1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * address space "slices" (meta-segments) support 4 * 5 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation. 6 * 7 * Based on hugetlb implementation 8 * 9 * Copyright (C) 2003 David Gibson, IBM Corporation. 10 */ 11 12#undef DEBUG 13 14#include <linux/kernel.h> 15#include <linux/mm.h> 16#include <linux/pagemap.h> 17#include <linux/err.h> 18#include <linux/spinlock.h> 19#include <linux/export.h> 20#include <linux/hugetlb.h> 21#include <linux/sched/mm.h> 22#include <linux/security.h> 23#include <asm/mman.h> 24#include <asm/mmu.h> 25#include <asm/copro.h> 26#include <asm/hugetlb.h> 27#include <asm/mmu_context.h> 28 29static DEFINE_SPINLOCK(slice_convert_lock); 30 31#ifdef DEBUG 32int _slice_debug = 1; 33 34static void slice_print_mask(const char *label, const struct slice_mask *mask) 35{ 36 if (!_slice_debug) 37 return; 38 pr_devel("%s low_slice: %*pbl\n", label, 39 (int)SLICE_NUM_LOW, &mask->low_slices); 40 pr_devel("%s high_slice: %*pbl\n", label, 41 (int)SLICE_NUM_HIGH, mask->high_slices); 42} 43 44#define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0) 45 46#else 47 48static void slice_print_mask(const char *label, const struct slice_mask *mask) {} 49#define slice_dbg(fmt...) 50 51#endif 52 53static inline notrace bool slice_addr_is_low(unsigned long addr) 54{ 55 u64 tmp = (u64)addr; 56 57 return tmp < SLICE_LOW_TOP; 58} 59 60static void slice_range_to_mask(unsigned long start, unsigned long len, 61 struct slice_mask *ret) 62{ 63 unsigned long end = start + len - 1; 64 65 ret->low_slices = 0; 66 if (SLICE_NUM_HIGH) 67 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 68 69 if (slice_addr_is_low(start)) { 70 unsigned long mend = min(end, 71 (unsigned long)(SLICE_LOW_TOP - 1)); 72 73 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 74 - (1u << GET_LOW_SLICE_INDEX(start)); 75 } 76 77 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 78 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 79 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 80 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 81 82 bitmap_set(ret->high_slices, start_index, count); 83 } 84} 85 86static int slice_area_is_free(struct mm_struct *mm, unsigned long addr, 87 unsigned long len) 88{ 89 struct vm_area_struct *vma; 90 91 if ((mm_ctx_slb_addr_limit(&mm->context) - len) < addr) 92 return 0; 93 vma = find_vma(mm, addr); 94 return (!vma || (addr + len) <= vm_start_gap(vma)); 95} 96 97static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice) 98{ 99 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT, 100 1ul << SLICE_LOW_SHIFT); 101} 102 103static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice) 104{ 105 unsigned long start = slice << SLICE_HIGH_SHIFT; 106 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT); 107 108 /* Hack, so that each addresses is controlled by exactly one 109 * of the high or low area bitmaps, the first high area starts 110 * at 4GB, not 0 */ 111 if (start == 0) 112 start = (unsigned long)SLICE_LOW_TOP; 113 114 return !slice_area_is_free(mm, start, end - start); 115} 116 117static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret, 118 unsigned long high_limit) 119{ 120 unsigned long i; 121 122 ret->low_slices = 0; 123 if (SLICE_NUM_HIGH) 124 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH); 125 126 for (i = 0; i < SLICE_NUM_LOW; i++) 127 if (!slice_low_has_vma(mm, i)) 128 ret->low_slices |= 1u << i; 129 130 if (slice_addr_is_low(high_limit - 1)) 131 return; 132 133 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++) 134 if (!slice_high_has_vma(mm, i)) 135 __set_bit(i, ret->high_slices); 136} 137 138static bool slice_check_range_fits(struct mm_struct *mm, 139 const struct slice_mask *available, 140 unsigned long start, unsigned long len) 141{ 142 unsigned long end = start + len - 1; 143 u64 low_slices = 0; 144 145 if (slice_addr_is_low(start)) { 146 unsigned long mend = min(end, 147 (unsigned long)(SLICE_LOW_TOP - 1)); 148 149 low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1)) 150 - (1u << GET_LOW_SLICE_INDEX(start)); 151 } 152 if ((low_slices & available->low_slices) != low_slices) 153 return false; 154 155 if (SLICE_NUM_HIGH && !slice_addr_is_low(end)) { 156 unsigned long start_index = GET_HIGH_SLICE_INDEX(start); 157 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT)); 158 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index; 159 unsigned long i; 160 161 for (i = start_index; i < start_index + count; i++) { 162 if (!test_bit(i, available->high_slices)) 163 return false; 164 } 165 } 166 167 return true; 168} 169 170static void slice_flush_segments(void *parm) 171{ 172#ifdef CONFIG_PPC64 173 struct mm_struct *mm = parm; 174 unsigned long flags; 175 176 if (mm != current->active_mm) 177 return; 178 179 copy_mm_to_paca(current->active_mm); 180 181 local_irq_save(flags); 182 slb_flush_and_restore_bolted(); 183 local_irq_restore(flags); 184#endif 185} 186 187static void slice_convert(struct mm_struct *mm, 188 const struct slice_mask *mask, int psize) 189{ 190 int index, mask_index; 191 /* Write the new slice psize bits */ 192 unsigned char *hpsizes, *lpsizes; 193 struct slice_mask *psize_mask, *old_mask; 194 unsigned long i, flags; 195 int old_psize; 196 197 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize); 198 slice_print_mask(" mask", mask); 199 200 psize_mask = slice_mask_for_size(&mm->context, psize); 201 202 /* We need to use a spinlock here to protect against 203 * concurrent 64k -> 4k demotion ... 204 */ 205 spin_lock_irqsave(&slice_convert_lock, flags); 206 207 lpsizes = mm_ctx_low_slices(&mm->context); 208 for (i = 0; i < SLICE_NUM_LOW; i++) { 209 if (!(mask->low_slices & (1u << i))) 210 continue; 211 212 mask_index = i & 0x1; 213 index = i >> 1; 214 215 /* Update the slice_mask */ 216 old_psize = (lpsizes[index] >> (mask_index * 4)) & 0xf; 217 old_mask = slice_mask_for_size(&mm->context, old_psize); 218 old_mask->low_slices &= ~(1u << i); 219 psize_mask->low_slices |= 1u << i; 220 221 /* Update the sizes array */ 222 lpsizes[index] = (lpsizes[index] & ~(0xf << (mask_index * 4))) | 223 (((unsigned long)psize) << (mask_index * 4)); 224 } 225 226 hpsizes = mm_ctx_high_slices(&mm->context); 227 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm_ctx_slb_addr_limit(&mm->context)); i++) { 228 if (!test_bit(i, mask->high_slices)) 229 continue; 230 231 mask_index = i & 0x1; 232 index = i >> 1; 233 234 /* Update the slice_mask */ 235 old_psize = (hpsizes[index] >> (mask_index * 4)) & 0xf; 236 old_mask = slice_mask_for_size(&mm->context, old_psize); 237 __clear_bit(i, old_mask->high_slices); 238 __set_bit(i, psize_mask->high_slices); 239 240 /* Update the sizes array */ 241 hpsizes[index] = (hpsizes[index] & ~(0xf << (mask_index * 4))) | 242 (((unsigned long)psize) << (mask_index * 4)); 243 } 244 245 slice_dbg(" lsps=%lx, hsps=%lx\n", 246 (unsigned long)mm_ctx_low_slices(&mm->context), 247 (unsigned long)mm_ctx_high_slices(&mm->context)); 248 249 spin_unlock_irqrestore(&slice_convert_lock, flags); 250 251 copro_flush_all_slbs(mm); 252} 253 254/* 255 * Compute which slice addr is part of; 256 * set *boundary_addr to the start or end boundary of that slice 257 * (depending on 'end' parameter); 258 * return boolean indicating if the slice is marked as available in the 259 * 'available' slice_mark. 260 */ 261static bool slice_scan_available(unsigned long addr, 262 const struct slice_mask *available, 263 int end, unsigned long *boundary_addr) 264{ 265 unsigned long slice; 266 if (slice_addr_is_low(addr)) { 267 slice = GET_LOW_SLICE_INDEX(addr); 268 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT; 269 return !!(available->low_slices & (1u << slice)); 270 } else { 271 slice = GET_HIGH_SLICE_INDEX(addr); 272 *boundary_addr = (slice + end) ? 