xref: /kernel/linux/linux-5.10/arch/powerpc/mm/fault.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 *  PowerPC version
4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 *
6 *  Derived from "arch/i386/mm/fault.c"
7 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8 *
9 *  Modified by Cort Dougan and Paul Mackerras.
10 *
11 *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 */
13
14#include <linux/signal.h>
15#include <linux/sched.h>
16#include <linux/sched/task_stack.h>
17#include <linux/kernel.h>
18#include <linux/errno.h>
19#include <linux/string.h>
20#include <linux/types.h>
21#include <linux/pagemap.h>
22#include <linux/ptrace.h>
23#include <linux/mman.h>
24#include <linux/mm.h>
25#include <linux/interrupt.h>
26#include <linux/highmem.h>
27#include <linux/extable.h>
28#include <linux/kprobes.h>
29#include <linux/kdebug.h>
30#include <linux/perf_event.h>
31#include <linux/ratelimit.h>
32#include <linux/context_tracking.h>
33#include <linux/hugetlb.h>
34#include <linux/uaccess.h>
35
36#include <asm/firmware.h>
37#include <asm/page.h>
38#include <asm/mmu.h>
39#include <asm/mmu_context.h>
40#include <asm/siginfo.h>
41#include <asm/debug.h>
42#include <asm/kup.h>
43#include <asm/inst.h>
44
45
46/*
47 * do_page_fault error handling helpers
48 */
49
50static int
51__bad_area_nosemaphore(struct pt_regs *regs, unsigned long address, int si_code)
52{
53	/*
54	 * If we are in kernel mode, bail out with a SEGV, this will
55	 * be caught by the assembly which will restore the non-volatile
56	 * registers before calling bad_page_fault()
57	 */
58	if (!user_mode(regs))
59		return SIGSEGV;
60
61	_exception(SIGSEGV, regs, si_code, address);
62
63	return 0;
64}
65
66static noinline int bad_area_nosemaphore(struct pt_regs *regs, unsigned long address)
67{
68	return __bad_area_nosemaphore(regs, address, SEGV_MAPERR);
69}
70
71static int __bad_area(struct pt_regs *regs, unsigned long address, int si_code)
72{
73	struct mm_struct *mm = current->mm;
74
75	/*
76	 * Something tried to access memory that isn't in our memory map..
77	 * Fix it, but check if it's kernel or user first..
78	 */
79	mmap_read_unlock(mm);
80
81	return __bad_area_nosemaphore(regs, address, si_code);
82}
83
84static noinline int bad_area(struct pt_regs *regs, unsigned long address)
85{
86	return __bad_area(regs, address, SEGV_MAPERR);
87}
88
89#ifdef CONFIG_PPC_MEM_KEYS
90static noinline int bad_access_pkey(struct pt_regs *regs, unsigned long address,
91				    struct vm_area_struct *vma)
92{
93	struct mm_struct *mm = current->mm;
94	int pkey;
95
96	/*
97	 * We don't try to fetch the pkey from page table because reading
98	 * page table without locking doesn't guarantee stable pte value.
99	 * Hence the pkey value that we return to userspace can be different
100	 * from the pkey that actually caused access error.
101	 *
102	 * It does *not* guarantee that the VMA we find here
103	 * was the one that we faulted on.
104	 *
105	 * 1. T1   : mprotect_key(foo, PAGE_SIZE, pkey=4);
106	 * 2. T1   : set AMR to deny access to pkey=4, touches, page
107	 * 3. T1   : faults...
108	 * 4.    T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
109	 * 5. T1   : enters fault handler, takes mmap_lock, etc...
110	 * 6. T1   : reaches here, sees vma_pkey(vma)=5, when we really
111	 *	     faulted on a pte with its pkey=4.
