1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * This file contains the routines for flushing entries from the
4 * TLB and MMU hash table.
5 *
6 *  Derived from arch/ppc64/mm/init.c:
7 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
8 *
9 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
10 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
11 *    Copyright (C) 1996 Paul Mackerras
12 *
13 *  Derived from "arch/i386/mm/init.c"
14 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
15 *
16 *  Dave Engebretsen <engebret@us.ibm.com>
17 *      Rework for PPC64 port.
18 */
19
20#include <linux/kernel.h>
21#include <linux/mm.h>
22#include <linux/percpu.h>
23#include <linux/hardirq.h>
24#include <asm/tlbflush.h>
25#include <asm/tlb.h>
26#include <asm/bug.h>
27#include <asm/pte-walk.h>
28
29
30#include <trace/events/thp.h>
31
32DEFINE_PER_CPU(struct ppc64_tlb_batch, ppc64_tlb_batch);
33
34/*
35 * A linux PTE was changed and the corresponding hash table entry
36 * neesd to be flushed. This function will either perform the flush
37 * immediately or will batch it up if the current CPU has an active
38 * batch on it.
39 */
40void hpte_need_flush(struct mm_struct *mm, unsigned long addr,
41		     pte_t *ptep, unsigned long pte, int huge)
42{
43	unsigned long vpn;
44	struct ppc64_tlb_batch *batch = &get_cpu_var(ppc64_tlb_batch);
45	unsigned long vsid;
46	unsigned int psize;
47	int ssize;
48	real_pte_t rpte;
49	int i, offset;
50
51	i = batch->index;
52
53	/*
54	 * Get page size (maybe move back to caller).
55	 *
56	 * NOTE: when using special 64K mappings in 4K environment like
57	 * for SPEs, we obtain the page size from the slice, which thus
58	 * must still exist (and thus the VMA not reused) at the time
59	 * of this call
60	 */
61	if (huge) {
62#ifdef CONFIG_HUGETLB_PAGE
63		psize = get_slice_psize(mm, addr);
64		/* Mask the address for the correct page size */
65		addr &= ~((1UL << mmu_psize_defs[psize].shift) - 1);
66		if (unlikely(psize == MMU_PAGE_16G))
67			offset = PTRS_PER_PUD;
68		else
69			offset = PTRS_PER_PMD;
70#else
71		BUG();
72		psize = pte_pagesize_index(mm, addr, pte); /* shutup gcc */
73#endif
74	} else {
75		psize = pte_pagesize_index(mm, addr, pte);
76		/*
77		 * Mask the address for the standard page size.  If we
78		 * have a 64k page kernel, but the hardware does not
79		 * support 64k pages, this might be different from the
80		 * hardware page size encoded in the slice table.
81		 */
82		addr &= PAGE_MASK;
83		offset = PTRS_PER_PTE;
84	}
85
86
87	/* Build full vaddr */
88	if (!is_kernel_addr(addr)) {
89		ssize = user_segment_size(addr);
90		vsid = get_user_vsid(&mm->context, addr, ssize);
91	} else {
92		vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
93		ssize = mmu_kernel_ssize;
94	}
95	WARN_ON(vsid == 0);
96	vpn = hpt_vpn(addr, vsid, ssize);
97	rpte = __real_pte(__pte(pte), ptep, offset);
98
99	/*
100	 * Check if we have an active batch on this CPU. If not, just
101	 * flush now and return.
102	 */
103	if (!batch->active) {
104		flush_hash_page(vpn, rpte, psize, ssize, mm_is_thread_local(mm));
105		put_cpu_var(ppc64_tlb_batch);
106		return;
107	}
108
109	/*
110	 * This can happen when we are in the middle of a TLB batch and
111	 * we encounter memory pressure (eg copy_page_range when it tries
112	 * to allocate a new pte). If we have to reclaim memory and end
113	 * up scanning and resetting referenced bits then our batch context
114	 * will change mid stream.
115	 *
116	 * We also need to ensure only one page size is present in a given
117	 * batch
118	 */
119	if (i != 0 && (mm != batch->mm || batch->psize != psize ||
120		       batch->ssize != ssize)) {
121		__flush_tlb_pending(batch);
122		i = 0;
123	}
124	if (i == 0) {
125		batch->mm = mm;
126		batch->psize = psize;
127		batch->ssize = ssize;
128	}
129	batch->pte[i] = rpte;
130	batch->vpn[i] = vpn;
131	batch->index = ++i;
132	if (i >= PPC64_TLB_BATCH_NR)
133		__flush_tlb_pending(batch);
134	put_cpu_var(ppc64_tlb_batch);
135}
136
137/*
138 * This function is called when terminating an mmu batch or when a batch
139 * is full. It will perform the flush of all the entries currently stored
140 * in a batch.