273 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP; 274 return !!test_bit(slice, available->high_slices); 275 } 276} 277 278static unsigned long slice_find_area_bottomup(struct mm_struct *mm, 279 unsigned long len, 280 const struct slice_mask *available, 281 int psize, unsigned long high_limit) 282{ 283 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 284 unsigned long addr, found, next_end; 285 struct vm_unmapped_area_info info; 286 287 info.flags = 0; 288 info.length = len; 289 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); 290 info.align_offset = 0; 291 292 addr = TASK_UNMAPPED_BASE; 293 /* 294 * Check till the allow max value for this mmap request 295 */ 296 while (addr < high_limit) { 297 info.low_limit = addr; 298 if (!slice_scan_available(addr, available, 1, &addr)) 299 continue; 300 301 next_slice: 302 /* 303 * At this point [info.low_limit; addr) covers 304 * available slices only and ends at a slice boundary. 305 * Check if we need to reduce the range, or if we can 306 * extend it to cover the next available slice. 307 */ 308 if (addr >= high_limit) 309 addr = high_limit; 310 else if (slice_scan_available(addr, available, 1, &next_end)) { 311 addr = next_end; 312 goto next_slice; 313 } 314 info.high_limit = addr; 315 316 found = vm_unmapped_area(&info); 317 if (!(found & ~PAGE_MASK)) 318 return found; 319 } 320 321 return -ENOMEM; 322} 323 324static unsigned long slice_find_area_topdown(struct mm_struct *mm, 325 unsigned long len, 326 const struct slice_mask *available, 327 int psize, unsigned long high_limit) 328{ 329 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 330 unsigned long addr, found, prev; 331 struct vm_unmapped_area_info info; 332 unsigned long min_addr = max(PAGE_SIZE, mmap_min_addr); 333 334 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 335 info.length = len; 336 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1); 337 info.align_offset = 0; 338 339 addr = mm->mmap_base; 340 /* 341 * If we are trying to allocate above DEFAULT_MAP_WINDOW 342 * Add the different to the mmap_base. 343 * Only for that request for which high_limit is above 344 * DEFAULT_MAP_WINDOW we should apply this. 345 */ 346 if (high_limit > DEFAULT_MAP_WINDOW) 347 addr += mm_ctx_slb_addr_limit(&mm->context) - DEFAULT_MAP_WINDOW; 348 349 while (addr > min_addr) { 350 info.high_limit = addr; 351 if (!slice_scan_available(addr - 1, available, 0, &addr)) 352 continue; 353 354 prev_slice: 355 /* 356 * At this point [addr; info.high_limit) covers 357 * available slices only and starts at a slice boundary. 358 * Check if we need to reduce the range, or if we can 359 * extend it to cover the previous available slice. 360 */ 361 if (addr < min_addr) 362 addr = min_addr; 363 else if (slice_scan_available(addr - 1, available, 0, &prev)) { 364 addr = prev; 365 goto prev_slice; 366 } 367 info.low_limit = addr; 368 369 found = vm_unmapped_area(&info); 370 if (!(found & ~PAGE_MASK)) 371 return found; 372 } 373 374 /* 375 * A failed mmap() very likely causes application failure, 376 * so fall back to the bottom-up function here. This scenario 377 * can happen with large stack limits and large mmap() 378 * allocations. 379 */ 380 return slice_find_area_bottomup(mm, len, available, psize, high_limit); 381} 382 383 384static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len, 385 const struct slice_mask *mask, int psize, 386 int topdown, unsigned long high_limit) 387{ 388 if (topdown) 389 return slice_find_area_topdown(mm, len, mask, psize, high_limit); 390 else 391 return slice_find_area_bottomup(mm, len, mask, psize, high_limit); 392} 393 394static inline void slice_copy_mask(struct slice_mask *dst, 395 const struct slice_mask *src) 396{ 397 dst->low_slices = src->low_slices; 398 if (!SLICE_NUM_HIGH) 399 return; 400 bitmap_copy(dst->high_slices, src->high_slices, SLICE_NUM_HIGH); 401} 402 403static inline void slice_or_mask(struct slice_mask *dst, 404 const struct slice_mask *src1, 405 const struct slice_mask *src2) 406{ 407 