1// SPDX-License-Identifier: GPL-2.0-or-later
2/* sched.c - SPU scheduler.
3 *
4 * Copyright (C) IBM 2005
5 * Author: Mark Nutter <mnutter@us.ibm.com>
6 *
7 * 2006-03-31	NUMA domains added.
8 */
9
10#undef DEBUG
11
12#include <linux/errno.h>
13#include <linux/sched/signal.h>
14#include <linux/sched/loadavg.h>
15#include <linux/sched/rt.h>
16#include <linux/kernel.h>
17#include <linux/mm.h>
18#include <linux/slab.h>
19#include <linux/completion.h>
20#include <linux/vmalloc.h>
21#include <linux/smp.h>
22#include <linux/stddef.h>
23#include <linux/unistd.h>
24#include <linux/numa.h>
25#include <linux/mutex.h>
26#include <linux/notifier.h>
27#include <linux/kthread.h>
28#include <linux/pid_namespace.h>
29#include <linux/proc_fs.h>
30#include <linux/seq_file.h>
31
32#include <asm/io.h>
33#include <asm/mmu_context.h>
34#include <asm/spu.h>
35#include <asm/spu_csa.h>
36#include <asm/spu_priv1.h>
37#include "spufs.h"
38#define CREATE_TRACE_POINTS
39#include "sputrace.h"
40
41struct spu_prio_array {
42	DECLARE_BITMAP(bitmap, MAX_PRIO);
43	struct list_head runq[MAX_PRIO];
44	spinlock_t runq_lock;
45	int nr_waiting;
46};
47
48static unsigned long spu_avenrun[3];
49static struct spu_prio_array *spu_prio;
50static struct task_struct *spusched_task;
51static struct timer_list spusched_timer;
52static struct timer_list spuloadavg_timer;
53
54/*
55 * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
56 */
57#define NORMAL_PRIO		120
58
59/*
60 * Frequency of the spu scheduler tick.  By default we do one SPU scheduler
61 * tick for every 10 CPU scheduler ticks.
62 */
63#define SPUSCHED_TICK		(10)
64
65/*
66 * These are the 'tuning knobs' of the scheduler:
67 *
68 * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
69 * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
70 */
71#define MIN_SPU_TIMESLICE	max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
72#define DEF_SPU_TIMESLICE	(100 * HZ / (1000 * SPUSCHED_TICK))
73
74#define SCALE_PRIO(x, prio) \
75	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
76
77/*
78 * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
79 * [800ms ... 100ms ... 5ms]
80 *
81 * The higher a thread's priority, the bigger timeslices
82 * it gets during one round of execution. But even the lowest
83 * priority thread gets MIN_TIMESLICE worth of execution time.
84 */
85void spu_set_timeslice(struct spu_context *ctx)
86{
87	if (ctx->prio < NORMAL_PRIO)
88		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
89	else
90		ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
91}
92
93/*
94 * Update scheduling information from the owning thread.
95 */
96void __spu_update_sched_info(struct spu_context *ctx)
97{
98	/*
99	 * assert that the context is not on the runqueue, so it is safe
100	 * to change its scheduling parameters.
101	 */
102	BUG_ON(!list_empty(&ctx->rq));
103
104	/*
105	 * 32-Bit assignments are atomic on powerpc, and we don't care about
106	 * memory ordering here because retrieving the controlling thread is
107	 * per definition racy.
108	 */
109	ctx->tid = current->pid;
110
111	/*
112	 * We do our own priority calculations, so we normally want
113	 * ->static_prio to start with. Unfortunately this field
114	 * contains junk for threads with a realtime scheduling
115	 * policy so we have to look at ->prio in this case.
116	 */
117	if (rt_prio(current->prio))
118		ctx->prio = current->prio;
119	else
120		ctx->prio = current->static_prio;
121	ctx->policy = current->policy;
122
123	/*
124	 * TO DO: the context may be loaded, so we may need to activate
125	 * it again on a different node. But it shouldn't hurt anything
126	 * to update its parameters, because we know that the scheduler
127	 * is not actively looking at this field, since it is not on the
128	 * runqueue. The context will be rescheduled on the proper node
129	 * if it is timesliced or preempted.
130	 */
131	cpumask_copy(&ctx->cpus_allowed, current->cpus_ptr);
132
133	/* Save the current cpu id for spu interrupt routing. */
134	ctx->last_ran = raw_smp_processor_id();
135}
136
137void spu_update_sched_info(struct spu_context *ctx)
138{
139	int node;
140
141	if (ctx->state == SPU_STATE_RUNNABLE) {
142		node = ctx->spu->node;
143
144		/*
145		 * Take list_mutex to sync with find_victim().