112	 */
113	pkey = vma_pkey(vma);
114
115	mmap_read_unlock(mm);
116
117	/*
118	 * If we are in kernel mode, bail out with a SEGV, this will
119	 * be caught by the assembly which will restore the non-volatile
120	 * registers before calling bad_page_fault()
121	 */
122	if (!user_mode(regs))
123		return SIGSEGV;
124
125	_exception_pkey(regs, address, pkey);
126
127	return 0;
128}
129#endif
130
131static noinline int bad_access(struct pt_regs *regs, unsigned long address)
132{
133	return __bad_area(regs, address, SEGV_ACCERR);
134}
135
136static int do_sigbus(struct pt_regs *regs, unsigned long address,
137		     vm_fault_t fault)
138{
139	if (!user_mode(regs))
140		return SIGBUS;
141
142	current->thread.trap_nr = BUS_ADRERR;
143#ifdef CONFIG_MEMORY_FAILURE
144	if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
145		unsigned int lsb = 0; /* shutup gcc */
146
147		pr_err("MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
148			current->comm, current->pid, address);
149
150		if (fault & VM_FAULT_HWPOISON_LARGE)
151			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
152		if (fault & VM_FAULT_HWPOISON)
153			lsb = PAGE_SHIFT;
154
155		force_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb);
156		return 0;
157	}
158
159#endif
160	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
161	return 0;
162}
163
164static int mm_fault_error(struct pt_regs *regs, unsigned long addr,
165				vm_fault_t fault)
166{
167	/*
168	 * Kernel page fault interrupted by SIGKILL. We have no reason to
169	 * continue processing.
170	 */
171	if (fatal_signal_pending(current) && !user_mode(regs))
172		return SIGKILL;
173
174	/* Out of memory */
175	if (fault & VM_FAULT_OOM) {
176		/*
177		 * We ran out of memory, or some other thing happened to us that
178		 * made us unable to handle the page fault gracefully.
179		 */
180		if (!user_mode(regs))
181			return SIGSEGV;
182		pagefault_out_of_memory();
183	} else {
184		if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
185			     VM_FAULT_HWPOISON_LARGE))
186			return do_sigbus(regs, addr, fault);
187		else if (fault & VM_FAULT_SIGSEGV)
188			return bad_area_nosemaphore(regs, addr);
189		else
190			BUG();
191	}
192	return 0;
193}
194
195/* Is this a bad kernel fault ? */
196static bool bad_kernel_fault(struct pt_regs *regs, unsigned long error_code,
197			     unsigned long address, bool is_write)
198{
199	int is_exec = TRAP(regs) == 0x400;
200
201	if (is_exec) {
202		pr_crit_ratelimited("kernel tried to execute %s page (%lx) - exploit attempt? (uid: %d)\n",
203				    address >= TASK_SIZE ? "exec-protected" : "user",
204				    address,
205				    from_kuid(&init_user_ns, current_uid()));
206
207		// Kernel exec fault is always bad
208		return true;
209	}
210
211	if (!is_exec && address < TASK_SIZE && (error_code & DSISR_PROTFAULT) &&
212	    !search_exception_tables(regs->nip)) {
213		pr_crit_ratelimited("Kernel attempted to access user page (%lx) - exploit attempt? (uid: %d)\n",
214				    address,
215				    from_kuid(&init_user_ns, current_uid()));
216	}
217
218	// Kernel fault on kernel address is bad
219	if (address >= TASK_SIZE)
220		return true;
221
222	// Fault on user outside of certain regions (eg. copy_tofrom_user()) is bad
223	if (!search_exception_tables(regs->nip))
224		return true;
225
226	// Read/write fault in a valid region (the exception table search passed
227	// above), but blocked by KUAP is bad, it can never succeed.
228	if (bad_kuap_fault(regs, address, is_write))
229		return true;
230
231	// What's left? Kernel fault on user in well defined regions (extable
232	// matched), and allowed by KUAP in the faulting context.
233	return false;
234}
235
236#ifdef CONFIG_PPC_MEM_KEYS
237static bool access_pkey_error(bool is_write, bool is_exec, bool is_pkey,
238			      struct vm_area_struct *vma)
239{
240	/*
241	 * Make sure to check the VMA so that we do not perform
242	 * faults just to hit a pkey fault as soon as we fill in a
243	 * page. Only called for current mm, hence foreign == 0
244	 */
245	if (!arch_vma_access_permitted(vma, is_write, is_exec, 0))
246		return true;
247
248	return false;
249}
250#endif
251
252static bool access_error(bool is_write, bool is_exec, struct vm_area_struct *vma)
253{
254	/*
255	 * Allow execution from readable areas if the MMU does not
256	 * provide separate controls over reading and executing.
257	 *
258	 * Note: That code used to not be enabled for 4xx/BookE.
