, OPAL_ENABLE_MVE);
971		if (rc) {
972			pe_err(pe, "OPAL error %ld enabling MVE %x\n",
973			       rc, pe->mve_number);
974			pe->mve_number = -1;
975		}
976	}
977
978out:
979	return 0;
980}
981
982static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
983{
984	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
985	struct pci_dn *pdn = pci_get_pdn(dev);
986	struct pnv_ioda_pe *pe;
987
988	if (!pdn) {
989		pr_err("%s: Device tree node not associated properly\n",
990			   pci_name(dev));
991		return NULL;
992	}
993	if (pdn->pe_number != IODA_INVALID_PE)
994		return NULL;
995
996	pe = pnv_ioda_alloc_pe(phb, 1);
997	if (!pe) {
998		pr_warn("%s: Not enough PE# available, disabling device\n",
999			pci_name(dev));
1000		return NULL;
1001	}
1002
1003	/* NOTE: We don't get a reference for the pointer in the PE
1004	 * data structure, both the device and PE structures should be
1005	 * destroyed at the same time. However, removing nvlink
1006	 * devices will need some work.
1007	 *
1008	 * At some point we want to remove the PDN completely anyways
1009	 */
1010	pdn->pe_number = pe->pe_number;
1011	pe->flags = PNV_IODA_PE_DEV;
1012	pe->pdev = dev;
1013	pe->pbus = NULL;
1014	pe->mve_number = -1;
1015	pe->rid = dev->bus->number << 8 | pdn->devfn;
1016	pe->device_count++;
1017
1018	pe_info(pe, "Associated device to PE\n");
1019
1020	if (pnv_ioda_configure_pe(phb, pe)) {
1021		/* XXX What do we do here ? */
1022		pnv_ioda_free_pe(pe);
1023		pdn->pe_number = IODA_INVALID_PE;
1024		pe->pdev = NULL;
1025		return NULL;
1026	}
1027
1028	/* Put PE to the list */
1029	mutex_lock(&phb->ioda.pe_list_mutex);
1030	list_add_tail(&pe->list, &phb->ioda.pe_list);
1031	mutex_unlock(&phb->ioda.pe_list_mutex);
1032	return pe;
1033}
1034
1035/*
1036 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1037 * single PCI bus. Another one that contains the primary PCI bus and its
1038 * subordinate PCI devices and buses. The second type of PE is normally
1039 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1040 */
1041static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1042{
1043	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
1044	struct pnv_ioda_pe *pe = NULL;
1045	unsigned int pe_num;
1046
1047	/*
1048	 * In partial hotplug case, the PE instance might be still alive.
1049	 * We should reuse it instead of allocating a new one.
1050	 */
1051	pe_num = phb->ioda.pe_rmap[bus->number << 8];
1052	if (WARN_ON(pe_num != IODA_INVALID_PE)) {
1053		pe = &phb->ioda.pe_array[pe_num];
1054		return NULL;
1055	}
1056
1057	/* PE number for root bus should have been reserved */
1058	if (pci_is_root_bus(bus))
1059		pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1060
1061	/* Check if PE is determined by M64 */
1062	if (!pe)
1063		pe = pnv_ioda_pick_m64_pe(bus, all);
1064
1065	/* The PE number isn't pinned by M64 */
1066	if (!pe)
1067		pe = pnv_ioda_alloc_pe(phb, 1);
1068
1069	if (!pe) {
1070		pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1071			__func__, pci_domain_nr(bus), bus->number);
1072		return NULL;
1073	}
1074
1075	pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1076	pe->pbus = bus;
1077	pe->pdev = NULL;
1078	pe->mve_number = -1;
1079	pe->rid = bus->busn_res.start << 8;
1080
1081	if (all)
1082		pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1083			&bus->busn_res.start, &bus->busn_res.end,
1084			pe->pe_number);
1085	else
1086		pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1087			&bus->busn_res.start, pe->pe_number);
1088
1089	if (pnv_ioda_configure_pe(phb, pe)) {
1090		/* XXX What do we do here ? */
1091		pnv_ioda_free_pe(pe);
1092		pe->pbus = NULL;
1093		return NULL;
1094	}
1095
1096	/* Put PE to the list */
1097	list_add_tail(&pe->list, &phb->ioda.pe_list);
1098
1099	return pe;
1100}
1101
1102static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1103{
1104	int pe_num, found_pe = false, rc;
1105	long rid;
1106	struct pnv_ioda_pe *pe;
1107	struct pci_dev *gpu_pdev;
1108	struct pci_dn *npu_pdn;
1109	struct pnv_phb *phb = pci_bus_to_pnvhb(npu_pdev->bus);
1110
1111	/*
1112	 * Intentionally leak a reference on the npu device (for
1113	 * nvlink only; this is not an opencapi path) to make sure it
1114	 * never goes away, as it's been the case all along and some
1115	 * work is needed otherwise.
1116	 */
1117	pci_dev_get(npu_pdev);
1118
1119	/*
1120	 * Due to a hardware errata PE#0 on the NPU is reserved for
1121	 * error handling. This means we only have three PEs remaining
1122	 * which need to be assigned to four links, implying some
1123	 * links must share PEs.
1124	 *
1125	 * To achieve this we assign PEs such that NPUs linking the
1126	 * same GPU get assigned the same PE.
1127	 */
1128	gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1129	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1130		pe = &phb->ioda.pe_array[pe_num];
1131		if (!pe->pdev)
1132			continue;
1133
1134		if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1135			/*
1136			 * This device has the same peer GPU so should
1137			 * be assigned the same PE as the existing
1138			 * peer NPU.
1139			 */
1140			dev_info(&npu_pdev->dev,
1141				"Associating to existing PE %x\n", pe_num);
1142			npu_pdn = pci_get_pdn(npu_pdev);
1143			rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1144			npu_pdn->pe_number = pe_num;
1145			phb->ioda.pe_rmap[rid] = pe->pe_number;
1146			pe->device_count++;
1147
1148			/* Map the PE to this link */
1149			rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1150					OpalPciBusAll,
1151					OPAL_COMPARE_RID_DEVICE_NUMBER,
1152					OPAL_COMPARE_RID_FUNCTION_NUMBER,
1153					OPAL_MAP_PE);
1154			WARN_ON(rc != OPAL_SUCCESS);
1155			found_pe = true;
1156			break;
1157		}
1158	}
1159
1160	if (!found_pe)
1161		/*
1162		 * Could not find an existing PE so allocate a new
1163		 * one.
1164		 */
1165		return pnv_ioda_setup_dev_PE(npu_pdev);
1166	else
1167		return pe;
1168}
1169
1170static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1171{
1172	struct pci_dev *pdev;
1173
1174	list_for_each_entry(pdev, &bus->devices, bus_list)
1175		pnv_ioda_setup_npu_PE(pdev);
1176}
1177
1178static void pnv_pci_ioda_setup_nvlink(void)
1179{
1180	struct pci_controller *hose;
1181	struct pnv_phb *phb;
1182	struct pnv_ioda_pe *pe;
1183
1184	list_for_each_entry(hose, &hose_list, list_node) {
1185		phb = hose->private_data;
1186		if (phb->type == PNV_PHB_NPU_NVLINK) {
1187			/* PE#0 is needed for error reporting */
1188			pnv_ioda_reserve_pe(phb, 0);
1189			pnv_ioda_setup_npu_PEs(hose->bus);
1190			if (phb->model == PNV_PHB_MODEL_NPU2)
1191				WARN_ON_ONCE(pnv_npu2_init(hose));
1192		}
1193	}
1194	list_for_each_entry(hose, &hose_list, list_node) {
1195		phb = hose->private_data;
1196		if (phb->type != PNV_PHB_IODA2)
1197			continue;
1198
1199		list_for_each_entry(pe, &phb->ioda.pe_list, list)
1200			pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1201	}
1202
1203#ifdef CONFIG_IOMMU_API
1204	/* setup iommu groups so we can do nvlink pass-thru */
1205	pnv_pci_npu_setup_iommu_groups();
1206#endif
1207}
1208
1209static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1210				       struct pnv_ioda_pe *pe);
1211
1212static void pnv_pci_ioda_dma_dev_setup(struct pci_dev *pdev)
1213{
1214	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1215	struct pci_dn *pdn = pci_get_pdn(pdev);
1216	struct pnv_ioda_pe *pe;
1217
1218	/* Check if the BDFN for this device is associated with a PE yet */
1219	pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1220	if (!pe) {
1221		/* VF PEs should be pre-configured in pnv_pci_sriov_enable() */
1222		if (WARN_ON(pdev->is_virtfn))
1223			return;
1224
1225		pnv_pci_configure_bus(pdev->bus);
1226		pe = pnv_pci_bdfn_to_pe(phb, pdev->devfn | (pdev->bus->number << 8));
1227		pci_info(pdev, "Configured PE#%x\n", pe ? pe->pe_number : 0xfffff);
1228
1229
1230		/*
1231		 * If we can't setup the IODA PE something has gone horribly
1232		 * wrong and we can't enable DMA for the device.