146		 */
147		mutex_lock(&cbe_spu_info[node].list_mutex);
148		__spu_update_sched_info(ctx);
149		mutex_unlock(&cbe_spu_info[node].list_mutex);
150	} else {
151		__spu_update_sched_info(ctx);
152	}
153}
154
155static int __node_allowed(struct spu_context *ctx, int node)
156{
157	if (nr_cpus_node(node)) {
158		const struct cpumask *mask = cpumask_of_node(node);
159
160		if (cpumask_intersects(mask, &ctx->cpus_allowed))
161			return 1;
162	}
163
164	return 0;
165}
166
167static int node_allowed(struct spu_context *ctx, int node)
168{
169	int rval;
170
171	spin_lock(&spu_prio->runq_lock);
172	rval = __node_allowed(ctx, node);
173	spin_unlock(&spu_prio->runq_lock);
174
175	return rval;
176}
177
178void do_notify_spus_active(void)
179{
180	int node;
181
182	/*
183	 * Wake up the active spu_contexts.
184	 *
185	 * When the awakened processes see their "notify_active" flag is set,
186	 * they will call spu_switch_notify().
187	 */
188	for_each_online_node(node) {
189		struct spu *spu;
190
191		mutex_lock(&cbe_spu_info[node].list_mutex);
192		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
193			if (spu->alloc_state != SPU_FREE) {
194				struct spu_context *ctx = spu->ctx;
195				set_bit(SPU_SCHED_NOTIFY_ACTIVE,
196					&ctx->sched_flags);
197				mb();
198				wake_up_all(&ctx->stop_wq);
199			}
200		}
201		mutex_unlock(&cbe_spu_info[node].list_mutex);
202	}
203}
204
205/**
206 * spu_bind_context - bind spu context to physical spu
207 * @spu:	physical spu to bind to
208 * @ctx:	context to bind
209 */
210static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
211{
212	spu_context_trace(spu_bind_context__enter, ctx, spu);
213
214	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
215
216	if (ctx->flags & SPU_CREATE_NOSCHED)
217		atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
218
219	ctx->stats.slb_flt_base = spu->stats.slb_flt;
220	ctx->stats.class2_intr_base = spu->stats.class2_intr;
221
222	spu_associate_mm(spu, ctx->owner);
223
224	spin_lock_irq(&spu->register_lock);
225	spu->ctx = ctx;
226	spu->flags = 0;
227	ctx->spu = spu;
228	ctx->ops = &spu_hw_ops;
229	spu->pid = current->pid;
230	spu->tgid = current->tgid;
231	spu->ibox_callback = spufs_ibox_callback;
232	spu->wbox_callback = spufs_wbox_callback;
233	spu->stop_callback = spufs_stop_callback;
234	spu->mfc_callback = spufs_mfc_callback;
235	spin_unlock_irq(&spu->register_lock);
236
237	spu_unmap_mappings(ctx);
238
239	spu_switch_log_notify(spu, ctx, SWITCH_LOG_START, 0);
240	spu_restore(&ctx->csa, spu);
241	spu->timestamp = jiffies;
242	spu_switch_notify(spu, ctx);
243	ctx->state = SPU_STATE_RUNNABLE;
244
245	spuctx_switch_state(ctx, SPU_UTIL_USER);
246}
247
248/*
249 * Must be used with the list_mutex held.
250 */
251static inline int sched_spu(struct spu *spu)
252{
253	BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
254
255	return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
256}
257
258static void aff_merge_remaining_ctxs(struct spu_gang *gang)
259{
260	struct spu_context *ctx;
261
262	list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
263		if (list_empty(&ctx->aff_list))
264			list_add(&ctx->aff_list, &gang->aff_list_head);
265	}
266	gang->aff_flags |= AFF_MERGED;
267}
268
269static void aff_set_offsets(struct spu_gang *gang)
270{
271	struct spu_context *ctx;
272	int offset;
273
274	offset = -1;
275	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
276								aff_list) {
277		if (&ctx->aff_list == &gang->aff_list_head)
278			break;
279		ctx->aff_offset = offset--;
280	}
281
282	offset = 0;
283	list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
284		if (&ctx->aff_list == &gang->aff_list_head)
285			break;
286		ctx->aff_offset = offset++;
287	}
288
289	gang->aff_flags |= AFF_OFFSETS_SET;
290}
291
292static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
293		 int group_size, int lowest_offset)
294{
295	struct spu *spu;
296	int node, n;
297
298	/*
299	 * TODO: A better algorithm could be used to find a good spu to be
300	 *       used as reference location for the ctxs chain.