dst->low_slices = src1->low_slices | src2->low_slices; 408 if (!SLICE_NUM_HIGH) 409 return; 410 bitmap_or(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 411} 412 413static inline void slice_andnot_mask(struct slice_mask *dst, 414 const struct slice_mask *src1, 415 const struct slice_mask *src2) 416{ 417 dst->low_slices = src1->low_slices & ~src2->low_slices; 418 if (!SLICE_NUM_HIGH) 419 return; 420 bitmap_andnot(dst->high_slices, src1->high_slices, src2->high_slices, SLICE_NUM_HIGH); 421} 422 423#ifdef CONFIG_PPC_64K_PAGES 424#define MMU_PAGE_BASE MMU_PAGE_64K 425#else 426#define MMU_PAGE_BASE MMU_PAGE_4K 427#endif 428 429unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len, 430 unsigned long flags, unsigned int psize, 431 int topdown) 432{ 433 struct slice_mask good_mask; 434 struct slice_mask potential_mask; 435 const struct slice_mask *maskp; 436 const struct slice_mask *compat_maskp = NULL; 437 int fixed = (flags & MAP_FIXED); 438 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT); 439 unsigned long page_size = 1UL << pshift; 440 struct mm_struct *mm = current->mm; 441 unsigned long newaddr; 442 unsigned long high_limit; 443 444 high_limit = DEFAULT_MAP_WINDOW; 445 if (addr >= high_limit || (fixed && (addr + len > high_limit))) 446 high_limit = TASK_SIZE; 447 448 if (len > high_limit) 449 return -ENOMEM; 450 if (len & (page_size - 1)) 451 return -EINVAL; 452 if (fixed) { 453 if (addr & (page_size - 1)) 454 return -EINVAL; 455 if (addr > high_limit - len) 456 return -ENOMEM; 457 } 458 459 if (high_limit > mm_ctx_slb_addr_limit(&mm->context)) { 460 /* 461 * Increasing the slb_addr_limit does not require 462 * slice mask cache to be recalculated because it should 463 * be already initialised beyond the old address limit. 464 */ 465 mm_ctx_set_slb_addr_limit(&mm->context, high_limit); 466 467 on_each_cpu(slice_flush_segments, mm, 1); 468 } 469 470 /* Sanity checks */ 471 BUG_ON(mm->task_size == 0); 472 BUG_ON(mm_ctx_slb_addr_limit(&mm->context) == 0); 473 VM_BUG_ON(radix_enabled()); 474 475 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize); 476 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n", 477 addr, len, flags, topdown); 478 479 /* If hint, make sure it matches our alignment restrictions */ 480 if (!fixed && addr) { 481 addr = ALIGN(addr, page_size); 482 slice_dbg(" aligned addr=%lx\n", addr); 483 /* Ignore hint if it's too large or overlaps a VMA */ 484 if (addr > high_limit - len || addr < mmap_min_addr || 485 !slice_area_is_free(mm, addr, len)) 486 addr = 0; 487 } 488 489 /* First make up a "good" mask of slices that have the right size 490 * already 491 */ 492 maskp = slice_mask_for_size(&mm->context, psize); 493 494 /* 495 * Here "good" means slices that are already the right page size, 496 * "compat" means slices that have a compatible page size (i.e. 497 * 4k in a 64k pagesize kernel), and "free" means slices without 498 * any VMAs. 499 * 500 * If MAP_FIXED: 501 * check if fits in good | compat => OK 502 * check if fits in good | compat | free => convert free 503 * else bad 504 * If have hint: 505 * check if hint fits in good => OK 506 * check if hint fits in good | free => convert free 507 * Otherwise: 508 * search in good, found => OK 509 * search in good | free, found => convert free 510 * search in good | compat | free, found => convert free. 511 */ 512 513 /* 514 * If we support combo pages, we can allow 64k pages in 4k slices 515 * The mask copies could be avoided in most cases here if we had 516 * a pointer to good mask for the next code to use. 517 */ 518 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 519 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 520 if (fixed) 521 slice_or_mask(&good_mask, maskp, compat_maskp); 522 else 523 slice_copy_mask(&good_mask, maskp); 524 } else { 525 slice_copy_mask(&good_mask, maskp); 526 } 527 528 slice_print_mask(" good_mask", &good_mask); 529 if (compat_maskp) 530 slice_print_mask(" compat_mask", compat_maskp); 531 532 /* First check hint if it's valid or if we have MAP_FIXED */ 533 if (addr != 0 || fixed) { 534 /* Check if we fit in the good mask. If we do, we just return, 535 * nothing else to do 536 */ 537 if (slice_check_range_fits(mm, &good_mask, addr, len)) { 538 slice_dbg(" fits good !