259	 * It is now as I/D cache coherency for these is done at
260	 * set_pte_at() time and I see no reason why the test
261	 * below wouldn't be valid on those processors. This -may-
262	 * break programs compiled with a really old ABI though.
263	 */
264	if (is_exec) {
265		return !(vma->vm_flags & VM_EXEC) &&
266			(cpu_has_feature(CPU_FTR_NOEXECUTE) ||
267			 !(vma->vm_flags & (VM_READ | VM_WRITE)));
268	}
269
270	if (is_write) {
271		if (unlikely(!(vma->vm_flags & VM_WRITE)))
272			return true;
273		return false;
274	}
275
276	if (unlikely(!vma_is_accessible(vma)))
277		return true;
278	/*
279	 * We should ideally do the vma pkey access check here. But in the
280	 * fault path, handle_mm_fault() also does the same check. To avoid
281	 * these multiple checks, we skip it here and handle access error due
282	 * to pkeys later.
283	 */
284	return false;
285}
286
287#ifdef CONFIG_PPC_SMLPAR
288static inline void cmo_account_page_fault(void)
289{
290	if (firmware_has_feature(FW_FEATURE_CMO)) {
291		u32 page_ins;
292
293		preempt_disable();
294		page_ins = be32_to_cpu(get_lppaca()->page_ins);
295		page_ins += 1 << PAGE_FACTOR;
296		get_lppaca()->page_ins = cpu_to_be32(page_ins);
297		preempt_enable();
298	}
299}
300#else
301static inline void cmo_account_page_fault(void) { }
302#endif /* CONFIG_PPC_SMLPAR */
303
304static void sanity_check_fault(bool is_write, bool is_user,
305			       unsigned long error_code, unsigned long address)
306{
307	/*
308	 * Userspace trying to access kernel address, we get PROTFAULT for that.
309	 */
310	if (is_user && address >= TASK_SIZE) {
311		if ((long)address == -1)
312			return;
313
314		pr_crit_ratelimited("%s[%d]: User access of kernel address (%lx) - exploit attempt? (uid: %d)\n",
315				   current->comm, current->pid, address,
316				   from_kuid(&init_user_ns, current_uid()));
317		return;
318	}
319
320	if (!IS_ENABLED(CONFIG_PPC_BOOK3S))
321		return;
322
323	/*
324	 * For hash translation mode, we should never get a
325	 * PROTFAULT. Any update to pte to reduce access will result in us
326	 * removing the hash page table entry, thus resulting in a DSISR_NOHPTE
327	 * fault instead of DSISR_PROTFAULT.
328	 *
329	 * A pte update to relax the access will not result in a hash page table
330	 * entry invalidate and hence can result in DSISR_PROTFAULT.
331	 * ptep_set_access_flags() doesn't do a hpte flush. This is why we have
332	 * the special !is_write in the below conditional.
333	 *
334	 * For platforms that doesn't supports coherent icache and do support
335	 * per page noexec bit, we do setup things such that we do the
336	 * sync between D/I cache via fault. But that is handled via low level
337	 * hash fault code (hash_page_do_lazy_icache()) and we should not reach
338	 * here in such case.
339	 *
340	 * For wrong access that can result in PROTFAULT, the above vma->vm_flags
341	 * check should handle those and hence we should fall to the bad_area
342	 * handling correctly.
343	 *
344	 * For embedded with per page exec support that doesn't support coherent
345	 * icache we do get PROTFAULT and we handle that D/I cache sync in
346	 * set_pte_at while taking the noexec/prot fault. Hence this is WARN_ON
347	 * is conditional for server MMU.
348	 *
349	 * For radix, we can get prot fault for autonuma case, because radix
350	 * page table will have them marked noaccess for user.
