1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * PowerPC version 4 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) 5 * 6 * Derived from "arch/i386/mm/fault.c" 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * 9 * Modified by Cort Dougan and Paul Mackerras. 10 * 11 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) 12 */ 13 14#include <linux/signal.h> 15#include <linux/sched.h> 16#include <linux/sched/task_stack.h> 17#include <linux/kernel.h> 18#include <linux/errno.h> 19#include <linux/string.h> 20#include <linux/types.h> 21#include <linux/pagemap.h> 22#include <linux/ptrace.h> 23#include <linux/mman.h> 24#include <linux/mm.h> 25#include <linux/interrupt.h> 26#include <linux/highmem.h> 27#include <linux/extable.h> 28#include <linux/kprobes.h> 29#include <linux/kdebug.h> 30#include <linux/perf_event.h> 31#include <linux/ratelimit.h> 32#include <linux/context_tracking.h> 33#include <linux/hugetlb.h> 34#include <linux/uaccess.h> 35 36#include <asm/firmware.h> 37#include <asm/page.h> 38#include <asm/mmu.h> 39#include <asm/mmu_context.h> 40#include <asm/siginfo.h> 41#include <asm/debug.h> 42#include <asm/kup.h> 43#include <asm/inst.h> 44 45 46/* 47 * do_page_fault error handling helpers 48 */ 49 50static int 51__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code) 52{ 53 /* 54 * If we are in kernel mode, bail out with a SEGV, this will 55 * be caught by the assembly which will restore the non-volatile 56 * registers before calling bad_page_fault() 57 */ 58 if (!user_mode(regs)) 59 return SIGSEGV; 60 61 _exception(SIGSEGV, regs, si_code, address); 62 63 return 0; 64} 65 66static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address) 67{ 68 return __bad_area_nosemaphore(regs, address, SEGV_MAPERR); 69} 70 71static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code) 72{ 73 struct mm_struct *mm = current->mm; 74 75 /* 76 * Something tried to access memory that isn't in our memory map.. 77 * Fix it, but check if it's kernel or user first.. 78 */ 79 mmap_read_unlock(mm); 80 81 return __bad_area_nosemaphore(regs, address, si_code); 82} 83 84static noinline int bad_area(struct pt_regs *regs, unsigned long address) 85{ 86 return __bad_area(regs, address, SEGV_MAPERR); 87} 88 89#ifdef CONFIG_PPC_MEM_KEYS 90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address, 91 struct vm_area_struct *vma) 92{ 93 struct mm_struct *mm = current->mm; 94 int pkey; 95 96 /* 97 * We don't try to fetch the pkey from page table because reading 98 * page table without locking doesn't guarantee stable pte value. 99 * Hence the pkey value that we return to userspace can be different 100 * from the pkey that actually caused access error. 101 * 102 * It does *not* guarantee that the VMA we find here 103 * was the one that we faulted on. 104 * 105 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4); 106 * 2. T1 : set AMR to deny access to pkey=4, touches, page 107 * 3. T1 : faults... 108 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5); 109 * 5. T1 : enters fault handler, takes mmap_lock, etc... 110 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really 111 * faulted on a pte with its pkey=4. 112 */ 113 pkey = vma_pkey(vma); 114 115 mmap_read_unlock(mm); 116 117 /* 118 * If we are in kernel mode, bail out with a SEGV, this will 119 * be caught by the assembly which will restore the non-volatile 120 * registers before calling bad_page_fault() 121 */ 122 if (!user_mode(regs)) 123 return SIGSEGV; 124 125 _exception_pkey(regs, address, pkey); 126 127 return 0; 128} 129#endif 130 131static noinline int bad_access(struct pt_regs *regs, unsigned long address) 132{ 133 return __bad_area(regs, address, SEGV_ACCERR); 134} 135 136static int do_sigbus(struct pt_regs *regs, unsigned long address, 137 vm_fault_t fault) 138{ 139 if (!user_mode(regs)) 140 return SIGBUS; 141 142 current->thread.trap_nr = BUS_ADRERR; 143#ifdef CONFIG_MEMORY_FAILURE 144 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) { 145 unsigned int lsb = 0; /* shutup gcc */ 146 147 pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n", 148 current->comm, current->pid, address); 149 150 if (fault & VM_FAULT_HWPOISON_LARGE) 151 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 152 if (fault & VM_FAULT_HWPOISON) 153 lsb = PAGE_SHIFT; 154 155 force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb); 156 return 0; 157 } 158 159#endif 160 force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address); 161 return 0; 162} 163 164static int mm_fault_error(struct pt_regs *regs, unsigned long addr, 165 vm_fault_t fault) 166{ 167 /* 168 * Kernel page fault interrupted by SIGKILL. We have no reason to 169 * continue processing. 