301	 */
302	node = cpu_to_node(raw_smp_processor_id());
303	for (n = 0; n < MAX_NUMNODES; n++, node++) {
304		/*
305		 * "available_spus" counts how many spus are not potentially
306		 * going to be used by other affinity gangs whose reference
307		 * context is already in place. Although this code seeks to
308		 * avoid having affinity gangs with a summed amount of
309		 * contexts bigger than the amount of spus in the node,
310		 * this may happen sporadically. In this case, available_spus
311		 * becomes negative, which is harmless.
312		 */
313		int available_spus;
314
315		node = (node < MAX_NUMNODES) ? node : 0;
316		if (!node_allowed(ctx, node))
317			continue;
318
319		available_spus = 0;
320		mutex_lock(&cbe_spu_info[node].list_mutex);
321		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
322			if (spu->ctx && spu->ctx->gang && !spu->ctx->aff_offset
323					&& spu->ctx->gang->aff_ref_spu)
324				available_spus -= spu->ctx->gang->contexts;
325			available_spus++;
326		}
327		if (available_spus < ctx->gang->contexts) {
328			mutex_unlock(&cbe_spu_info[node].list_mutex);
329			continue;
330		}
331
332		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
333			if ((!mem_aff || spu->has_mem_affinity) &&
334							sched_spu(spu)) {
335				mutex_unlock(&cbe_spu_info[node].list_mutex);
336				return spu;
337			}
338		}
339		mutex_unlock(&cbe_spu_info[node].list_mutex);
340	}
341	return NULL;
342}
343
344static void aff_set_ref_point_location(struct spu_gang *gang)
345{
346	int mem_aff, gs, lowest_offset;
347	struct spu_context *ctx;
348	struct spu *tmp;
349
350	mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
351	lowest_offset = 0;
352	gs = 0;
353
354	list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
355		gs++;
356
357	list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
358								aff_list) {
359		if (&ctx->aff_list == &gang->aff_list_head)
360			break;
361		lowest_offset = ctx->aff_offset;
362	}
363
364	gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
365							lowest_offset);
366}
367
368static struct spu *ctx_location(struct spu *ref, int offset, int node)
369{
370	struct spu *spu;
371
372	spu = NULL;
373	if (offset >= 0) {
374		list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
375			BUG_ON(spu->node != node);
376			if (offset == 0)
377				break;
378			if (sched_spu(spu))
379				offset--;
380		}
381	} else {
382		list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
383			BUG_ON(spu->node != node);
384			if (offset == 0)
385				break;
386			if (sched_spu(spu))
387				offset++;
388		}
389	}
390
391	return spu;
392}
393
394/*
395 * affinity_check is called each time a context is going to be scheduled.
396 * It returns the spu ptr on which the context must run.
397 */
398static int has_affinity(struct spu_context *ctx)
399{
400	struct spu_gang *gang = ctx->gang;
401
402	if (list_empty(&ctx->aff_list))
403		return 0;
404
405	if (atomic_read(&ctx->gang->aff_sched_count) == 0)
406		ctx->gang->aff_ref_spu = NULL;
407
408	if (!gang->aff_ref_spu) {
409		if (!(gang->aff_flags & AFF_MERGED))
410			aff_merge_remaining_ctxs(gang);
411		if (!(gang->aff_flags & AFF_OFFSETS_SET))
412			aff_set_offsets(gang);
413		aff_set_ref_point_location(gang);
414	}
415
416	return gang->aff_ref_spu != NULL;
417}
418
419/**
420 * spu_unbind_context - unbind spu context from physical spu
421 * @spu:	physical spu to unbind from
422 * @ctx:	context to unbind
423 */
424static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
425{
426	u32 status;
427
428	spu_context_trace(spu_unbind_context__enter, ctx, spu);
429
430	spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
431
432 	if (spu->ctx->flags & SPU_CREATE_NOSCHED)
433		atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
434
435	if (ctx->gang)
436		/*
437		 * If ctx->gang->aff_sched_count is positive, SPU affinity is
438		 * being considered in this gang. Using atomic_dec_if_positive
439		 * allow us to skip an explicit check for affinity in this gang
440		 */
441		atomic_dec_if_positive(&ctx->gang->aff_sched_count);
442
443	spu_switch_notify(spu, NULL);
444	spu_unmap_mappings(ctx);
445	spu_save(&ctx->csa, spu);
446	spu_switch_log_notify(spu, ctx, SWITCH_LOG_STOP, 0);
447
448	spin_lock_irq(&spu->register_lock);
449	spu->timestamp = jiffies;
450	ctx->state = SPU_STATE_SAVED;
451	spu->ibox_callback = NULL;
452	spu->wbox_callback = NULL;
453	spu->stop_callback = NULL;
454	spu->mfc_callback = NULL;
455	spu->pid = 0;
456	spu->tgid = 0;
457	ctx->ops = &spu_backing_ops;
458	spu->flags = 0;
459	spu->ctx = NULL;
460	spin_unlock_irq(&spu->register_lock);
461
462	spu_associate_mm(spu, NULL);
463
464	ctx->stats.slb_flt +=
465		(spu->stats.slb_flt - ctx->stats.slb_flt_base);
466	ctx->stats.class2_intr +=
467		(spu->stats.class2_intr - ctx->stats.class2_intr_base);
468
469	/* This maps the underlying spu state to idle */
470	spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
471	ctx->spu = NULL;
472
473	if (spu_stopped(ctx, &status))
474		wake_up_all(&ctx->stop_wq);
475}
476
477/**
478 * spu_add_to_rq - add a context to the runqueue
479 * @ctx:       context to add
480 */
481static void __spu_add_to_rq(struct spu_context *ctx)
482{
483	/*
484	 * Unfortunately this code path can be called from multiple threads
485	 * on behalf of a single context due to the way the problem state
486	 * mmap support works.