1233		 */
1234		if (WARN_ON(!pe))
1235			return;
1236	} else {
1237		pci_info(pdev, "Added to existing PE#%x\n", pe->pe_number);
1238	}
1239
1240	/*
1241	 * We assume that bridges *probably* don't need to do any DMA so we can
1242	 * skip allocating a TCE table, etc unless we get a non-bridge device.
1243	 */
1244	if (!pe->dma_setup_done && !pci_is_bridge(pdev)) {
1245		switch (phb->type) {
1246		case PNV_PHB_IODA1:
1247			pnv_pci_ioda1_setup_dma_pe(phb, pe);
1248			break;
1249		case PNV_PHB_IODA2:
1250			pnv_pci_ioda2_setup_dma_pe(phb, pe);
1251			break;
1252		default:
1253			pr_warn("%s: No DMA for PHB#%x (type %d)\n",
1254				__func__, phb->hose->global_number, phb->type);
1255		}
1256	}
1257
1258	if (pdn)
1259		pdn->pe_number = pe->pe_number;
1260	pe->device_count++;
1261
1262	WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1263	pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1264	set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1265
1266	/* PEs with a DMA weight of zero won't have a group */
1267	if (pe->table_group.group)
1268		iommu_add_device(&pe->table_group, &pdev->dev);
1269}
1270
1271/*
1272 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1273 *
1274 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1275 * Devices can only access more than that if bit 59 of the PCI address is set
1276 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1277 * Many PCI devices are not capable of addressing that many bits, and as a
1278 * result are limited to the 4GB of virtual memory made available to 32-bit
1279 * devices in TVE#0.
1280 *
1281 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1282 * devices by configuring the virtual memory past the first 4GB inaccessible
1283 * by 64-bit DMAs.  This should only be used by devices that want more than
1284 * 4GB, and only on PEs that have no 32-bit devices.
1285 *
1286 * Currently this will only work on PHB3 (POWER8).
1287 */
1288static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1289{
1290	u64 window_size, table_size, tce_count, addr;
1291	struct page *table_pages;
1292	u64 tce_order = 28; /* 256MB TCEs */
1293	__be64 *tces;
1294	s64 rc;
1295
1296	/*
1297	 * Window size needs to be a power of two, but needs to account for
1298	 * shifting memory by the 4GB offset required to skip 32bit space.
1299	 */
1300	window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1301	tce_count = window_size >> tce_order;
1302	table_size = tce_count << 3;
1303
1304	if (table_size < PAGE_SIZE)
1305		table_size = PAGE_SIZE;
1306
1307	table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1308				       get_order(table_size));
1309	if (!table_pages)
1310		goto err;
1311
1312	tces = page_address(table_pages);
1313	if (!tces)
1314		goto err;
1315
1316	memset(tces, 0, table_size);
1317
1318	for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1319		tces[(addr + (1ULL << 32)) >> tce_order] =
1320			cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1321	}
1322
1323	rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1324					pe->pe_number,
1325					/* reconfigure window 0 */
1326					(pe->pe_number << 1) + 0,
1327					1,
1328					__pa(tces),
1329					table_size,
1330					1 << tce_order);
1331	if (rc == OPAL_SUCCESS) {
1332		pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1333		return 0;
1334	}
1335err:
1336	pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1337	return -EIO;
1338}
1339
1340static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1341		u64 dma_mask)
1342{
1343	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
1344	struct pci_dn *pdn = pci_get_pdn(pdev);
1345	struct pnv_ioda_pe *pe;
1346
1347	if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1348		return false;
1349
1350	pe = &phb->ioda.pe_array[pdn->pe_number];
1351	if (pe->tce_bypass_enabled) {
1352		u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1353		if (dma_mask >= top)
1354			return true;
1355	}
1356
1357	/*
1358	 * If the device can't set the TCE bypass bit but still wants
1359	 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1360	 * bypass the 32-bit region and be usable for 64-bit DMAs.
1361	 * The device needs to be able to address all of this space.
1362	 */
1363	if (dma_mask >> 32 &&
1364	    dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1365	    /* pe->pdev should be set if it's a single device, pe->pbus if not */
1366	    (pe->device_count == 1 || !pe->pbus) &&
1367	    phb->model == PNV_PHB_MODEL_PHB3) {
1368		/* Configure the bypass mode */
1369		s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1370		if (rc)
1371			return false;
1372		/* 4GB offset bypasses 32-bit space */
1373		pdev->dev.archdata.dma_offset = (1ULL << 32);
1374		return true;
1375	}
1376
1377	return false;
1378}
1379
1380static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1381						     bool real_mode)
1382{
1383	return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1384		(phb->regs + 0x210);
1385}
1386
1387static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1388		unsigned long index, unsigned long npages, bool rm)
1389{
1390	struct iommu_table_group_link *tgl = list_first_entry_or_null(
1391			&tbl->it_group_list, struct iommu_table_group_link,
1392			next);
1393	struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1394			struct pnv_ioda_pe, table_group);
1395	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1396	unsigned long start, end, inc;
1397
1398	start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1399	end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1400			npages - 1);
1401
1402	/* p7ioc-style invalidation, 2 TCEs per write */
1403	start |= (1ull << 63);
1404	end |= (1ull << 63);
1405	inc = 16;
1406        end |= inc - 1;	/* round up end to be different than start */
1407
1408        mb(); /* Ensure above stores are visible */
1409        while (start <= end) {
1410		if (rm)
1411			__raw_rm_writeq_be(start, invalidate);
1412		else
1413			__raw_writeq_be(start, invalidate);
1414
1415                start += inc;
1416        }
1417
1418	/*
1419	 * The iommu layer will do another mb() for us on build()
1420	 * and we don't care on free()
1421	 */
1422}
1423
1424static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1425		long npages, unsigned long uaddr,
1426		enum dma_data_direction direction,
1427		unsigned long attrs)
1428{
1429	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1430			attrs);
1431
1432	if (!ret)
1433		pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1434
1435	return ret;
1436}
1437
1438#ifdef CONFIG_IOMMU_API
1439/* Common for IODA1 and IODA2 */
1440static int pnv_ioda_tce_xchg_no_kill(struct iommu_table *tbl, long index,
1441		unsigned long *hpa, enum dma_data_direction *direction,
1442		bool realmode)
1443{
1444	return pnv_tce_xchg(tbl, index, hpa, direction, !realmode);
1445}
1446#endif
1447
1448static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1449		long npages)
1450{
1451	pnv_tce_free(tbl, index, npages);
1452
1453	pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1454}
1455
1456static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1457	.set = pnv_ioda1_tce_build,
1458#ifdef CONFIG_IOMMU_API
1459	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1460	.tce_kill = pnv_pci_p7ioc_tce_invalidate,
1461	.useraddrptr = pnv_tce_useraddrptr,
1462#endif
1463	.clear = pnv_ioda1_tce_free,
1464	.get = pnv_tce_get,
1465};
1466
1467#define PHB3_TCE_KILL_INVAL_ALL		PPC_BIT(0)
1468#define PHB3_TCE_KILL_INVAL_PE		PPC_BIT(1)
1469#define PHB3_TCE_KILL_INVAL_ONE		PPC_BIT(2)
1470
1471static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1472{
1473	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1474	const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1475
1476	mb(); /* Ensure previous TCE table stores are visible */
1477	if (rm)
1478		__raw_rm_writeq_be(val, invalidate);
1479	else
1480		__raw_writeq_be(val, invalidate);
1481}
1482
1483static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1484{
1485	/* 01xb - invalidate TCEs that match the specified PE# */
1486	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1487	unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1488
1489	mb(); /* Ensure above stores are visible */
1490	__raw_writeq_be(val, invalidate);
1491}
1492
1493static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1494					unsigned shift, unsigned long index,
1495					unsigned long npages)
1496{
1497	__be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1498	unsigned long start, end, inc;
1499
1500	/* We'll invalidate DMA address in PE scope */
1501	start = PHB3_TCE_KILL_INVAL_ONE;
1502	start |= (pe->pe_number & 0xFF);
1503	end = start;
1504
1505	/* Figure out the start, end and step */
1506	start |= (index << shift);
1507	end |= ((index + npages - 1) << shift);
1508	inc = (0x1ull << shift);
1509	mb();
1510
1511	while (start <= end) {
1512		if (rm)
1513			__raw_rm_writeq_be(start, invalidate);
1514		else
1515			__raw_writeq_be(start, invalidate);
1516		start += inc;
1517	}
1518}
1519
1520static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1521{
1522	struct pnv_phb *phb = pe->phb;
1523
1524	if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1525		pnv_pci_phb3_tce_invalidate_pe(pe);
1526	else
1527		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1528				  pe->pe_number, 0, 0, 0);
1529}
1530
1531static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1532		unsigned long index, unsigned long npages, bool rm)
1533{
1534	struct iommu_table_group_link *tgl;
1535
1536	list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
1537		struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1538				struct pnv_ioda_pe, table_group);
1539		struct pnv_phb *phb = pe->phb;
1540		unsigned int shift = tbl->it_page_shift;
1541
1542		/*
1543		 * NVLink1 can use the TCE kill register directly as
1544		 * it's the same as PHB3. NVLink2 is different and
1545		 * should go via the OPAL call.