141 *
142 * Must be called from within some kind of spinlock/non-preempt region...
143 */
144void __flush_tlb_pending(struct ppc64_tlb_batch *batch)
145{
146	int i, local;
147
148	i = batch->index;
149	local = mm_is_thread_local(batch->mm);
150	if (i == 1)
151		flush_hash_page(batch->vpn[0], batch->pte[0],
152				batch->psize, batch->ssize, local);
153	else
154		flush_hash_range(i, local);
155	batch->index = 0;
156}
157
158void hash__tlb_flush(struct mmu_gather *tlb)
159{
160	struct ppc64_tlb_batch *tlbbatch = &get_cpu_var(ppc64_tlb_batch);
161
162	/*
163	 * If there's a TLB batch pending, then we must flush it because the
164	 * pages are going to be freed and we really don't want to have a CPU
165	 * access a freed page because it has a stale TLB
166	 */
167	if (tlbbatch->index)
168		__flush_tlb_pending(tlbbatch);
169
170	put_cpu_var(ppc64_tlb_batch);
171}
172
173/**
174 * __flush_hash_table_range - Flush all HPTEs for a given address range
175 *                            from the hash table (and the TLB). But keeps
176 *                            the linux PTEs intact.
177 *
178 * @start	: starting address
179 * @end         : ending address (not included in the flush)
180 *
181 * This function is mostly to be used by some IO hotplug code in order
182 * to remove all hash entries from a given address range used to map IO
183 * space on a removed PCI-PCI bidge without tearing down the full mapping
184 * since 64K pages may overlap with other bridges when using 64K pages
185 * with 4K HW pages on IO space.
186 *
187 * Because of that usage pattern, it is implemented for small size rather
188 * than speed.
189 */
190void __flush_hash_table_range(unsigned long start, unsigned long end)
191{
192	int hugepage_shift;
193	unsigned long flags;
194
195	start = ALIGN_DOWN(start, PAGE_SIZE);
196	end = ALIGN(end, PAGE_SIZE);
197
198
199	/*
200	 * Note: Normally, we should only ever use a batch within a
201	 * PTE locked section. This violates the rule, but will work
202	 * since we don't actually modify the PTEs, we just flush the
203	 * hash while leaving the PTEs intact (including their reference
204	 * to being hashed). This is not the most performance oriented
205	 * way to do things but is fine for our needs here.
206	 */
207	local_irq_save(flags);
208	arch_enter_lazy_mmu_mode();
209	for (; start < end; start += PAGE_SIZE) {
210		pte_t *ptep = find_init_mm_pte(start, &hugepage_shift);
211		unsigned long pte;
212
213		if (ptep == NULL)
214			continue;
215		pte = pte_val(*ptep);
216		if (!(pte & H_PAGE_HASHPTE))
217			continue;
218		hpte_need_flush(&init_mm, start, ptep, pte, hugepage_shift);
219	}
220	arch_leave_lazy_mmu_mode();
221	local_irq_restore(flags);
222}
223
224void flush_tlb_pmd_range(struct mm_struct *mm, pmd_t *pmd, unsigned long addr)
225{
226	pte_t *pte;
227	pte_t *start_pte;
228	unsigned long flags;
229
230	addr = ALIGN_DOWN(addr, PMD_SIZE);
231	/*
232	 * Note: Normally, we should only ever use a batch within a
233	 * PTE locked section. This violates the rule, but will work
234	 * since we don't actually modify the PTEs, we just flush the
235	 * hash while leaving the PTEs intact (including their reference
236	 * to being hashed). This is not the most performance oriented
237	 * way to do things but is fine for our needs here.
238	 */
239	local_irq_save(flags);
240	arch_enter_lazy_mmu_mode();
241	start_pte = pte_offset_map(pmd, addr);
242	for (pte = start_pte; pte < start_pte + PTRS_PER_PTE; pte++) {
243		unsigned long pteval = pte_val(*pte);
244		if (pteval & H_PAGE_HASHPTE)
245			hpte_need_flush(mm, addr, pte, pteval, 0);
246		addr += PAGE_SIZE;
247	}
248	arch_leave_lazy_mmu_mode();
249	local_irq_restore(flags);
250}
251