487	 *
488	 * Fortunately we need to wake up all these threads at the same time
489	 * and can simply skip the runqueue addition for every but the first
490	 * thread getting into this codepath.
491	 *
492	 * It's still quite hacky, and long-term we should proxy all other
493	 * threads through the owner thread so that spu_run is in control
494	 * of all the scheduling activity for a given context.
495	 */
496	if (list_empty(&ctx->rq)) {
497		list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
498		set_bit(ctx->prio, spu_prio->bitmap);
499		if (!spu_prio->nr_waiting++)
500			mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
501	}
502}
503
504static void spu_add_to_rq(struct spu_context *ctx)
505{
506	spin_lock(&spu_prio->runq_lock);
507	__spu_add_to_rq(ctx);
508	spin_unlock(&spu_prio->runq_lock);
509}
510
511static void __spu_del_from_rq(struct spu_context *ctx)
512{
513	int prio = ctx->prio;
514
515	if (!list_empty(&ctx->rq)) {
516		if (!--spu_prio->nr_waiting)
517			del_timer(&spusched_timer);
518		list_del_init(&ctx->rq);
519
520		if (list_empty(&spu_prio->runq[prio]))
521			clear_bit(prio, spu_prio->bitmap);
522	}
523}
524
525void spu_del_from_rq(struct spu_context *ctx)
526{
527	spin_lock(&spu_prio->runq_lock);
528	__spu_del_from_rq(ctx);
529	spin_unlock(&spu_prio->runq_lock);
530}
531
532static void spu_prio_wait(struct spu_context *ctx)
533{
534	DEFINE_WAIT(wait);
535
536	/*
537	 * The caller must explicitly wait for a context to be loaded
538	 * if the nosched flag is set.  If NOSCHED is not set, the caller
539	 * queues the context and waits for an spu event or error.
540	 */
541	BUG_ON(!(ctx->flags & SPU_CREATE_NOSCHED));
542
543	spin_lock(&spu_prio->runq_lock);
544	prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
545	if (!signal_pending(current)) {
546		__spu_add_to_rq(ctx);
547		spin_unlock(&spu_prio->runq_lock);
548		mutex_unlock(&ctx->state_mutex);
549		schedule();
550		mutex_lock(&ctx->state_mutex);
551		spin_lock(&spu_prio->runq_lock);
552		__spu_del_from_rq(ctx);
553	}
554	spin_unlock(&spu_prio->runq_lock);
555	__set_current_state(TASK_RUNNING);
556	remove_wait_queue(&ctx->stop_wq, &wait);
557}
558
559static struct spu *spu_get_idle(struct spu_context *ctx)
560{
561	struct spu *spu, *aff_ref_spu;
562	int node, n;
563
564	spu_context_nospu_trace(spu_get_idle__enter, ctx);
565
566	if (ctx->gang) {
567		mutex_lock(&ctx->gang->aff_mutex);
568		if (has_affinity(ctx)) {
569			aff_ref_spu = ctx->gang->aff_ref_spu;
570			atomic_inc(&ctx->gang->aff_sched_count);
571			mutex_unlock(&ctx->gang->aff_mutex);
572			node = aff_ref_spu->node;
573
574			mutex_lock(&cbe_spu_info[node].list_mutex);
575			spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
576			if (spu && spu->alloc_state == SPU_FREE)
577				goto found;
578			mutex_unlock(&cbe_spu_info[node].list_mutex);
579
580			atomic_dec(&ctx->gang->aff_sched_count);
581			goto not_found;
582		}
583		mutex_unlock(&ctx->gang->aff_mutex);
584	}
585	node = cpu_to_node(raw_smp_processor_id());
586	for (n = 0; n < MAX_NUMNODES; n++, node++) {
587		node = (node < MAX_NUMNODES) ? node : 0;
588		if (!node_allowed(ctx, node))
589			continue;
590
591		mutex_lock(&cbe_spu_info[node].list_mutex);
592		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
593			if (spu->alloc_state == SPU_FREE)
594				goto found;
595		}
596		mutex_unlock(&cbe_spu_info[node].list_mutex);
597	}
598
599 not_found:
600	spu_context_nospu_trace(spu_get_idle__not_found, ctx);
601	return NULL;
602
603 found:
604	spu->alloc_state = SPU_USED;
605	mutex_unlock(&cbe_spu_info[node].list_mutex);
606	spu_context_trace(spu_get_idle__found, ctx, spu);
607	spu_init_channels(spu);
608	return spu;
609}
610
611/**
612 * find_victim - find a lower priority context to preempt
613 * @ctx:	candidate context for running
614 *
615 * Returns the freed physical spu to run the new context on.