1546		 */
1547		if (phb->model == PNV_PHB_MODEL_NPU) {
1548			/*
1549			 * The NVLink hardware does not support TCE kill
1550			 * per TCE entry so we have to invalidate
1551			 * the entire cache for it.
1552			 */
1553			pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1554			continue;
1555		}
1556		if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1557			pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1558						    index, npages);
1559		else
1560			opal_pci_tce_kill(phb->opal_id,
1561					  OPAL_PCI_TCE_KILL_PAGES,
1562					  pe->pe_number, 1u << shift,
1563					  index << shift, npages);
1564	}
1565}
1566
1567void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1568{
1569	if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
1570		pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1571	else
1572		opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
1573}
1574
1575static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1576		long npages, unsigned long uaddr,
1577		enum dma_data_direction direction,
1578		unsigned long attrs)
1579{
1580	int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1581			attrs);
1582
1583	if (!ret)
1584		pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1585
1586	return ret;
1587}
1588
1589static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1590		long npages)
1591{
1592	pnv_tce_free(tbl, index, npages);
1593
1594	pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1595}
1596
1597static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1598	.set = pnv_ioda2_tce_build,
1599#ifdef CONFIG_IOMMU_API
1600	.xchg_no_kill = pnv_ioda_tce_xchg_no_kill,
1601	.tce_kill = pnv_pci_ioda2_tce_invalidate,
1602	.useraddrptr = pnv_tce_useraddrptr,
1603#endif
1604	.clear = pnv_ioda2_tce_free,
1605	.get = pnv_tce_get,
1606	.free = pnv_pci_ioda2_table_free_pages,
1607};
1608
1609static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1610{
1611	unsigned int *weight = (unsigned int *)data;
1612
1613	/* This is quite simplistic. The "base" weight of a device
1614	 * is 10. 0 means no DMA is to be accounted for it.
1615	 */
1616	if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1617		return 0;
1618
1619	if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1620	    dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1621	    dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1622		*weight += 3;
1623	else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1624		*weight += 15;
1625	else
1626		*weight += 10;
1627
1628	return 0;
1629}
1630
1631static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1632{
1633	unsigned int weight = 0;
1634
1635	/* SRIOV VF has same DMA32 weight as its PF */
1636#ifdef CONFIG_PCI_IOV
1637	if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1638		pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1639		return weight;
1640	}
1641#endif
1642
1643	if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1644		pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1645	} else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1646		struct pci_dev *pdev;
1647
1648		list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1649			pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1650	} else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
1651		pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
1652	}
1653
1654	return weight;
1655}
1656
1657static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
1658				       struct pnv_ioda_pe *pe)
1659{
1660
1661	struct page *tce_mem = NULL;
1662	struct iommu_table *tbl;
1663	unsigned int weight, total_weight = 0;
1664	unsigned int tce32_segsz, base, segs, avail, i;
1665	int64_t rc;
1666	void *addr;
1667
1668	/* XXX FIXME: Handle 64-bit only DMA devices */
1669	/* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1670	/* XXX FIXME: Allocate multi-level tables on PHB3 */
1671	weight = pnv_pci_ioda_pe_dma_weight(pe);
1672	if (!weight)
1673		return;
1674
1675	pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
1676		     &total_weight);
1677	segs = (weight * phb->ioda.dma32_count) / total_weight;
1678	if (!segs)
1679		segs = 1;
1680
1681	/*
1682	 * Allocate contiguous DMA32 segments. We begin with the expected
1683	 * number of segments. With one more attempt, the number of DMA32
1684	 * segments to be allocated is decreased by one until one segment
1685	 * is allocated successfully.
1686	 */
1687	do {
1688		for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
1689			for (avail = 0, i = base; i < base + segs; i++) {
1690				if (phb->ioda.dma32_segmap[i] ==
1691				    IODA_INVALID_PE)
1692					avail++;
1693			}
1694
1695			if (avail == segs)
1696				goto found;
1697		}
1698	} while (--segs);
1699
1700	if (!segs) {
1701		pe_warn(pe, "No available DMA32 segments\n");
1702		return;
1703	}
1704
1705found:
1706	tbl = pnv_pci_table_alloc(phb->hose->node);
1707	if (WARN_ON(!tbl))
1708		return;
1709
1710	iommu_register_group(&pe->table_group, phb->hose->global_number,
1711			pe->pe_number);
1712	pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
1713
1714	/* Grab a 32-bit TCE table */
1715	pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
1716		weight, total_weight, base, segs);
1717	pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1718		base * PNV_IODA1_DMA32_SEGSIZE,
1719		(base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
1720
1721	/* XXX Currently, we allocate one big contiguous table for the
1722	 * TCEs. We only really need one chunk per 256M of TCE space
1723	 * (ie per segment) but that's an optimization for later, it
1724	 * requires some added smarts with our get/put_tce implementation
1725	 *
1726	 * Each TCE page is 4KB in size and each TCE entry occupies 8
1727	 * bytes
1728	 */
1729	tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
1730	tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1731				   get_order(tce32_segsz * segs));
1732	if (!tce_mem) {
1733		pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1734		goto fail;
1735	}
1736	addr = page_address(tce_mem);
1737	memset(addr, 0, tce32_segsz * segs);
1738
1739	/* Configure HW */
1740	for (i = 0; i < segs; i++) {
1741		rc = opal_pci_map_pe_dma_window(phb->opal_id,
1742					      pe->pe_number,
1743					      base + i, 1,
1744					      __pa(addr) + tce32_segsz * i,
1745					      tce32_segsz, IOMMU_PAGE_SIZE_4K);
1746		if (rc) {
1747			pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
1748			       rc);
1749			goto fail;
1750		}
1751	}
1752
1753	/* Setup DMA32 segment mapping */
1754	for (i = base; i < base + segs; i++)
1755		phb->ioda.dma32_segmap[i] = pe->pe_number;
1756
1757	/* Setup linux iommu table */
1758	pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
1759				  base * PNV_IODA1_DMA32_SEGSIZE,
1760				  IOMMU_PAGE_SHIFT_4K);
1761
1762	tbl->it_ops = &pnv_ioda1_iommu_ops;
1763	pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
1764	pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
1765	iommu_init_table(tbl, phb->hose->node, 0, 0);
1766
1767	pe->dma_setup_done = true;
1768	return;
1769 fail:
1770	/* XXX Failure: Try to fallback to 64-bit only ? */
1771	if (tce_mem)
1772		__free_pages(tce_mem, get_order(tce32_segsz * segs));
1773	if (tbl) {
1774		pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
1775		iommu_tce_table_put(tbl);
1776	}
1777}
1778
1779static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
1780		int num, struct iommu_table *tbl)
1781{
1782	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1783			table_group);
1784	struct pnv_phb *phb = pe->phb;
1785	int64_t rc;
1786	const unsigned long size = tbl->it_indirect_levels ?
1787			tbl->it_level_size : tbl->it_size;
1788	const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
1789	const __u64 win_size = tbl->it_size << tbl->it_page_shift;
1790
1791	pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
1792		num, start_addr, start_addr + win_size - 1,
1793		IOMMU_PAGE_SIZE(tbl));
1794
1795	/*
1796	 * Map TCE table through TVT. The TVE index is the PE number
1797	 * shifted by 1 bit for 32-bits DMA space.
1798	 */
1799	rc = opal_pci_map_pe_dma_window(phb->opal_id,
1800			pe->pe_number,
1801			(pe->pe_number << 1) + num,
1802			tbl->it_indirect_levels + 1,
1803			__pa(tbl->it_base),
1804			size << 3,
1805			IOMMU_PAGE_SIZE(tbl));
1806	if (rc) {
1807		pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
1808		return rc;
1809	}
1810
1811	pnv_pci_link_table_and_group(phb->hose->node, num,
1812			tbl, &pe->table_group);
1813	pnv_pci_ioda2_tce_invalidate_pe(pe);
1814
1815	return 0;
1816}
1817
1818static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
1819{
1820	uint16_t window_id = (pe->pe_number << 1 ) + 1;
1821	int64_t rc;
1822
1823	pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1824	if (enable) {
1825		phys_addr_t top = memblock_end_of_DRAM();
1826
1827		top = roundup_pow_of_two(top);
1828		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1829						     pe->pe_number,
1830						     window_id,
1831						     pe->tce_bypass_base,
1832						     top);
1833	} else {
1834		rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1835						     pe->pe_number,
1836						     window_id,
1837						     pe->tce_bypass_base,
1838						     0);
1839	}
1840	if (rc)
1841		pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1842	else
1843		pe->tce_bypass_enabled = enable;
1844}
1845
1846static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
1847		int num, __u32 page_shift, __u64 window_size, __u32 levels,
1848		bool alloc_userspace_copy, struct iommu_table **ptbl)
1849{
1850	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1851			table_group);
1852	int nid = pe->phb->hose->node;
1853	__u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
1854	long ret;
1855	struct iommu_table *tbl;
1856
1857	tbl = pnv_pci_table_alloc(nid);
1858	if (!tbl)
1859		return -ENOMEM;
1860
1861	tbl->it_ops = &pnv_ioda2_iommu_ops;
1862
1863	ret = pnv_pci_ioda2_table_alloc_pages(nid,
1864			bus_offset, page_shift, window_size,
1865			levels, alloc_userspace_copy, tbl);
1866	if (ret) {
1867		iommu_tce_table_put(tbl);
1868		return ret;
1869	}
1870
1871	*ptbl = tbl;
1872
1873	return 0;
1874}
1875
1876static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
1877{
1878	struct iommu_table *tbl = NULL;
1879	long rc;
1880	unsigned long res_start, res_end;
1881
1882	/*
1883	 * crashkernel= specifies the kdump kernel's maximum memory at
1884	 * some offset and there is no guaranteed the result is a power
1885	 * of 2, which will cause errors later.