\n"); 539 newaddr = addr; 540 goto return_addr; 541 } 542 } else { 543 /* Now let's see if we can find something in the existing 544 * slices for that size 545 */ 546 newaddr = slice_find_area(mm, len, &good_mask, 547 psize, topdown, high_limit); 548 if (newaddr != -ENOMEM) { 549 /* Found within the good mask, we don't have to setup, 550 * we thus return directly 551 */ 552 slice_dbg(" found area at 0x%lx\n", newaddr); 553 goto return_addr; 554 } 555 } 556 /* 557 * We don't fit in the good mask, check what other slices are 558 * empty and thus can be converted 559 */ 560 slice_mask_for_free(mm, &potential_mask, high_limit); 561 slice_or_mask(&potential_mask, &potential_mask, &good_mask); 562 slice_print_mask(" potential", &potential_mask); 563 564 if (addr != 0 || fixed) { 565 if (slice_check_range_fits(mm, &potential_mask, addr, len)) { 566 slice_dbg(" fits potential !\n"); 567 newaddr = addr; 568 goto convert; 569 } 570 } 571 572 /* If we have MAP_FIXED and failed the above steps, then error out */ 573 if (fixed) 574 return -EBUSY; 575 576 slice_dbg(" search...\n"); 577 578 /* If we had a hint that didn't work out, see if we can fit 579 * anywhere in the good area. 580 */ 581 if (addr) { 582 newaddr = slice_find_area(mm, len, &good_mask, 583 psize, topdown, high_limit); 584 if (newaddr != -ENOMEM) { 585 slice_dbg(" found area at 0x%lx\n", newaddr); 586 goto return_addr; 587 } 588 } 589 590 /* Now let's see if we can find something in the existing slices 591 * for that size plus free slices 592 */ 593 newaddr = slice_find_area(mm, len, &potential_mask, 594 psize, topdown, high_limit); 595 596 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && newaddr == -ENOMEM && 597 psize == MMU_PAGE_64K) { 598 /* retry the search with 4k-page slices included */ 599 slice_or_mask(&potential_mask, &potential_mask, compat_maskp); 600 newaddr = slice_find_area(mm, len, &potential_mask, 601 psize, topdown, high_limit); 602 } 603 604 if (newaddr == -ENOMEM) 605 return -ENOMEM; 606 607 slice_range_to_mask(newaddr, len, &potential_mask); 608 slice_dbg(" found potential area at 0x%lx\n", newaddr); 609 slice_print_mask(" mask", &potential_mask); 610 611 convert: 612 /* 613 * Try to allocate the context before we do slice convert 614 * so that we handle the context allocation failure gracefully. 615 */ 616 if (need_extra_context(mm, newaddr)) { 617 if (alloc_extended_context(mm, newaddr) < 0) 618 return -ENOMEM; 619 } 620 621 slice_andnot_mask(&potential_mask, &potential_mask, &good_mask); 622 if (compat_maskp && !fixed) 623 slice_andnot_mask(&potential_mask, &potential_mask, compat_maskp); 624 if (potential_mask.low_slices || 625 (SLICE_NUM_HIGH && 626 !bitmap_empty(potential_mask.high_slices, SLICE_NUM_HIGH))) { 627 slice_convert(mm, &potential_mask, psize); 628 if (psize > MMU_PAGE_BASE) 629 on_each_cpu(slice_flush_segments, mm, 1); 630 } 631 return newaddr; 632 633return_addr: 634 if (need_extra_context(mm, newaddr)) { 635 if (alloc_extended_context(mm, newaddr) < 0) 636 return -ENOMEM; 637 } 638 return newaddr; 639} 640EXPORT_SYMBOL_GPL(slice_get_unmapped_area); 641 642unsigned long arch_get_unmapped_area(struct file *filp, 643 unsigned long addr, 644 unsigned long len, 645 unsigned long pgoff, 646 unsigned long flags) 647{ 648 return slice_get_unmapped_area(addr, len, flags, 649 mm_ctx_user_psize(¤t->mm->context), 0); 650} 651 652unsigned long arch_get_unmapped_area_topdown(struct file *filp, 653 const unsigned long addr0, 654 const unsigned long len, 655 const unsigned long pgoff, 656 const unsigned long flags) 657{ 658 return slice_get_unmapped_area(addr0, len, flags, 659 