616 */
617static struct spu *find_victim(struct spu_context *ctx)
618{
619	struct spu_context *victim = NULL;
620	struct spu *spu;
621	int node, n;
622
623	spu_context_nospu_trace(spu_find_victim__enter, ctx);
624
625	/*
626	 * Look for a possible preemption candidate on the local node first.
627	 * If there is no candidate look at the other nodes.  This isn't
628	 * exactly fair, but so far the whole spu scheduler tries to keep
629	 * a strong node affinity.  We might want to fine-tune this in
630	 * the future.
631	 */
632 restart:
633	node = cpu_to_node(raw_smp_processor_id());
634	for (n = 0; n < MAX_NUMNODES; n++, node++) {
635		node = (node < MAX_NUMNODES) ? node : 0;
636		if (!node_allowed(ctx, node))
637			continue;
638
639		mutex_lock(&cbe_spu_info[node].list_mutex);
640		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
641			struct spu_context *tmp = spu->ctx;
642
643			if (tmp && tmp->prio > ctx->prio &&
644			    !(tmp->flags & SPU_CREATE_NOSCHED) &&
645			    (!victim || tmp->prio > victim->prio)) {
646				victim = spu->ctx;
647			}
648		}
649		if (victim)
650			get_spu_context(victim);
651		mutex_unlock(&cbe_spu_info[node].list_mutex);
652
653		if (victim) {
654			/*
655			 * This nests ctx->state_mutex, but we always lock
656			 * higher priority contexts before lower priority
657			 * ones, so this is safe until we introduce
658			 * priority inheritance schemes.
659			 *
660			 * XXX if the highest priority context is locked,
661			 * this can loop a long time.  Might be better to
662			 * look at another context or give up after X retries.
663			 */
664			if (!mutex_trylock(&victim->state_mutex)) {
665				put_spu_context(victim);
666				victim = NULL;
667				goto restart;
668			}
669
670			spu = victim->spu;
671			if (!spu || victim->prio <= ctx->prio) {
672				/*
673				 * This race can happen because we've dropped
674				 * the active list mutex.  Not a problem, just
675				 * restart the search.
676				 */
677				mutex_unlock(&victim->state_mutex);
678				put_spu_context(victim);
679				victim = NULL;
680				goto restart;
681			}
682
683			spu_context_trace(__spu_deactivate__unload, ctx, spu);
684
685			mutex_lock(&cbe_spu_info[node].list_mutex);
686			cbe_spu_info[node].nr_active--;
687			spu_unbind_context(spu, victim);
688			mutex_unlock(&cbe_spu_info[node].list_mutex);
689
690			victim->stats.invol_ctx_switch++;
691			spu->stats.invol_ctx_switch++;
692			if (test_bit(SPU_SCHED_SPU_RUN, &victim->sched_flags))
693				spu_add_to_rq(victim);
694
695			mutex_unlock(&victim->state_mutex);
696			put_spu_context(victim);
697
698			return spu;
699		}
700	}
701
702	return NULL;
703}
704
705static void __spu_schedule(struct spu *spu, struct spu_context *ctx)
706{
707	int node = spu->node;
708	int success = 0;
709
710	spu_set_timeslice(ctx);
711
712	mutex_lock(&cbe_spu_info[node].list_mutex);
713	if (spu->ctx == NULL) {
714		spu_bind_context(spu, ctx);
715		cbe_spu_info[node].nr_active++;
716		spu->alloc_state = SPU_USED;
717		success = 1;
718	}
719	mutex_unlock(&cbe_spu_info[node].list_mutex);
720
721	if (success)
722		wake_up_all(&ctx->run_wq);
723	else
724		spu_add_to_rq(ctx);
725}
726
727static void spu_schedule(struct spu *spu, struct spu_context *ctx)
728{
729	/* not a candidate for interruptible because it's called either
730	   from the scheduler thread or from spu_deactivate */
731	mutex_lock(&ctx->state_mutex);
732	if (ctx->state == SPU_STATE_SAVED)
733		__spu_schedule(spu, ctx);
734	spu_release(ctx);
735}
736
737/**
738 * spu_unschedule - remove a context from a spu, and possibly release it.