1886	 */
1887	const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
1888
1889	/*
1890	 * In memory constrained environments, e.g. kdump kernel, the
1891	 * DMA window can be larger than available memory, which will
1892	 * cause errors later.
1893	 */
1894	const u64 maxblock = 1UL << (PAGE_SHIFT + MAX_ORDER - 1);
1895
1896	/*
1897	 * We create the default window as big as we can. The constraint is
1898	 * the max order of allocation possible. The TCE table is likely to
1899	 * end up being multilevel and with on-demand allocation in place,
1900	 * the initial use is not going to be huge as the default window aims
1901	 * to support crippled devices (i.e. not fully 64bit DMAble) only.
1902	 */
1903	/* iommu_table::it_map uses 1 bit per IOMMU page, hence 8 */
1904	const u64 window_size = min((maxblock * 8) << PAGE_SHIFT, max_memory);
1905	/* Each TCE level cannot exceed maxblock so go multilevel if needed */
1906	unsigned long tces_order = ilog2(window_size >> PAGE_SHIFT);
1907	unsigned long tcelevel_order = ilog2(maxblock >> 3);
1908	unsigned int levels = tces_order / tcelevel_order;
1909
1910	if (tces_order % tcelevel_order)
1911		levels += 1;
1912	/*
1913	 * We try to stick to default levels (which is >1 at the moment) in
1914	 * order to save memory by relying on on-demain TCE level allocation.
1915	 */
1916	levels = max_t(unsigned int, levels, POWERNV_IOMMU_DEFAULT_LEVELS);
1917
1918	rc = pnv_pci_ioda2_create_table(&pe->table_group, 0, PAGE_SHIFT,
1919			window_size, levels, false, &tbl);
1920	if (rc) {
1921		pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
1922				rc);
1923		return rc;
1924	}
1925
1926	/* We use top part of 32bit space for MMIO so exclude it from DMA */
1927	res_start = 0;
1928	res_end = 0;
1929	if (window_size > pe->phb->ioda.m32_pci_base) {
1930		res_start = pe->phb->ioda.m32_pci_base >> tbl->it_page_shift;
1931		res_end = min(window_size, SZ_4G) >> tbl->it_page_shift;
1932	}
1933	iommu_init_table(tbl, pe->phb->hose->node, res_start, res_end);
1934
1935	rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
1936	if (rc) {
1937		pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
1938				rc);
1939		iommu_tce_table_put(tbl);
1940		return rc;
1941	}
1942
1943	if (!pnv_iommu_bypass_disabled)
1944		pnv_pci_ioda2_set_bypass(pe, true);
1945
1946	/*
1947	 * Set table base for the case of IOMMU DMA use. Usually this is done
1948	 * from dma_dev_setup() which is not called when a device is returned
1949	 * from VFIO so do it here.
1950	 */
1951	if (pe->pdev)
1952		set_iommu_table_base(&pe->pdev->dev, tbl);
1953
1954	return 0;
1955}
1956
1957static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1958		int num)
1959{
1960	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
1961			table_group);
1962	struct pnv_phb *phb = pe->phb;
1963	long ret;
1964
1965	pe_info(pe, "Removing DMA window #%d\n", num);
1966
1967	ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1968			(pe->pe_number << 1) + num,
1969			0/* levels */, 0/* table address */,
1970			0/* table size */, 0/* page size */);
1971	if (ret)
1972		pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
1973	else
1974		pnv_pci_ioda2_tce_invalidate_pe(pe);
1975
1976	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
1977
1978	return ret;
1979}
1980
1981#ifdef CONFIG_IOMMU_API
1982unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
1983		__u64 window_size, __u32 levels)
1984{
1985	unsigned long bytes = 0;
1986	const unsigned window_shift = ilog2(window_size);
1987	unsigned entries_shift = window_shift - page_shift;
1988	unsigned table_shift = entries_shift + 3;
1989	unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
1990	unsigned long direct_table_size;
1991
1992	if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
1993			!is_power_of_2(window_size))
1994		return 0;
1995
1996	/* Calculate a direct table size from window_size and levels */
1997	entries_shift = (entries_shift + levels - 1) / levels;
1998	table_shift = entries_shift + 3;
1999	table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2000	direct_table_size =  1UL << table_shift;
2001
2002	for ( ; levels; --levels) {
2003		bytes += ALIGN(tce_table_size, direct_table_size);
2004
2005		tce_table_size /= direct_table_size;
2006		tce_table_size <<= 3;
2007		tce_table_size = max_t(unsigned long,
2008				tce_table_size, direct_table_size);
2009	}
2010
2011	return bytes + bytes; /* one for HW table, one for userspace copy */
2012}
2013
2014static long pnv_pci_ioda2_create_table_userspace(
2015		struct iommu_table_group *table_group,
2016		int num, __u32 page_shift, __u64 window_size, __u32 levels,
2017		struct iommu_table **ptbl)
2018{
2019	long ret = pnv_pci_ioda2_create_table(table_group,
2020			num, page_shift, window_size, levels, true, ptbl);
2021
2022	if (!ret)
2023		(*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2024				page_shift, window_size, levels);
2025	return ret;
2026}
2027
2028static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
2029{
2030	struct pci_dev *dev;
2031
2032	list_for_each_entry(dev, &bus->devices, bus_list) {
2033		set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
2034		dev->dev.archdata.dma_offset = pe->tce_bypass_base;
2035
2036		if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2037			pnv_ioda_setup_bus_dma(pe, dev->subordinate);
2038	}
2039}
2040
2041static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2042{
2043	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2044						table_group);
2045	/* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2046	struct iommu_table *tbl = pe->table_group.tables[0];
2047
2048	pnv_pci_ioda2_set_bypass(pe, false);
2049	pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2050	if (pe->pbus)
2051		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2052	else if (pe->pdev)
2053		set_iommu_table_base(&pe->pdev->dev, NULL);
2054	iommu_tce_table_put(tbl);
2055}
2056
2057static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2058{
2059	struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2060						table_group);
2061
2062	pnv_pci_ioda2_setup_default_config(pe);
2063	if (pe->pbus)
2064		pnv_ioda_setup_bus_dma(pe, pe->pbus);
2065}
2066
2067static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2068	.get_table_size = pnv_pci_ioda2_get_table_size,
2069	.create_table = pnv_pci_ioda2_create_table_userspace,
2070	.set_window = pnv_pci_ioda2_set_window,
2071	.unset_window = pnv_pci_ioda2_unset_window,
2072	.take_ownership = pnv_ioda2_take_ownership,
2073	.release_ownership = pnv_ioda2_release_ownership,
2074};
2075#endif
2076
2077void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2078				struct pnv_ioda_pe *pe)
2079{
2080	int64_t rc;
2081
2082	/* TVE #1 is selected by PCI address bit 59 */
2083	pe->tce_bypass_base = 1ull << 59;
2084
2085	/* The PE will reserve all possible 32-bits space */
2086	pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2087		phb->ioda.m32_pci_base);
2088
2089	/* Setup linux iommu table */
2090	pe->table_group.tce32_start = 0;
2091	pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2092	pe->table_group.max_dynamic_windows_supported =
2093			IOMMU_TABLE_GROUP_MAX_TABLES;
2094	pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2095	pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2096
2097	rc = pnv_pci_ioda2_setup_default_config(pe);
2098	if (rc)
2099		return;
2100
2101#ifdef CONFIG_IOMMU_API
2102	pe->table_group.ops = &pnv_pci_ioda2_ops;
2103	iommu_register_group(&pe->table_group, phb->hose->global_number,
2104			     pe->pe_number);
2105#endif
2106	pe->dma_setup_done = true;
2107}
2108
2109int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2110{
2111	struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2112					   ioda.irq_chip);
2113
2114	return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2115}
2116
2117static void pnv_ioda2_msi_eoi(struct irq_data *d)
2118{
2119	int64_t rc;
2120	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2121	struct irq_chip *chip = irq_data_get_irq_chip(d);
2122
2123	rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2124	WARN_ON_ONCE(rc);
2125
2126	icp_native_eoi(d);
2127}
2128
2129
2130void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2131{
2132	struct irq_data *idata;
2133	struct irq_chip *ichip;
2134
2135	/* The MSI EOI OPAL call is only needed on PHB3 */
2136	if (phb->model != PNV_PHB_MODEL_PHB3)
2137		return;
2138
2139	if (!phb->ioda.irq_chip_init) {
2140		/*
2141		 * First time we setup an MSI IRQ, we need to setup the
2142		 * corresponding IRQ chip to route correctly.