170 */ 171 if (fatal_signal_pending(current) && !user_mode(regs)) 172 return SIGKILL; 173 174 /* Out of memory */ 175 if (fault & VM_FAULT_OOM) { 176 /* 177 * We ran out of memory, or some other thing happened to us that 178 * made us unable to handle the page fault gracefully. 179 */ 180 if (!user_mode(regs)) 181 return SIGSEGV; 182 pagefault_out_of_memory(); 183 } else { 184 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON| 185 VM_FAULT_HWPOISON_LARGE)) 186 return do_sigbus(regs, addr, fault); 187 else if (fault & VM_FAULT_SIGSEGV) 188 return bad_area_nosemaphore(regs, addr); 189 else 190 BUG(); 191 } 192 return 0; 193} 194 195/* Is this a bad kernel fault ? */ 196static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code, 197 unsigned long address, bool is_write) 198{ 199 int is_exec = TRAP(regs) == 0x400; 200 201 if (is_exec) { 202 pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n", 203 address >= TASK_SIZE ? "exec-protected" : "user", 204 address, 205 from_kuid(&init_user_ns, current_uid())); 206 207 // Kernel exec fault is always bad 208 return true; 209 } 210 211 if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) && 212 !search_exception_tables(regs->nip)) { 213 pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n", 214 address, 215 from_kuid(&init_user_ns, current_uid())); 216 } 217 218 // Kernel fault on kernel address is bad 219 if (address >= TASK_SIZE) 220 return true; 221 222 // Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad 223 if (!search_exception_tables(regs->nip)) 224 return true; 225 226 // Read/write fault in a valid region (the exception table search passed 227 // above), but blocked by KUAP is bad, it can never succeed. 228 if (bad_kuap_fault(regs, address, is_write)) 229 return true; 230 231 // What's left? Kernel fault on user in well defined regions (extable 232 // matched), and allowed by KUAP in the faulting context. 233 return false; 234} 235 236#ifdef CONFIG_PPC_MEM_KEYS 237static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey, 238 struct vm_area_struct *vma) 239{ 240 /* 241 * Make sure to check the VMA so that we do not perform 242 * faults just to hit a pkey fault as soon as we fill in a 243 * page. Only called for current mm, hence foreign == 0 244 */ 245 if (!arch_vma_access_permitted(vma, is_write, is_exec, 0)) 246 return true; 247 248 return false; 249} 250#endif 251 252static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma) 253{ 254 /* 255 * Allow execution from readable areas if the MMU does not 256 * provide separate controls over reading and executing. 257 * 258 * Note: That code used to not be enabled for 4xx/BookE. 259 * It is now as I/D cache coherency for these is done at 260 * set_pte_at() time and I see no reason why the test 261 * below wouldn't be valid on those processors. This -may- 262 * break programs compiled with a really old ABI though. 263 */ 264 if (is_exec) { 265 return !(vma->vm_flags & VM_EXEC) && 266 (cpu_has_feature(CPU_FTR_NOEXECUTE) || 267 !(vma->vm_flags & (VM_READ | VM_WRITE))); 268 } 269 270 if (is_write) { 271 if (unlikely(!(vma->vm_flags & VM_WRITE))) 272 return true; 273 return false; 274 } 275 276 if (unlikely(!vma_is_accessible(vma))) 277 return true; 278 /* 279 * We should ideally do the vma pkey access check here. But in the 280 * fault path, handle_mm_fault() also does the same check. To avoid 281 * these multiple checks, we skip it here and handle access error due 282 * to pkeys later. 283 */ 284 return false; 285} 286 287#ifdef CONFIG_PPC_SMLPAR 288static inline void cmo_account_page_fault(void) 289{ 290 if (firmware_has_feature(FW_FEATURE_CMO)) { 291 u32 page_ins; 292 293 preempt_disable(); 294 page_ins = be32_to_cpu(get_lppaca()->page_ins); 295 page_ins += 1 << PAGE_FACTOR; 296 get_lppaca()->page_ins = cpu_to_be32(page_ins); 297 preempt_enable(); 298 } 299} 300#else 301static inline void cmo_account_page_fault(void) { } 302#endif /* CONFIG_PPC_SMLPAR */ 303 304static void sanity_check_fault(bool is_write, bool is_user, 305 unsigned long error_code, unsigned long address) 306{ 307 /* 308 * Userspace trying to access kernel address, we get PROTFAULT for that. 309 */ 310 if (is_user && address >= TASK_SIZE) { 311 if ((long)address == -1) 312 return; 313 314 pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n", 315 current->comm, current->pid, address, 316 from_kuid(&init_user_ns, current_uid())); 317 return; 318 } 319 320 if (!IS_ENABLED(CONFIG_PPC_BOOK3S)) 321 return; 322 323 /* 324 * For hash translation mode, we should never get a 325 * PROTFAULT. Any update to pte to reduce access will result in us 326 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE 327 * fault instead of DSISR_PROTFAULT. 