739 * @spu:	The SPU to unschedule from
740 * @ctx:	The context currently scheduled on the SPU
741 * @free_spu	Whether to free the SPU for other contexts
742 *
743 * Unbinds the context @ctx from the SPU @spu. If @free_spu is non-zero, the
744 * SPU is made available for other contexts (ie, may be returned by
745 * spu_get_idle). If this is zero, the caller is expected to schedule another
746 * context to this spu.
747 *
748 * Should be called with ctx->state_mutex held.
749 */
750static void spu_unschedule(struct spu *spu, struct spu_context *ctx,
751		int free_spu)
752{
753	int node = spu->node;
754
755	mutex_lock(&cbe_spu_info[node].list_mutex);
756	cbe_spu_info[node].nr_active--;
757	if (free_spu)
758		spu->alloc_state = SPU_FREE;
759	spu_unbind_context(spu, ctx);
760	ctx->stats.invol_ctx_switch++;
761	spu->stats.invol_ctx_switch++;
762	mutex_unlock(&cbe_spu_info[node].list_mutex);
763}
764
765/**
766 * spu_activate - find a free spu for a context and execute it
767 * @ctx:	spu context to schedule
768 * @flags:	flags (currently ignored)
769 *
770 * Tries to find a free spu to run @ctx.  If no free spu is available
771 * add the context to the runqueue so it gets woken up once an spu
772 * is available.
773 */
774int spu_activate(struct spu_context *ctx, unsigned long flags)
775{
776	struct spu *spu;
777
778	/*
779	 * If there are multiple threads waiting for a single context
780	 * only one actually binds the context while the others will
781	 * only be able to acquire the state_mutex once the context
782	 * already is in runnable state.
783	 */
784	if (ctx->spu)
785		return 0;
786
787spu_activate_top:
788	if (signal_pending(current))
789		return -ERESTARTSYS;
790
791	spu = spu_get_idle(ctx);
792	/*
793	 * If this is a realtime thread we try to get it running by
794	 * preempting a lower priority thread.
795	 */
796	if (!spu && rt_prio(ctx->prio))
797		spu = find_victim(ctx);
798	if (spu) {
799		unsigned long runcntl;
800
801		runcntl = ctx->ops->runcntl_read(ctx);
802		__spu_schedule(spu, ctx);
803		if (runcntl & SPU_RUNCNTL_RUNNABLE)
804			spuctx_switch_state(ctx, SPU_UTIL_USER);
805
806		return 0;
807	}
808
809	if (ctx->flags & SPU_CREATE_NOSCHED) {
810		spu_prio_wait(ctx);
811		goto spu_activate_top;
812	}
813
814	spu_add_to_rq(ctx);
815
816	return 0;
817}
818
819/**
820 * grab_runnable_context - try to find a runnable context
821 *
822 * Remove the highest priority context on the runqueue and return it
823 * to the caller.  Returns %NULL if no runnable context was found.
824 */
825static struct spu_context *grab_runnable_context(int prio, int node)
826{
827	struct spu_context *ctx;
828	int best;
829
830	spin_lock(&spu_prio->runq_lock);
831	best = find_first_bit(spu_prio->bitmap, prio);
832	while (best < prio) {
833		struct list_head *rq = &spu_prio->runq[best];
834
835		list_for_each_entry(ctx, rq, rq) {
836			/* XXX(hch): check for affinity here as well */
837			if (__node_allowed(ctx, node)) {
838				__spu_del_from_rq(ctx);
839				goto found;
840			}
841		}
842		best++;
843	}
844	ctx = NULL;
845 found:
846	spin_unlock(&spu_prio->runq_lock);
847	return ctx;
848}
849
850static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
851{
852	struct spu *spu = ctx->spu;
853	struct spu_context *new = NULL;
854
855	if (spu) {
856		new = grab_runnable_context(max_prio, spu->node);
857		if (new || force) {
858			spu_unschedule(spu, ctx, new == NULL);
859			if (new) {
860				if (new->flags & SPU_CREATE_NOSCHED)
861					wake_up(&new->stop_wq);
862				else {
863					spu_release(ctx);
864					spu_schedule(spu, new);
865					/* this one can't easily be made
866					   interruptible */
867					mutex_lock(&ctx->state_mutex);
868				}
869			}
870		}
871	}
872
873	return new != NULL;
874}
875
876/**
877 * spu_deactivate - unbind a context from it's physical spu
878 * @ctx:	spu context to unbind
879 *
880 * Unbind @ctx from the physical spu it is running on and schedule
881 * the highest priority context to run on the freed physical spu.