2143		 */
2144		idata = irq_get_irq_data(virq);
2145		ichip = irq_data_get_irq_chip(idata);
2146		phb->ioda.irq_chip_init = 1;
2147		phb->ioda.irq_chip = *ichip;
2148		phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2149	}
2150	irq_set_chip(virq, &phb->ioda.irq_chip);
2151}
2152
2153/*
2154 * Returns true iff chip is something that we could call
2155 * pnv_opal_pci_msi_eoi for.
2156 */
2157bool is_pnv_opal_msi(struct irq_chip *chip)
2158{
2159	return chip->irq_eoi == pnv_ioda2_msi_eoi;
2160}
2161EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2162
2163static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2164				  unsigned int hwirq, unsigned int virq,
2165				  unsigned int is_64, struct msi_msg *msg)
2166{
2167	struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2168	unsigned int xive_num = hwirq - phb->msi_base;
2169	__be32 data;
2170	int rc;
2171
2172	/* No PE assigned ? bail out ... no MSI for you ! */
2173	if (pe == NULL)
2174		return -ENXIO;
2175
2176	/* Check if we have an MVE */
2177	if (pe->mve_number < 0)
2178		return -ENXIO;
2179
2180	/* Force 32-bit MSI on some broken devices */
2181	if (dev->no_64bit_msi)
2182		is_64 = 0;
2183
2184	/* Assign XIVE to PE */
2185	rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2186	if (rc) {
2187		pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2188			pci_name(dev), rc, xive_num);
2189		return -EIO;
2190	}
2191
2192	if (is_64) {
2193		__be64 addr64;
2194
2195		rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2196				     &addr64, &data);
2197		if (rc) {
2198			pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2199				pci_name(dev), rc);
2200			return -EIO;
2201		}
2202		msg->address_hi = be64_to_cpu(addr64) >> 32;
2203		msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2204	} else {
2205		__be32 addr32;
2206
2207		rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2208				     &addr32, &data);
2209		if (rc) {
2210			pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2211				pci_name(dev), rc);
2212			return -EIO;
2213		}
2214		msg->address_hi = 0;
2215		msg->address_lo = be32_to_cpu(addr32);
2216	}
2217	msg->data = be32_to_cpu(data);
2218
2219	pnv_set_msi_irq_chip(phb, virq);
2220
2221	pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2222		 " address=%x_%08x data=%x PE# %x\n",
2223		 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2224		 msg->address_hi, msg->address_lo, data, pe->pe_number);
2225
2226	return 0;
2227}
2228
2229static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2230{
2231	unsigned int count;
2232	const __be32 *prop = of_get_property(phb->hose->dn,
2233					     "ibm,opal-msi-ranges", NULL);
2234	if (!prop) {
2235		/* BML Fallback */
2236		prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2237	}
2238	if (!prop)
2239		return;
2240
2241	phb->msi_base = be32_to_cpup(prop);
2242	count = be32_to_cpup(prop + 1);
2243	if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2244		pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2245		       phb->hose->global_number);
2246		return;
2247	}
2248
2249	phb->msi_setup = pnv_pci_ioda_msi_setup;
2250	phb->msi32_support = 1;
2251	pr_info("  Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2252		count, phb->msi_base);
2253}
2254
2255static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2256				  struct resource *res)
2257{
2258	struct pnv_phb *phb = pe->phb;
2259	struct pci_bus_region region;
2260	int index;
2261	int64_t rc;
2262
2263	if (!res || !res->flags || res->start > res->end ||
2264	    res->flags & IORESOURCE_UNSET)
2265		return;
2266
2267	if (res->flags & IORESOURCE_IO) {
2268		region.start = res->start - phb->ioda.io_pci_base;
2269		region.end   = res->end - phb->ioda.io_pci_base;
2270		index = region.start / phb->ioda.io_segsize;
2271
2272		while (index < phb->ioda.total_pe_num &&
2273		       region.start <= region.end) {
2274			phb->ioda.io_segmap[index] = pe->pe_number;
2275			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2276				pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2277			if (rc != OPAL_SUCCESS) {
2278				pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2279				       __func__, rc, index, pe->pe_number);
2280				break;
2281			}
2282
2283			region.start += phb->ioda.io_segsize;
2284			index++;
2285		}
2286	} else if ((res->flags & IORESOURCE_MEM) &&
2287		   !pnv_pci_is_m64(phb, res)) {
2288		region.start = res->start -
2289			       phb->hose->mem_offset[0] -
2290			       phb->ioda.m32_pci_base;
2291		region.end   = res->end -
2292			       phb->hose->mem_offset[0] -
2293			       phb->ioda.m32_pci_base;
2294		index = region.start / phb->ioda.m32_segsize;
2295
2296		while (index < phb->ioda.total_pe_num &&
2297		       region.start <= region.end) {
2298			phb->ioda.m32_segmap[index] = pe->pe_number;
2299			rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2300				pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2301			if (rc != OPAL_SUCCESS) {
2302				pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
2303				       __func__, rc, index, pe->pe_number);
2304				break;
2305			}
2306
2307			region.start += phb->ioda.m32_segsize;
2308			index++;
2309		}
2310	}
2311}
2312
2313/*
2314 * This function is supposed to be called on basis of PE from top
2315 * to bottom style. So the the I/O or MMIO segment assigned to
2316 * parent PE could be overridden by its child PEs if necessary.
2317 */
2318static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2319{
2320	struct pci_dev *pdev;
2321	int i;
2322
2323	/*
2324	 * NOTE: We only care PCI bus based PE for now. For PCI
2325	 * device based PE, for example SRIOV sensitive VF should
2326	 * be figured out later.
2327	 */
2328	BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2329
2330	list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2331		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2332			pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2333
2334		/*
2335		 * If the PE contains all subordinate PCI buses, the
2336		 * windows of the child bridges should be mapped to
2337		 * the PE as well.
2338		 */
2339		if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2340			continue;
2341		for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2342			pnv_ioda_setup_pe_res(pe,
2343				&pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2344	}
2345}
2346
2347#ifdef CONFIG_DEBUG_FS
2348static int pnv_pci_diag_data_set(void *data, u64 val)
2349{
2350	struct pnv_phb *phb = data;
2351	s64 ret;
2352
2353	/* Retrieve the diag data from firmware */
2354	ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
2355					  phb->diag_data_size);
2356	if (ret != OPAL_SUCCESS)
2357		return -EIO;
2358
2359	/* Print the diag data to the kernel log */
2360	pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
2361	return 0;
2362}
2363
2364DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_diag_data_fops, NULL, pnv_pci_diag_data_set,
2365			 "%llu\n");
2366
2367static int pnv_pci_ioda_pe_dump(void *data, u64 val)
2368{
2369	struct pnv_phb *phb = data;
2370	int pe_num;
2371
2372	for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
2373		struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_num];
2374
2375		if (!test_bit(pe_num, phb->ioda.pe_alloc))
2376			continue;
2377
2378		pe_warn(pe, "rid: %04x dev count: %2d flags: %s%s%s%s%s%s\n",
2379			pe->rid, pe->device_count,
2380			(pe->flags & PNV_IODA_PE_DEV) ? "dev " : "",
2381			(pe->flags & PNV_IODA_PE_BUS) ? "bus " : "",
2382			(pe->flags & PNV_IODA_PE_BUS_ALL) ? "all " : "",
2383			(pe->flags & PNV_IODA_PE_MASTER) ? "master " : "",
2384			(pe->flags & PNV_IODA_PE_SLAVE) ? "slave " : "",
2385			(pe->flags & PNV_IODA_PE_VF) ? "vf " : "");
2386	}
2387
2388	return 0;
2389}
2390
2391DEFINE_DEBUGFS_ATTRIBUTE(pnv_pci_ioda_pe_dump_fops, NULL,
2392			 pnv_pci_ioda_pe_dump, "%llu\n");
2393
2394#endif /* CONFIG_DEBUG_FS */
2395
2396static void pnv_pci_ioda_create_dbgfs(void)
2397{
2398#ifdef CONFIG_DEBUG_FS
2399	struct pci_controller *hose, *tmp;
2400	struct pnv_phb *phb;
2401	char name[16];
2402
2403	list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2404		phb = hose->private_data;
2405
2406		/* Notify initialization of PHB done */
2407		phb->initialized = 1;
2408
2409		sprintf(name, "PCI%04x", hose->global_number);
2410		phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
2411
2412		debugfs_create_file_unsafe("dump_diag_regs", 0200, phb->dbgfs,
2413					   phb, &pnv_pci_diag_data_fops);
2414		debugfs_create_file_unsafe("dump_ioda_pe_state", 0200, phb->dbgfs,
2415					   phb, &pnv_pci_ioda_pe_dump_fops);
2416	}
2417#endif /* CONFIG_DEBUG_FS */
2418}
2419
2420static void pnv_pci_enable_bridge(struct pci_bus *bus)
2421{
2422	struct pci_dev *dev = bus->self;
2423	struct pci_bus *child;
2424
2425	/* Empty bus ? bail */
2426	if (list_empty(&bus->devices))
2427		return;
2428
2429	/*
2430	 * If there's a bridge associated with that bus enable it. This works
2431	 * around races in the generic code if the enabling is done during
2432	 * parallel probing. This can be removed once those races have been
2433	 * fixed.