328 * 329 * A pte update to relax the access will not result in a hash page table 330 * entry invalidate and hence can result in DSISR_PROTFAULT. 331 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have 332 * the special !is_write in the below conditional. 333 * 334 * For platforms that doesn't supports coherent icache and do support 335 * per page noexec bit, we do setup things such that we do the 336 * sync between D/I cache via fault. But that is handled via low level 337 * hash fault code (hash_page_do_lazy_icache()) and we should not reach 338 * here in such case. 339 * 340 * For wrong access that can result in PROTFAULT, the above vma->vm_flags 341 * check should handle those and hence we should fall to the bad_area 342 * handling correctly. 343 * 344 * For embedded with per page exec support that doesn't support coherent 345 * icache we do get PROTFAULT and we handle that D/I cache sync in 346 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON 347 * is conditional for server MMU. 348 * 349 * For radix, we can get prot fault for autonuma case, because radix 350 * page table will have them marked noaccess for user. 351 */ 352 if (radix_enabled() || is_write) 353 return; 354 355 WARN_ON_ONCE(error_code & DSISR_PROTFAULT); 356} 357 358/* 359 * Define the correct "is_write" bit in error_code based 360 * on the processor family 361 */ 362#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) 363#define page_fault_is_write(__err) ((__err) & ESR_DST) 364#define page_fault_is_bad(__err) (0) 365#else 366#define page_fault_is_write(__err) ((__err) & DSISR_ISSTORE) 367#if defined(CONFIG_PPC_8xx) 368#define page_fault_is_bad(__err) ((__err) & DSISR_NOEXEC_OR_G) 369#elif defined(CONFIG_PPC64) 370#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_64S) 371#else 372#define page_fault_is_bad(__err) ((__err) & DSISR_BAD_FAULT_32S) 373#endif 374#endif 375 376/* 377 * For 600- and 800-family processors, the error_code parameter is DSISR 378 * for a data fault, SRR1 for an instruction fault. For 400-family processors 379 * the error_code parameter is ESR for a data fault, 0 for an instruction 380 * fault. 381 * For 64-bit processors, the error_code parameter is 382 * - DSISR for a non-SLB data access fault, 383 * - SRR1 & 0x08000000 for a non-SLB instruction access fault 384 * - 0 any SLB fault. 385 * 386 * The return value is 0 if the fault was handled, or the signal 387 * number if this is a kernel fault that can't be handled here. 388 */ 389static int __do_page_fault(struct pt_regs *regs, unsigned long address, 390 unsigned long error_code) 391{ 392 struct vm_area_struct * vma; 393 struct mm_struct *mm = current->mm; 394 unsigned int flags = FAULT_FLAG_DEFAULT; 395 int is_exec = TRAP(regs) == 0x400; 396 int is_user = user_mode(regs); 397 int is_write = page_fault_is_write(error_code); 398 vm_fault_t fault, major = 0; 399 bool kprobe_fault = kprobe_page_fault(regs, 11); 400 401 if (unlikely(debugger_fault_handler(regs) || kprobe_fault)) 402 return 0; 403 404 if (unlikely(page_fault_is_bad(error_code))) { 405 if (is_user) { 406 _exception(SIGBUS, regs, BUS_OBJERR, address); 407 return 0; 408 } 409 return SIGBUS; 410 } 411 412 /* Additional sanity check(s) */ 413 sanity_check_fault(is_write, is_user, error_code, address); 414 415 /* 416 * The kernel should never take an execute fault nor should it 417 * take a page fault to a kernel address or a page fault to a user 418 * address outside of dedicated places 419 */ 420 if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write))) 421 return SIGSEGV; 422 423 /* 424 * If we're in an interrupt, have no user context or are running 425 * in a region with pagefaults disabled then we must not take the fault 426 */ 427 if (unlikely(faulthandler_disabled() || !mm)) { 428 if (is_user) 429 printk_ratelimited(KERN_ERR "Page fault in user mode" 430 " with faulthandler_disabled()=%d" 431 " mm=%p\n", 432 faulthandler_disabled(), mm); 433 return bad_area_nosemaphore(regs, address); 434 } 435 436 /* We restore the interrupt state now */ 437 if (!arch_irq_disabled_regs(regs)) 438 local_irq_enable(); 439 440 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address); 441 442 /* 443 * We want to do this outside mmap_lock, because reading code around nip 444 * can result in fault, which will cause a deadlock when called with 445 * mmap_lock held 446 */ 447 if (is_user) 448 flags |= FAULT_FLAG_USER; 449 if (is_write) 450 flags |= FAULT_FLAG_WRITE; 451 if (is_exec) 452 flags |= FAULT_FLAG_INSTRUCTION; 453 454 /* When running in the kernel we expect faults to occur only to 455 * addresses in user space. All other faults represent errors in the 456 * kernel and should generate an OOPS. Unfortunately, in the case of an 457 * erroneous fault occurring in a code path which already holds mmap_lock 458 * we will deadlock attempting to validate the fault against the 459 * address space. Luckily the kernel only validly references user 460 * space from well defined areas of code, which are listed in the 461 * exceptions table. 