351	 */
352	if (radix_enabled() || is_write)
353		return;
354
355	WARN_ON_ONCE(error_code & DSISR_PROTFAULT);
356}
357
358/*
359 * Define the correct "is_write" bit in error_code based
360 * on the processor family
361 */
362#if (defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
363#define page_fault_is_write(__err)	((__err) & ESR_DST)
364#define page_fault_is_bad(__err)	(0)
365#else
366#define page_fault_is_write(__err)	((__err) & DSISR_ISSTORE)
367#if defined(CONFIG_PPC_8xx)
368#define page_fault_is_bad(__err)	((__err) & DSISR_NOEXEC_OR_G)
369#elif defined(CONFIG_PPC64)
370#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_64S)
371#else
372#define page_fault_is_bad(__err)	((__err) & DSISR_BAD_FAULT_32S)
373#endif
374#endif
375
376/*
377 * For 600- and 800-family processors, the error_code parameter is DSISR
378 * for a data fault, SRR1 for an instruction fault. For 400-family processors
379 * the error_code parameter is ESR for a data fault, 0 for an instruction
380 * fault.
381 * For 64-bit processors, the error_code parameter is
382 *  - DSISR for a non-SLB data access fault,
383 *  - SRR1 & 0x08000000 for a non-SLB instruction access fault
384 *  - 0 any SLB fault.
385 *
386 * The return value is 0 if the fault was handled, or the signal
387 * number if this is a kernel fault that can't be handled here.
388 */
389static int __do_page_fault(struct pt_regs *regs, unsigned long address,
390			   unsigned long error_code)
391{
392	struct vm_area_struct * vma;
393	struct mm_struct *mm = current->mm;
394	unsigned int flags = FAULT_FLAG_DEFAULT;
395 	int is_exec = TRAP(regs) == 0x400;
396	int is_user = user_mode(regs);
397	int is_write = page_fault_is_write(error_code);
398	vm_fault_t fault, major = 0;
399	bool kprobe_fault = kprobe_page_fault(regs, 11);
400
401	if (unlikely(debugger_fault_handler(regs) || kprobe_fault))
402		return 0;
403
404	if (unlikely(page_fault_is_bad(error_code))) {
405		if (is_user) {
406			_exception(SIGBUS, regs, BUS_OBJERR, address);
407			return 0;
408		}
409		return SIGBUS;
410	}
411
412	/* Additional sanity check(s) */
413	sanity_check_fault(is_write, is_user, error_code, address);
414
415	/*
416	 * The kernel should never take an execute fault nor should it
417	 * take a page fault to a kernel address or a page fault to a user
418	 * address outside of dedicated places
419	 */
420	if (unlikely(!is_user && bad_kernel_fault(regs, error_code, address, is_write)))
421		return SIGSEGV;
422
423	/*
424	 * If we're in an interrupt, have no user context or are running
425	 * in a region with pagefaults disabled then we must not take the fault
426	 */
427	if (unlikely(faulthandler_disabled() || !mm)) {
428		if (is_user)
429			printk_ratelimited(KERN_ERR "Page fault in user mode"
430					   " with faulthandler_disabled()=%d"
431					   " mm=%p\n",
432					   faulthandler_disabled(), mm);
433		return bad_area_nosemaphore(regs, address);
434	}
435
436	/* We restore the interrupt state now */
437	if (!arch_irq_disabled_regs(regs))
438		local_irq_enable();
439
440	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
441
442	/*
443	 * We want to do this outside mmap_lock, because reading code around nip
444	 * can result in fault, which will cause a deadlock when called with
445	 * mmap_lock held
446	 */
447	if (is_user)
448		flags |= FAULT_FLAG_USER;
449	if (is_write)
450		flags |= FAULT_FLAG_WRITE;
451	if (is_exec)
452		flags |= FAULT_FLAG_INSTRUCTION;
453
454	/* When running in the kernel we expect faults to occur only to
455	 * addresses in user space.  All other faults represent errors in the
456	 * kernel and should generate an OOPS.  Unfortunately, in the case of an
457	 * erroneous fault occurring in a code path which already holds mmap_lock
458	 * we will deadlock attempting to validate the fault against the
459	 * address space.  Luckily the kernel only validly references user
460	 * space from well defined areas of code, which are listed in the
461	 * exceptions table.
462	 *
463	 * As the vast majority of faults will be valid we will only perform
464	 * the source reference check when there is a possibility of a deadlock.
465	 * Attempt to lock the address space, if we cannot we then validate the
466	 * source.  If this is invalid we can skip the address space check,
467	 * thus avoiding the deadlock.