2434	 */
2435	if (dev) {
2436		int rc = pci_enable_device(dev);
2437		if (rc)
2438			pci_err(dev, "Error enabling bridge (%d)\n", rc);
2439		pci_set_master(dev);
2440	}
2441
2442	/* Perform the same to child busses */
2443	list_for_each_entry(child, &bus->children, node)
2444		pnv_pci_enable_bridge(child);
2445}
2446
2447static void pnv_pci_enable_bridges(void)
2448{
2449	struct pci_controller *hose;
2450
2451	list_for_each_entry(hose, &hose_list, list_node)
2452		pnv_pci_enable_bridge(hose->bus);
2453}
2454
2455static void pnv_pci_ioda_fixup(void)
2456{
2457	pnv_pci_ioda_setup_nvlink();
2458	pnv_pci_ioda_create_dbgfs();
2459
2460	pnv_pci_enable_bridges();
2461
2462#ifdef CONFIG_EEH
2463	pnv_eeh_post_init();
2464#endif
2465}
2466
2467/*
2468 * Returns the alignment for I/O or memory windows for P2P
2469 * bridges. That actually depends on how PEs are segmented.
2470 * For now, we return I/O or M32 segment size for PE sensitive
2471 * P2P bridges. Otherwise, the default values (4KiB for I/O,
2472 * 1MiB for memory) will be returned.
2473 *
2474 * The current PCI bus might be put into one PE, which was
2475 * create against the parent PCI bridge. For that case, we
2476 * needn't enlarge the alignment so that we can save some
2477 * resources.
2478 */
2479static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
2480						unsigned long type)
2481{
2482	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2483	int num_pci_bridges = 0;
2484	struct pci_dev *bridge;
2485
2486	bridge = bus->self;
2487	while (bridge) {
2488		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
2489			num_pci_bridges++;
2490			if (num_pci_bridges >= 2)
2491				return 1;
2492		}
2493
2494		bridge = bridge->bus->self;
2495	}
2496
2497	/*
2498	 * We fall back to M32 if M64 isn't supported. We enforce the M64
2499	 * alignment for any 64-bit resource, PCIe doesn't care and
2500	 * bridges only do 64-bit prefetchable anyway.
2501	 */
2502	if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
2503		return phb->ioda.m64_segsize;
2504	if (type & IORESOURCE_MEM)
2505		return phb->ioda.m32_segsize;
2506
2507	return phb->ioda.io_segsize;
2508}
2509
2510/*
2511 * We are updating root port or the upstream port of the
2512 * bridge behind the root port with PHB's windows in order
2513 * to accommodate the changes on required resources during
2514 * PCI (slot) hotplug, which is connected to either root
2515 * port or the downstream ports of PCIe switch behind the
2516 * root port.
2517 */
2518static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
2519					   unsigned long type)
2520{
2521	struct pci_controller *hose = pci_bus_to_host(bus);
2522	struct pnv_phb *phb = hose->private_data;
2523	struct pci_dev *bridge = bus->self;
2524	struct resource *r, *w;
2525	bool msi_region = false;
2526	int i;
2527
2528	/* Check if we need apply fixup to the bridge's windows */
2529	if (!pci_is_root_bus(bridge->bus) &&
2530	    !pci_is_root_bus(bridge->bus->self->bus))
2531		return;
2532
2533	/* Fixup the resources */
2534	for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
2535		r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
2536		if (!r->flags || !r->parent)
2537			continue;
2538
2539		w = NULL;
2540		if (r->flags & type & IORESOURCE_IO)
2541			w = &hose->io_resource;
2542		else if (pnv_pci_is_m64(phb, r) &&
2543			 (type & IORESOURCE_PREFETCH) &&
2544			 phb->ioda.m64_segsize)
2545			w = &hose->mem_resources[1];
2546		else if (r->flags & type & IORESOURCE_MEM) {
2547			w = &hose->mem_resources[0];
2548			msi_region = true;
2549		}
2550
2551		r->start = w->start;
2552		r->end = w->end;
2553
2554		/* The 64KB 32-bits MSI region shouldn't be included in
2555		 * the 32-bits bridge window. Otherwise, we can see strange
2556		 * issues. One of them is EEH error observed on Garrison.
2557		 *
2558		 * Exclude top 1MB region which is the minimal alignment of
2559		 * 32-bits bridge window.
2560		 */
2561		if (msi_region) {
2562			r->end += 0x10000;
2563			r->end -= 0x100000;
2564		}
2565	}
2566}
2567
2568static void pnv_pci_configure_bus(struct pci_bus *bus)
2569{
2570	struct pci_dev *bridge = bus->self;
2571	struct pnv_ioda_pe *pe;
2572	bool all = (bridge && pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
2573
2574	dev_info(&bus->dev, "Configuring PE for bus\n");
2575
2576	/* Don't assign PE to PCI bus, which doesn't have subordinate devices */
2577	if (WARN_ON(list_empty(&bus->devices)))
2578		return;
2579
2580	/* Reserve PEs according to used M64 resources */
2581	pnv_ioda_reserve_m64_pe(bus, NULL, all);
2582
2583	/*
2584	 * Assign PE. We might run here because of partial hotplug.
2585	 * For the case, we just pick up the existing PE and should
2586	 * not allocate resources again.
2587	 */
2588	pe = pnv_ioda_setup_bus_PE(bus, all);
2589	if (!pe)
2590		return;
2591
2592	pnv_ioda_setup_pe_seg(pe);
2593}
2594
2595static resource_size_t pnv_pci_default_alignment(void)
2596{
2597	return PAGE_SIZE;
2598}
2599
2600/* Prevent enabling devices for which we couldn't properly
2601 * assign a PE
2602 */
2603static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
2604{
2605	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
2606	struct pci_dn *pdn;
2607
2608	/* The function is probably called while the PEs have
2609	 * not be created yet. For example, resource reassignment
2610	 * during PCI probe period. We just skip the check if
2611	 * PEs isn't ready.