462 * 463 * As the vast majority of faults will be valid we will only perform 464 * the source reference check when there is a possibility of a deadlock. 465 * Attempt to lock the address space, if we cannot we then validate the 466 * source. If this is invalid we can skip the address space check, 467 * thus avoiding the deadlock. 468 */ 469 if (unlikely(!mmap_read_trylock(mm))) { 470 if (!is_user && !search_exception_tables(regs->nip)) 471 return bad_area_nosemaphore(regs, address); 472 473retry: 474 mmap_read_lock(mm); 475 } else { 476 /* 477 * The above down_read_trylock() might have succeeded in 478 * which case we'll have missed the might_sleep() from 479 * down_read(): 480 */ 481 might_sleep(); 482 } 483 484 vma = find_vma(mm, address); 485 if (unlikely(!vma)) 486 return bad_area(regs, address); 487 488 if (unlikely(vma->vm_start > address)) { 489 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) 490 return bad_area(regs, address); 491 492 if (unlikely(expand_stack(vma, address))) 493 return bad_area(regs, address); 494 } 495 496#ifdef CONFIG_PPC_MEM_KEYS 497 if (unlikely(access_pkey_error(is_write, is_exec, 498 (error_code & DSISR_KEYFAULT), vma))) 499 return bad_access_pkey(regs, address, vma); 500#endif /* CONFIG_PPC_MEM_KEYS */ 501 502 if (unlikely(access_error(is_write, is_exec, vma))) 503 return bad_access(regs, address); 504 505 /* 506 * If for any reason at all we couldn't handle the fault, 507 * make sure we exit gracefully rather than endlessly redo 508 * the fault. 509 */ 510 fault = handle_mm_fault(vma, address, flags, regs); 511 512 major |= fault & VM_FAULT_MAJOR; 513 514 if (fault_signal_pending(fault, regs)) 515 return user_mode(regs) ? 0 : SIGBUS; 516 517 /* 518 * Handle the retry right now, the mmap_lock has been released in that 519 * case. 520 */ 521 if (unlikely(fault & VM_FAULT_RETRY)) { 522 if (flags & FAULT_FLAG_ALLOW_RETRY) { 523 flags |= FAULT_FLAG_TRIED; 524 goto retry; 525 } 526 } 527 528 mmap_read_unlock(current->mm); 529 530 if (unlikely(fault & VM_FAULT_ERROR)) 531 return mm_fault_error(regs, address, fault); 532 533 /* 534 * Major/minor page fault accounting. 535 */ 536 if (major) 537 cmo_account_page_fault(); 538 539 return 0; 540} 541NOKPROBE_SYMBOL(__do_page_fault); 542 543int do_page_fault(struct pt_regs *regs, unsigned long address, 544 unsigned long error_code) 545{ 546 enum ctx_state prev_state = exception_enter(); 547 int rc = __do_page_fault(regs, address, error_code); 548 exception_exit(prev_state); 549 return rc; 550} 551NOKPROBE_SYMBOL(do_page_fault); 552 553/* 554 * bad_page_fault is called when we have a bad access from the kernel. 555 * It is called from the DSI and ISI handlers in head.S and from some 556 * of the procedures in traps.c. 557 */ 558void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) 559{ 560 const struct exception_table_entry *entry; 561 int is_write = page_fault_is_write(regs->dsisr); 562 563 /* Are we prepared to handle this fault? */ 564 if ((entry = search_exception_tables(regs->nip)) != NULL) { 565 regs->nip = extable_fixup(entry); 566 return; 567 } 568 569 /* kernel has accessed a bad area */ 570 571 switch (TRAP(regs)) { 572 case 0x300: 573 case 0x380: 574 case 0xe00: 575 pr_alert("BUG: %s on %s at 0x%08lx\n", 576 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" : 577 "Unable to handle kernel data access", 578 is_write ? "write" : "read", regs->dar); 579 break; 580 case 0x400: 581 case 0x480: 582 pr_alert("BUG: Unable to handle kernel instruction fetch%s", 583 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n"); 584 break; 585 case 0x600: 586 pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n", 587 regs->dar); 588 break; 589 default: 590 pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n", 591 regs->dar); 592 break; 593 } 594 printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", 595 regs->nip); 596 597 if (task_stack_end_corrupted(current)) 598 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n"); 599 600 die("Kernel access of bad area", regs, sig); 601} 602