468	 */
469	if (unlikely(!mmap_read_trylock(mm))) {
470		if (!is_user && !search_exception_tables(regs->nip))
471			return bad_area_nosemaphore(regs, address);
472
473retry:
474		mmap_read_lock(mm);
475	} else {
476		/*
477		 * The above down_read_trylock() might have succeeded in
478		 * which case we'll have missed the might_sleep() from
479		 * down_read():
480		 */
481		might_sleep();
482	}
483
484	vma = find_vma(mm, address);
485	if (unlikely(!vma))
486		return bad_area(regs, address);
487
488	if (unlikely(vma->vm_start > address)) {
489		if (unlikely(!(vma->vm_flags & VM_GROWSDOWN)))
490			return bad_area(regs, address);
491
492		if (unlikely(expand_stack(vma, address)))
493			return bad_area(regs, address);
494	}
495
496#ifdef CONFIG_PPC_MEM_KEYS
497	if (unlikely(access_pkey_error(is_write, is_exec,
498				       (error_code & DSISR_KEYFAULT), vma)))
499		return bad_access_pkey(regs, address, vma);
500#endif /* CONFIG_PPC_MEM_KEYS */
501
502	if (unlikely(access_error(is_write, is_exec, vma)))
503		return bad_access(regs, address);
504
505	/*
506	 * If for any reason at all we couldn't handle the fault,
507	 * make sure we exit gracefully rather than endlessly redo
508	 * the fault.
509	 */
510	fault = handle_mm_fault(vma, address, flags, regs);
511
512	major |= fault & VM_FAULT_MAJOR;
513
514	if (fault_signal_pending(fault, regs))
515		return user_mode(regs) ? 0 : SIGBUS;
516
517	/*
518	 * Handle the retry right now, the mmap_lock has been released in that
519	 * case.
520	 */
521	if (unlikely(fault & VM_FAULT_RETRY)) {
522		if (flags & FAULT_FLAG_ALLOW_RETRY) {
523			flags |= FAULT_FLAG_TRIED;
524			goto retry;
525		}
526	}
527
528	mmap_read_unlock(current->mm);
529
530	if (unlikely(fault & VM_FAULT_ERROR))
531		return mm_fault_error(regs, address, fault);
532
533	/*
534	 * Major/minor page fault accounting.
535	 */
536	if (major)
537		cmo_account_page_fault();
538
539	return 0;
540}
541NOKPROBE_SYMBOL(__do_page_fault);
542
543int do_page_fault(struct pt_regs *regs, unsigned long address,
544		  unsigned long error_code)
545{
546	enum ctx_state prev_state = exception_enter();
547	int rc = __do_page_fault(regs, address, error_code);
548	exception_exit(prev_state);
549	return rc;
550}
551NOKPROBE_SYMBOL(do_page_fault);
552
553/*
554 * bad_page_fault is called when we have a bad access from the kernel.
555 * It is called from the DSI and ISI handlers in head.S and from some
556 * of the procedures in traps.c.
557 */
558void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
559{
560	const struct exception_table_entry *entry;
561	int is_write = page_fault_is_write(regs->dsisr);
562
563	/* Are we prepared to handle this fault?  */
564	if ((entry = search_exception_tables(regs->nip)) != NULL) {
565		regs->nip = extable_fixup(entry);
566		return;
567	}
568
569	/* kernel has accessed a bad area */
570
571	switch (TRAP(regs)) {
572	case 0x300:
573	case 0x380:
574	case 0xe00:
575		pr_alert("BUG: %s on %s at 0x%08lx\n",
576			 regs->dar < PAGE_SIZE ? "Kernel NULL pointer dereference" :
577			 "Unable to handle kernel data access",
578			 is_write ? "write" : "read", regs->dar);
579		break;
580	case 0x400:
581	case 0x480:
582		pr_alert("BUG: Unable to handle kernel instruction fetch%s",
583			 regs->nip < PAGE_SIZE ? " (NULL pointer?)\n" : "\n");
584		break;
585	case 0x600:
586		pr_alert("BUG: Unable to handle kernel unaligned access at 0x%08lx\n",
587			 regs->dar);
588		break;
589	default:
590		pr_alert("BUG: Unable to handle unknown paging fault at 0x%08lx\n",
591			 regs->dar);
592		break;
593	}
594	printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
595		regs->nip);
596
597	if (task_stack_end_corrupted(current))
598		printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
599
600	die("Kernel access of bad area", regs, sig);
601}
602