2612	 */
2613	if (!phb->initialized)
2614		return true;
2615
2616	pdn = pci_get_pdn(dev);
2617	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2618		return false;
2619
2620	return true;
2621}
2622
2623static bool pnv_ocapi_enable_device_hook(struct pci_dev *dev)
2624{
2625	struct pci_controller *hose = pci_bus_to_host(dev->bus);
2626	struct pnv_phb *phb = hose->private_data;
2627	struct pci_dn *pdn;
2628	struct pnv_ioda_pe *pe;
2629
2630	if (!phb->initialized)
2631		return true;
2632
2633	pdn = pci_get_pdn(dev);
2634	if (!pdn)
2635		return false;
2636
2637	if (pdn->pe_number == IODA_INVALID_PE) {
2638		pe = pnv_ioda_setup_dev_PE(dev);
2639		if (!pe)
2640			return false;
2641	}
2642	return true;
2643}
2644
2645static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
2646				       int num)
2647{
2648	struct pnv_ioda_pe *pe = container_of(table_group,
2649					      struct pnv_ioda_pe, table_group);
2650	struct pnv_phb *phb = pe->phb;
2651	unsigned int idx;
2652	long rc;
2653
2654	pe_info(pe, "Removing DMA window #%d\n", num);
2655	for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
2656		if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
2657			continue;
2658
2659		rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2660						idx, 0, 0ul, 0ul, 0ul);
2661		if (rc != OPAL_SUCCESS) {
2662			pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
2663				rc, idx);
2664			return rc;
2665		}
2666
2667		phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
2668	}
2669
2670	pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2671	return OPAL_SUCCESS;
2672}
2673
2674static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
2675{
2676	struct iommu_table *tbl = pe->table_group.tables[0];
2677	int64_t rc;
2678
2679	if (!pe->dma_setup_done)
2680		return;
2681
2682	rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
2683	if (rc != OPAL_SUCCESS)
2684		return;
2685
2686	pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
2687	if (pe->table_group.group) {
2688		iommu_group_put(pe->table_group.group);
2689		WARN_ON(pe->table_group.group);
2690	}
2691
2692	free_pages(tbl->it_base, get_order(tbl->it_size << 3));
2693	iommu_tce_table_put(tbl);
2694}
2695
2696void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
2697{
2698	struct iommu_table *tbl = pe->table_group.tables[0];
2699	int64_t rc;
2700
2701	if (!pe->dma_setup_done)
2702		return;
2703
2704	rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2705	if (rc)
2706		pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
2707
2708	pnv_pci_ioda2_set_bypass(pe, false);
2709	if (pe->table_group.group) {
2710		iommu_group_put(pe->table_group.group);
2711		WARN_ON(pe->table_group.group);
2712	}
2713
2714	iommu_tce_table_put(tbl);
2715}
2716
2717static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
2718				 unsigned short win,
2719				 unsigned int *map)
2720{
2721	struct pnv_phb *phb = pe->phb;
2722	int idx;
2723	int64_t rc;
2724
2725	for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
2726		if (map[idx] != pe->pe_number)
2727			continue;
2728
2729		rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2730				phb->ioda.reserved_pe_idx, win, 0, idx);
2731
2732		if (rc != OPAL_SUCCESS)
2733			pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
2734				rc, win, idx);
2735
2736		map[idx] = IODA_INVALID_PE;
2737	}
2738}
2739
2740static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
2741{
2742	struct pnv_phb *phb = pe->phb;
2743
2744	if (phb->type == PNV_PHB_IODA1) {
2745		pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
2746				     phb->ioda.io_segmap);
2747		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2748				     phb->ioda.m32_segmap);
2749		/* M64 is pre-configured by pnv_ioda1_init_m64() */
2750	} else if (phb->type == PNV_PHB_IODA2) {
2751		pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
2752				     phb->ioda.m32_segmap);
2753	}
2754}
2755
2756static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
2757{
2758	struct pnv_phb *phb = pe->phb;
2759	struct pnv_ioda_pe *slave, *tmp;
2760
2761	pe_info(pe, "Releasing PE\n");
2762
2763	mutex_lock(&phb->ioda.pe_list_mutex);
2764	list_del(&pe->list);
2765	mutex_unlock(&phb->ioda.pe_list_mutex);
2766
2767	switch (phb->type) {
2768	case PNV_PHB_IODA1:
2769		pnv_pci_ioda1_release_pe_dma(pe);
2770		break;
2771	case PNV_PHB_IODA2:
2772		pnv_pci_ioda2_release_pe_dma(pe);
2773		break;
2774	case PNV_PHB_NPU_OCAPI:
2775		break;
2776	default:
2777		WARN_ON(1);
2778	}
2779
2780	pnv_ioda_release_pe_seg(pe);
2781	pnv_ioda_deconfigure_pe(pe->phb, pe);
2782
2783	/* Release slave PEs in the compound PE */
2784	if (pe->flags & PNV_IODA_PE_MASTER) {
2785		list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
2786			list_del(&slave->list);
2787			pnv_ioda_free_pe(slave);
2788		}
2789	}
2790
2791	/*
2792	 * The PE for root bus can be removed because of hotplug in EEH
2793	 * recovery for fenced PHB error. We need to mark the PE dead so
2794	 * that it can be populated again in PCI hot add path. The PE
2795	 * shouldn't be destroyed as it's the global reserved resource.
2796	 */
2797	if (phb->ioda.root_pe_idx == pe->pe_number)
2798		return;
2799
2800	pnv_ioda_free_pe(pe);
2801}
2802
2803static void pnv_pci_release_device(struct pci_dev *pdev)
2804{
2805	struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
2806	struct pci_dn *pdn = pci_get_pdn(pdev);
2807	struct pnv_ioda_pe *pe;
2808
2809	/* The VF PE state is torn down when sriov_disable() is called */
2810	if (pdev->is_virtfn)
2811		return;
2812
2813	if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2814		return;
2815
2816#ifdef CONFIG_PCI_IOV
2817	/*
2818	 * FIXME: Try move this to sriov_disable(). It's here since we allocate
2819	 * the iov state at probe time since we need to fiddle with the IOV
2820	 * resources.
2821	 */
2822	if (pdev->is_physfn)
2823		kfree(pdev->dev.archdata.iov_data);
2824#endif
2825
2826	/*
2827	 * PCI hotplug can happen as part of EEH error recovery. The @pdn
2828	 * isn't removed and added afterwards in this scenario. We should
2829	 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
2830	 * device count is decreased on removing devices while failing to
2831	 * be increased on adding devices. It leads to unbalanced PE's device
2832	 * count and eventually make normal PCI hotplug path broken.
2833	 */
2834	pe = &phb->ioda.pe_array[pdn->pe_number];
2835	pdn->pe_number = IODA_INVALID_PE;
2836
2837	WARN_ON(--pe->device_count < 0);
2838	if (pe->device_count == 0)
2839		pnv_ioda_release_pe(pe);
2840}
2841
2842static void pnv_npu_disable_device(struct pci_dev *pdev)
2843{
2844	struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
2845	struct eeh_pe *eehpe = edev ? edev->pe : NULL;
2846
2847	if (eehpe && eeh_ops && eeh_ops->reset)
2848		eeh_ops->reset(eehpe, EEH_RESET_HOT);
2849}
2850
2851static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
2852{
2853	struct pnv_phb *phb = hose->private_data;
2854
2855	opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
2856		       OPAL_ASSERT_RESET);
2857}
2858
2859static void pnv_pci_ioda_dma_bus_setup(struct pci_bus *bus)
2860{
2861	struct pnv_phb *phb = pci_bus_to_pnvhb(bus);
2862	struct pnv_ioda_pe *pe;
2863
2864	list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2865		if (!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)))
2866			continue;
2867
2868		if (!pe->pbus)
2869			continue;
2870
2871		if (bus->number == ((pe->rid >> 8) & 0xFF)) {
2872			pe->pbus = bus;
2873			break;
2874		}
2875	}
2876}
2877
2878static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
2879	.dma_dev_setup		= pnv_pci_ioda_dma_dev_setup,
2880	.dma_bus_setup		= pnv_pci_ioda_dma_bus_setup,
2881	.iommu_bypass_supported	= pnv_pci_ioda_iommu_bypass_supported,
2882	.setup_msi_irqs		= pnv_setup_msi_irqs,
2883	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2884	.enable_device_hook	= pnv_pci_enable_device_hook,
2885	.release_device		= pnv_pci_release_device,
2886	.window_alignment	= pnv_pci_window_alignment,
2887	.setup_bridge		= pnv_pci_fixup_bridge_resources,
2888	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2889	.shutdown		= pnv_pci_ioda_shutdown,
2890};
2891
2892static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
2893	.setup_msi_irqs		= pnv_setup_msi_irqs,
2894	.teardown_msi_irqs	= pnv_teardown_msi_irqs,
2895	.enable_device_hook	= pnv_pci_enable_device_hook,
2896	.window_alignment	= pnv_pci_window_alignment,
2897	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2898	.shutdown		= pnv_pci_ioda_shutdown,
2899	.disable_device		= pnv_npu_disable_device,
2900};
2901
2902static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
2903	.enable_device_hook	= pnv_ocapi_enable_device_hook,
2904	.release_device		= pnv_pci_release_device,
2905	.window_alignment	= pnv_pci_window_alignment,
2906	.reset_secondary_bus	= pnv_pci_reset_secondary_bus,
2907	.shutdown		= pnv_pci_ioda_shutdown,
2908};
2909
2910static void __init pnv_pci_init_ioda_phb(struct device_node *np,
2911					 u64 hub_id, int ioda_type)
2912{
2913	struct pci_controller *hose;
2914	struct pnv_phb *phb;
2915	unsigned long size, m64map_off, m32map_off, pemap_off;
2916	unsigned long iomap_off = 0, dma32map_off = 0;
2917	struct pnv_ioda_pe *root_pe;
2918	struct resource r;
2919	const __be64 *prop64;
2920	const __be32 *prop32;
2921	int len;
2922	unsigned int segno;
2923	u64 phb_id;
2924	void *aux;
2925	long rc;
2926
2927	if (!of_device_is_available(np))
2928		return;
2929
2930	pr_info("Initializing %s PHB (%pOF)\n",	pnv_phb_names[ioda_type], np);
2931
2932	prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
2933	if (!prop64) {
2934		pr_err("  Missing \"ibm,opal-phbid\" property !\n");
2935		return;
2936	}
2937	phb_id = be64_to_cpup(prop64);
2938	pr_debug("  PHB-ID  : 0x%016llx\n", phb_id);
2939
2940	phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
2941	if (!phb)
2942		panic("%s: Failed to allocate %zu bytes\n", __func__,
2943		      sizeof(*phb));
2944
2945	/* Allocate PCI controller */
2946	phb->hose = hose = pcibios_alloc_controller(np);
2947	if (!phb->hose) {
2948		pr_err("  Can't allocate PCI controller for %pOF\n",
2949		       np);
2950		memblock_free(__pa(phb), sizeof(struct pnv_phb));