882 */
883void spu_deactivate(struct spu_context *ctx)
884{
885	spu_context_nospu_trace(spu_deactivate__enter, ctx);
886	__spu_deactivate(ctx, 1, MAX_PRIO);
887}
888
889/**
890 * spu_yield -	yield a physical spu if others are waiting
891 * @ctx:	spu context to yield
892 *
893 * Check if there is a higher priority context waiting and if yes
894 * unbind @ctx from the physical spu and schedule the highest
895 * priority context to run on the freed physical spu instead.
896 */
897void spu_yield(struct spu_context *ctx)
898{
899	spu_context_nospu_trace(spu_yield__enter, ctx);
900	if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
901		mutex_lock(&ctx->state_mutex);
902		__spu_deactivate(ctx, 0, MAX_PRIO);
903		mutex_unlock(&ctx->state_mutex);
904	}
905}
906
907static noinline void spusched_tick(struct spu_context *ctx)
908{
909	struct spu_context *new = NULL;
910	struct spu *spu = NULL;
911
912	if (spu_acquire(ctx))
913		BUG();	/* a kernel thread never has signals pending */
914
915	if (ctx->state != SPU_STATE_RUNNABLE)
916		goto out;
917	if (ctx->flags & SPU_CREATE_NOSCHED)
918		goto out;
919	if (ctx->policy == SCHED_FIFO)
920		goto out;
921
922	if (--ctx->time_slice && test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
923		goto out;
924
925	spu = ctx->spu;
926
927	spu_context_trace(spusched_tick__preempt, ctx, spu);
928
929	new = grab_runnable_context(ctx->prio + 1, spu->node);
930	if (new) {
931		spu_unschedule(spu, ctx, 0);
932		if (test_bit(SPU_SCHED_SPU_RUN, &ctx->sched_flags))
933			spu_add_to_rq(ctx);
934	} else {
935		spu_context_nospu_trace(spusched_tick__newslice, ctx);
936		if (!ctx->time_slice)
937			ctx->time_slice++;
938	}
939out:
940	spu_release(ctx);
941
942	if (new)
943		spu_schedule(spu, new);
944}
945
946/**
947 * count_active_contexts - count nr of active tasks
948 *
949 * Return the number of tasks currently running or waiting to run.
950 *
951 * Note that we don't take runq_lock / list_mutex here.  Reading
952 * a single 32bit value is atomic on powerpc, and we don't care
953 * about memory ordering issues here.
954 */
955static unsigned long count_active_contexts(void)
956{
957	int nr_active = 0, node;
958
959	for (node = 0; node < MAX_NUMNODES; node++)
960		nr_active += cbe_spu_info[node].nr_active;
961	nr_active += spu_prio->nr_waiting;
962
963	return nr_active;
964}
965
966/**
967 * spu_calc_load - update the avenrun load estimates.
968 *
969 * No locking against reading these values from userspace, as for
970 * the CPU loadavg code.
971 */
972static void spu_calc_load(void)
973{
974	unsigned long active_tasks; /* fixed-point */
975
976	active_tasks = count_active_contexts() * FIXED_1;
977	spu_avenrun[0] = calc_load(spu_avenrun[0], EXP_1, active_tasks);
978	spu_avenrun[1] = calc_load(spu_avenrun[1], EXP_5, active_tasks);
979	spu_avenrun[2] = calc_load(spu_avenrun[2], EXP_15, active_tasks);
980}
981
982static void spusched_wake(struct timer_list *unused)
983{
984	mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
985	wake_up_process(spusched_task);
986}
987
988static void spuloadavg_wake(struct timer_list *unused)
989{
990	mod_timer(&spuloadavg_timer, jiffies + LOAD_FREQ);
991	spu_calc_load();
992}
993
994static int spusched_thread(void *unused)
995{
996	struct spu *spu;
997	int node;
998
999	while (!kthread_should_stop()) {
1000		set_current_state(TASK_INTERRUPTIBLE);
1001		schedule();
1002		for (node = 0; node < MAX_NUMNODES; node++) {
1003			struct mutex *mtx = &cbe_spu_info[node].list_mutex;
1004
1005			mutex_lock(mtx);
1006			list_for_each_entry(spu, &cbe_spu_info[node].spus,
1007					cbe_list) {
1008				struct spu_context *ctx = spu->ctx;
1009
1010				if (ctx) {
1011					get_spu_context(ctx);
1012					mutex_unlock(mtx);
1013					spusched_tick(ctx);
1014					mutex_lock(mtx);
1015					put_spu_context(ctx);
1016				}
1017			}
1018			mutex_unlock(mtx);
1019		}
1020	}
1021
1022	return 0;
1023}
1024
1025void spuctx_switch_state(struct spu_context *ctx,
1026		enum spu_utilization_state new_state)
1027{
1028	unsigned long long curtime;
1029	signed long long delta;
1030	struct spu *spu;
1031	enum spu_utilization_state old_state;
1032	int node;
1033
1034	curtime = ktime_get_ns();
1035	delta = curtime - ctx->stats.tstamp;
1036
1037	WARN_ON(!mutex_is_locked(&ctx->state_mutex));
1038	WARN_ON(delta < 0);
1039
1040	spu = ctx->spu;
1041	old_state = ctx->stats.util_state;
1042	ctx->stats.util_state = new_state;
1043	ctx->stats.tstamp = curtime;
1044
1045	/*
1046	 * Update the physical SPU utilization statistics.