mm_ctx_user_psize(¤t->mm->context), 1); 660} 661 662unsigned int notrace get_slice_psize(struct mm_struct *mm, unsigned long addr) 663{ 664 unsigned char *psizes; 665 int index, mask_index; 666 667 VM_BUG_ON(radix_enabled()); 668 669 if (slice_addr_is_low(addr)) { 670 psizes = mm_ctx_low_slices(&mm->context); 671 index = GET_LOW_SLICE_INDEX(addr); 672 } else { 673 psizes = mm_ctx_high_slices(&mm->context); 674 index = GET_HIGH_SLICE_INDEX(addr); 675 } 676 mask_index = index & 0x1; 677 return (psizes[index >> 1] >> (mask_index * 4)) & 0xf; 678} 679EXPORT_SYMBOL_GPL(get_slice_psize); 680 681void slice_init_new_context_exec(struct mm_struct *mm) 682{ 683 unsigned char *hpsizes, *lpsizes; 684 struct slice_mask *mask; 685 unsigned int psize = mmu_virtual_psize; 686 687 slice_dbg("slice_init_new_context_exec(mm=%p)\n", mm); 688 689 /* 690 * In the case of exec, use the default limit. In the 691 * case of fork it is just inherited from the mm being 692 * duplicated. 693 */ 694 mm_ctx_set_slb_addr_limit(&mm->context, SLB_ADDR_LIMIT_DEFAULT); 695 mm_ctx_set_user_psize(&mm->context, psize); 696 697 /* 698 * Set all slice psizes to the default. 699 */ 700 lpsizes = mm_ctx_low_slices(&mm->context); 701 memset(lpsizes, (psize << 4) | psize, SLICE_NUM_LOW >> 1); 702 703 hpsizes = mm_ctx_high_slices(&mm->context); 704 memset(hpsizes, (psize << 4) | psize, SLICE_NUM_HIGH >> 1); 705 706 /* 707 * Slice mask cache starts zeroed, fill the default size cache. 708 */ 709 mask = slice_mask_for_size(&mm->context, psize); 710 mask->low_slices = ~0UL; 711 if (SLICE_NUM_HIGH) 712 bitmap_fill(mask->high_slices, SLICE_NUM_HIGH); 713} 714 715#ifdef CONFIG_PPC_BOOK3S_64 716void slice_setup_new_exec(void) 717{ 718 struct mm_struct *mm = current->mm; 719 720 slice_dbg("slice_setup_new_exec(mm=%p)\n", mm); 721 722 if (!is_32bit_task()) 723 return; 724 725 mm_ctx_set_slb_addr_limit(&mm->context, DEFAULT_MAP_WINDOW); 726} 727#endif 728 729void slice_set_range_psize(struct mm_struct *mm, unsigned long start, 730 unsigned long len, unsigned int psize) 731{ 732 struct slice_mask mask; 733 734 VM_BUG_ON(radix_enabled()); 735 736 slice_range_to_mask(start, len, &mask); 737 slice_convert(mm, &mask, psize); 738} 739 740#ifdef CONFIG_HUGETLB_PAGE 741/* 742 * is_hugepage_only_range() is used by generic code to verify whether 743 * a normal mmap mapping (non hugetlbfs) is valid on a given area. 744 * 745 * until the generic code provides a more generic hook and/or starts 746 * calling arch get_unmapped_area for MAP_FIXED (which our implementation 747 * here knows how to deal with), we hijack it to keep standard mappings 748 * away from us. 749 * 750 * because of that generic code limitation, MAP_FIXED mapping cannot 751 * "convert" back a slice with no VMAs to the standard page size, only 752 * get_unmapped_area() can. It would be possible to fix it here but I 753 * prefer working on fixing the generic code instead. 754 * 755 * WARNING: This will not work if hugetlbfs isn't enabled since the 756 * generic code will redefine that function as 0 in that. This is ok 757 * for now as we only use slices with hugetlbfs enabled. This should 758 * be fixed as the generic code gets fixed. 759 */ 760int slice_is_hugepage_only_range(struct mm_struct *mm, unsigned long addr, 761 unsigned long len) 762{ 763 const struct slice_mask *maskp; 764 unsigned int psize = mm_ctx_user_psize(&mm->context); 765 766 VM_BUG_ON(radix_enabled()); 767 768 maskp = slice_mask_for_size(&mm->context, psize); 769 770 /* We need to account for 4k slices too */ 771 if (IS_ENABLED(CONFIG_PPC_64K_PAGES) && psize == MMU_PAGE_64K) { 772 const struct slice_mask *compat_maskp; 773 struct slice_mask available; 774 775 compat_maskp = slice_mask_for_size(&mm->context, MMU_PAGE_4K); 776 slice_or_mask(&available, maskp, compat_maskp); 777 return !slice_check_range_fits(mm, &available, addr, len); 778 } 779 780 return !slice_check_range_fits(mm, maskp, addr, len); 781} 782#endif 783