2951		return;
2952	}
2953
2954	spin_lock_init(&phb->lock);
2955	prop32 = of_get_property(np, "bus-range", &len);
2956	if (prop32 && len == 8) {
2957		hose->first_busno = be32_to_cpu(prop32[0]);
2958		hose->last_busno = be32_to_cpu(prop32[1]);
2959	} else {
2960		pr_warn("  Broken <bus-range> on %pOF\n", np);
2961		hose->first_busno = 0;
2962		hose->last_busno = 0xff;
2963	}
2964	hose->private_data = phb;
2965	phb->hub_id = hub_id;
2966	phb->opal_id = phb_id;
2967	phb->type = ioda_type;
2968	mutex_init(&phb->ioda.pe_alloc_mutex);
2969
2970	/* Detect specific models for error handling */
2971	if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
2972		phb->model = PNV_PHB_MODEL_P7IOC;
2973	else if (of_device_is_compatible(np, "ibm,power8-pciex"))
2974		phb->model = PNV_PHB_MODEL_PHB3;
2975	else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
2976		phb->model = PNV_PHB_MODEL_NPU;
2977	else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
2978		phb->model = PNV_PHB_MODEL_NPU2;
2979	else
2980		phb->model = PNV_PHB_MODEL_UNKNOWN;
2981
2982	/* Initialize diagnostic data buffer */
2983	prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
2984	if (prop32)
2985		phb->diag_data_size = be32_to_cpup(prop32);
2986	else
2987		phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
2988
2989	phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
2990	if (!phb->diag_data)
2991		panic("%s: Failed to allocate %u bytes\n", __func__,
2992		      phb->diag_data_size);
2993
2994	/* Parse 32-bit and IO ranges (if any) */
2995	pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
2996
2997	/* Get registers */
2998	if (!of_address_to_resource(np, 0, &r)) {
2999		phb->regs_phys = r.start;
3000		phb->regs = ioremap(r.start, resource_size(&r));
3001		if (phb->regs == NULL)
3002			pr_err("  Failed to map registers !\n");
3003	}
3004
3005	/* Initialize more IODA stuff */
3006	phb->ioda.total_pe_num = 1;
3007	prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3008	if (prop32)
3009		phb->ioda.total_pe_num = be32_to_cpup(prop32);
3010	prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3011	if (prop32)
3012		phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3013
3014	/* Invalidate RID to PE# mapping */
3015	for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3016		phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3017
3018	/* Parse 64-bit MMIO range */
3019	pnv_ioda_parse_m64_window(phb);
3020
3021	phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3022	/* FW Has already off top 64k of M32 space (MSI space) */
3023	phb->ioda.m32_size += 0x10000;
3024
3025	phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3026	phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3027	phb->ioda.io_size = hose->pci_io_size;
3028	phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3029	phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3030
3031	/* Calculate how many 32-bit TCE segments we have */
3032	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3033				PNV_IODA1_DMA32_SEGSIZE;
3034
3035	/* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3036	size = ALIGN(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3037			sizeof(unsigned long));
3038	m64map_off = size;
3039	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3040	m32map_off = size;
3041	size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3042	if (phb->type == PNV_PHB_IODA1) {
3043		iomap_off = size;
3044		size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3045		dma32map_off = size;
3046		size += phb->ioda.dma32_count *
3047			sizeof(phb->ioda.dma32_segmap[0]);
3048	}
3049	pemap_off = size;
3050	size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3051	aux = memblock_alloc(size, SMP_CACHE_BYTES);
3052	if (!aux)
3053		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3054	phb->ioda.pe_alloc = aux;
3055	phb->ioda.m64_segmap = aux + m64map_off;
3056	phb->ioda.m32_segmap = aux + m32map_off;
3057	for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3058		phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3059		phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3060	}
3061	if (phb->type == PNV_PHB_IODA1) {
3062		phb->ioda.io_segmap = aux + iomap_off;
3063		for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3064			phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3065
3066		phb->ioda.dma32_segmap = aux + dma32map_off;
3067		for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3068			phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3069	}
3070	phb->ioda.pe_array = aux + pemap_off;
3071
3072	/*
3073	 * Choose PE number for root bus, which shouldn't have
3074	 * M64 resources consumed by its child devices. To pick
3075	 * the PE number adjacent to the reserved one if possible.
3076	 */
3077	pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3078	if (phb->ioda.reserved_pe_idx == 0) {
3079		phb->ioda.root_pe_idx = 1;
3080		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3081	} else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3082		phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3083		pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3084	} else {
3085		/* otherwise just allocate one */
3086		root_pe = pnv_ioda_alloc_pe(phb, 1);
3087		phb->ioda.root_pe_idx = root_pe->pe_number;
3088	}
3089
3090	INIT_LIST_HEAD(&phb->ioda.pe_list);
3091	mutex_init(&phb->ioda.pe_list_mutex);
3092
3093	/* Calculate how many 32-bit TCE segments we have */
3094	phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3095				PNV_IODA1_DMA32_SEGSIZE;
3096
3097#if 0 /* We should really do that ... */
3098	rc = opal_pci_set_phb_mem_window(opal->phb_id,
3099					 window_type,
3100					 window_num,
3101					 starting_real_address,
3102					 starting_pci_address,
3103					 segment_size);
3104#endif
3105
3106	pr_info("  %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3107		phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3108		phb->ioda.m32_size, phb->ioda.m32_segsize);
3109	if (phb->ioda.m64_size)
3110		pr_info("                 M64: 0x%lx [segment=0x%lx]\n",
3111			phb->ioda.m64_size, phb->ioda.m64_segsize);
3112	if (phb->ioda.io_size)
3113		pr_info("                  IO: 0x%x [segment=0x%x]\n",
3114			phb->ioda.io_size, phb->ioda.io_segsize);
3115
3116
3117	phb->hose->ops = &pnv_pci_ops;
3118	phb->get_pe_state = pnv_ioda_get_pe_state;
3119	phb->freeze_pe = pnv_ioda_freeze_pe;
3120	phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3121
3122	/* Setup MSI support */
3123	pnv_pci_init_ioda_msis(phb);
3124
3125	/*
3126	 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3127	 * to let the PCI core do resource assignment. It's supposed
3128	 * that the PCI core will do correct I/O and MMIO alignment
3129	 * for the P2P bridge bars so that each PCI bus (excluding
3130	 * the child P2P bridges) can form individual PE.
3131	 */
3132	ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3133
3134	switch (phb->type) {
3135	case PNV_PHB_NPU_NVLINK:
3136		hose->controller_ops = pnv_npu_ioda_controller_ops;
3137		break;
3138	case PNV_PHB_NPU_OCAPI:
3139		hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3140		break;
3141	default:
3142		hose->controller_ops = pnv_pci_ioda_controller_ops;
3143	}
3144
3145	ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3146
3147#ifdef CONFIG_PCI_IOV
3148	ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov;
3149	ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3150	ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3151	ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3152#endif
3153
3154	pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3155
3156	/* Reset IODA tables to a clean state */
3157	rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3158	if (rc)
3159		pr_warn("  OPAL Error %ld performing IODA table reset !\n", rc);
3160
3161	/*
3162	 * If we're running in kdump kernel, the previous kernel never
3163	 * shutdown PCI devices correctly. We already got IODA table
3164	 * cleaned out. So we have to issue PHB reset to stop all PCI
3165	 * transactions from previous kernel. The ppc_pci_reset_phbs
3166	 * kernel parameter will force this reset too. Additionally,
3167	 * if the IODA reset above failed then use a bigger hammer.
3168	 * This can happen if we get a PHB fatal error in very early
3169	 * boot.
3170	 */
3171	if (is_kdump_kernel() || pci_reset_phbs || rc) {
3172		pr_info("  Issue PHB reset ...\n");
3173		pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3174		pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3175	}
3176
3177	/* Remove M64 resource if we can't configure it successfully */
3178	if (!phb->init_m64 || phb->init_m64(phb))
3179		hose->mem_resources[1].flags = 0;
3180}
3181
3182void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3183{
3184	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3185}
3186
3187void __init pnv_pci_init_npu_phb(struct device_node *np)
3188{
3189	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3190}
3191
3192void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3193{
3194	pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3195}
3196
3197static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3198{
3199	struct pnv_phb *phb = pci_bus_to_pnvhb(dev->bus);
3200
3201	if (!machine_is(powernv))
3202		return;
3203
3204	if (phb->type == PNV_PHB_NPU_OCAPI)
3205		dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3206}
3207DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3208
3209void __init pnv_pci_init_ioda_hub(struct device_node *np)
3210{
3211	struct device_node *phbn;
3212	const __be64 *prop64;
3213	u64 hub_id;
3214
3215	pr_info("Probing IODA IO-Hub %pOF\n", np);
3216
3217	prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3218	if (!prop64) {
3219		pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3220		return;
3221	}
3222	hub_id = be64_to_cpup(prop64);
3223	pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3224
3225	/* Count child PHBs */
3226	for_each_child_of_node(np, phbn) {
3227		/* Look for IODA1 PHBs */
3228		if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3229			pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3230	}
3231}
3232