1047	 */
1048	if (spu) {
1049		ctx->stats.times[old_state] += delta;
1050		spu->stats.times[old_state] += delta;
1051		spu->stats.util_state = new_state;
1052		spu->stats.tstamp = curtime;
1053		node = spu->node;
1054		if (old_state == SPU_UTIL_USER)
1055			atomic_dec(&cbe_spu_info[node].busy_spus);
1056		if (new_state == SPU_UTIL_USER)
1057			atomic_inc(&cbe_spu_info[node].busy_spus);
1058	}
1059}
1060
1061static int show_spu_loadavg(struct seq_file *s, void *private)
1062{
1063	int a, b, c;
1064
1065	a = spu_avenrun[0] + (FIXED_1/200);
1066	b = spu_avenrun[1] + (FIXED_1/200);
1067	c = spu_avenrun[2] + (FIXED_1/200);
1068
1069	/*
1070	 * Note that last_pid doesn't really make much sense for the
1071	 * SPU loadavg (it even seems very odd on the CPU side...),
1072	 * but we include it here to have a 100% compatible interface.
1073	 */
1074	seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
1075		LOAD_INT(a), LOAD_FRAC(a),
1076		LOAD_INT(b), LOAD_FRAC(b),
1077		LOAD_INT(c), LOAD_FRAC(c),
1078		count_active_contexts(),
1079		atomic_read(&nr_spu_contexts),
1080		idr_get_cursor(&task_active_pid_ns(current)->idr) - 1);
1081	return 0;
1082};
1083
1084int __init spu_sched_init(void)
1085{
1086	struct proc_dir_entry *entry;
1087	int err = -ENOMEM, i;
1088
1089	spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
1090	if (!spu_prio)
1091		goto out;
1092
1093	for (i = 0; i < MAX_PRIO; i++) {
1094		INIT_LIST_HEAD(&spu_prio->runq[i]);
1095		__clear_bit(i, spu_prio->bitmap);
1096	}
1097	spin_lock_init(&spu_prio->runq_lock);
1098
1099	timer_setup(&spusched_timer, spusched_wake, 0);
1100	timer_setup(&spuloadavg_timer, spuloadavg_wake, 0);
1101
1102	spusched_task = kthread_run(spusched_thread, NULL, "spusched");
1103	if (IS_ERR(spusched_task)) {
1104		err = PTR_ERR(spusched_task);
1105		goto out_free_spu_prio;
1106	}
1107
1108	mod_timer(&spuloadavg_timer, 0);
1109
1110	entry = proc_create_single("spu_loadavg", 0, NULL, show_spu_loadavg);
1111	if (!entry)
1112		goto out_stop_kthread;
1113
1114	pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
1115			SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
1116	return 0;
1117
1118 out_stop_kthread:
1119	kthread_stop(spusched_task);
1120 out_free_spu_prio:
1121	kfree(spu_prio);
1122 out:
1123	return err;
1124}
1125
1126void spu_sched_exit(void)
1127{
1128	struct spu *spu;
1129	int node;
1130
1131	remove_proc_entry("spu_loadavg", NULL);
1132
1133	del_timer_sync(&spusched_timer);
1134	del_timer_sync(&spuloadavg_timer);
1135	kthread_stop(spusched_task);
1136
1137	for (node = 0; node < MAX_NUMNODES; node++) {
1138		mutex_lock(&cbe_spu_info[node].list_mutex);
1139		list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
1140			if (spu->alloc_state != SPU_FREE)
1141				spu->alloc_state = SPU_FREE;
1142		mutex_unlock(&cbe_spu_info[node].list_mutex);
1143	}
1144	kfree(spu_prio);
1145}
1146