1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright 2017 Benjamin Herrenschmidt, IBM Corporation.
4 */
5
6#define pr_fmt(fmt) "xive-kvm: " fmt
7
8#include <linux/kernel.h>
9#include <linux/kvm_host.h>
10#include <linux/err.h>
11#include <linux/gfp.h>
12#include <linux/spinlock.h>
13#include <linux/delay.h>
14#include <linux/percpu.h>
15#include <linux/cpumask.h>
16#include <linux/uaccess.h>
17#include <asm/kvm_book3s.h>
18#include <asm/kvm_ppc.h>
19#include <asm/hvcall.h>
20#include <asm/xics.h>
21#include <asm/xive.h>
22#include <asm/xive-regs.h>
23#include <asm/debug.h>
24#include <asm/debugfs.h>
25#include <asm/time.h>
26#include <asm/opal.h>
27
28#include <linux/debugfs.h>
29#include <linux/seq_file.h>
30
31#include "book3s_xive.h"
32
33
34/*
35 * Virtual mode variants of the hcalls for use on radix/radix
36 * with AIL. They require the VCPU's VP to be "pushed"
37 *
38 * We still instantiate them here because we use some of the
39 * generated utility functions as well in this file.
40 */
41#define XIVE_RUNTIME_CHECKS
42#define X_PFX xive_vm_
43#define X_STATIC static
44#define X_STAT_PFX stat_vm_
45#define __x_tima		xive_tima
46#define __x_eoi_page(xd)	((void __iomem *)((xd)->eoi_mmio))
47#define __x_trig_page(xd)	((void __iomem *)((xd)->trig_mmio))
48#define __x_writeb	__raw_writeb
49#define __x_readw	__raw_readw
50#define __x_readq	__raw_readq
51#define __x_writeq	__raw_writeq
52
53#include "book3s_xive_template.c"
54
55/*
56 * We leave a gap of a couple of interrupts in the queue to
57 * account for the IPI and additional safety guard.
58 */
59#define XIVE_Q_GAP	2
60
61/*
62 * Push a vcpu's context to the XIVE on guest entry.
63 * This assumes we are in virtual mode (MMU on)
64 */
65void kvmppc_xive_push_vcpu(struct kvm_vcpu *vcpu)
66{
67	void __iomem *tima = local_paca->kvm_hstate.xive_tima_virt;
68	u64 pq;
69
70	/*
71	 * Nothing to do if the platform doesn't have a XIVE
72	 * or this vCPU doesn't have its own XIVE context
73	 * (e.g. because it's not using an in-kernel interrupt controller).
74	 */
75	if (!tima || !vcpu->arch.xive_cam_word)
76		return;
77
78	eieio();
79	__raw_writeq(vcpu->arch.xive_saved_state.w01, tima + TM_QW1_OS);
80	__raw_writel(vcpu->arch.xive_cam_word, tima + TM_QW1_OS + TM_WORD2);
81	vcpu->arch.xive_pushed = 1;
82	eieio();
83
84	/*
85	 * We clear the irq_pending flag. There is a small chance of a
86	 * race vs. the escalation interrupt happening on another
87	 * processor setting it again, but the only consequence is to
88	 * cause a spurious wakeup on the next H_CEDE, which is not an
89	 * issue.
90	 */
91	vcpu->arch.irq_pending = 0;
92
93	/*
94	 * In single escalation mode, if the escalation interrupt is
95	 * on, we mask it.
96	 */
97	if (vcpu->arch.xive_esc_on) {
98		pq = __raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
99						  XIVE_ESB_SET_PQ_01));
100		mb();
101
102		/*
103		 * We have a possible subtle race here: The escalation
104		 * interrupt might have fired and be on its way to the
105		 * host queue while we mask it, and if we unmask it
106		 * early enough (re-cede right away), there is a
107		 * theorical possibility that it fires again, thus
108		 * landing in the target queue more than once which is
109		 * a big no-no.
110		 *
111		 * Fortunately, solving this is rather easy. If the
112		 * above load setting PQ to 01 returns a previous
113		 * value where P is set, then we know the escalation
114		 * interrupt is somewhere on its way to the host. In
115		 * that case we simply don't clear the xive_esc_on
116		 * flag below. It will be eventually cleared by the
117		 * handler for the escalation interrupt.
118		 *
119		 * Then, when doing a cede, we check that flag again
120		 * before re-enabling the escalation interrupt, and if
121		 * set, we abort the cede.
122		 */
123		if (!(pq & XIVE_ESB_VAL_P))
124			/* Now P is 0, we can clear the flag */
125			vcpu->arch.xive_esc_on = 0;
126	}
127}
128EXPORT_SYMBOL_GPL(kvmppc_xive_push_vcpu);
129
130/*
131 * This is a simple trigger for a generic XIVE IRQ. This must
132 * only be called for interrupts that support a trigger page
133 */
134static bool xive_irq_trigger(struct xive_irq_data *xd)
135{
136	/* This should be only for MSIs */
137	if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
138		return false;
139
140	/* Those interrupts should always have a trigger page */
141	if (WARN_ON(!xd->trig_mmio))
142		return false;
143
144	out_be64(xd->trig_mmio, 0);
145
146	return true;
147}
148
149static irqreturn_t xive_esc_irq(int irq, void *data)
150{
151	struct kvm_vcpu *vcpu = data;
152
153	vcpu->arch.irq_pending = 1;
154	smp_mb();
155	if (vcpu->arch.ceded)
156		kvmppc_fast_vcpu_kick(vcpu);
157
158	/* Since we have the no-EOI flag, the interrupt is effectively
159	 * disabled now. Clearing xive_esc_on means we won't bother
160	 * doing so on the next entry.
161	 *
162	 * This also allows the entry code to know that if a PQ combination
163	 * of 10 is observed while xive_esc_on is true, it means the queue
164	 * contains an unprocessed escalation interrupt. We don't make use of
165	 * that knowledge today but might (see comment in book3s_hv_rmhandler.S)
166	 */
167	vcpu->arch.xive_esc_on = false;
168
169	/* This orders xive_esc_on = false vs. subsequent stale_p = true */
170	smp_wmb();	/* goes with smp_mb() in cleanup_single_escalation */
171
172	return IRQ_HANDLED;
173}
174
175int kvmppc_xive_attach_escalation(struct kvm_vcpu *vcpu, u8 prio,
176				  bool single_escalation)
177{
178	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
179	struct xive_q *q = &xc->queues[prio];
180	char *name = NULL;
181	int rc;
182
183	/* Already there ? */
184	if (xc->esc_virq[prio])
185		return 0;
186
187	/* Hook up the escalation interrupt */
188	xc->esc_virq[prio] = irq_create_mapping(NULL, q->esc_irq);
189	if (!xc->esc_virq[prio]) {
190		pr_err("Failed to map escalation interrupt for queue %d of VCPU %d\n",
191		       prio, xc->server_num);
192		return -EIO;
193	}
194
195	if (single_escalation)
196		name = kasprintf(GFP_KERNEL, "kvm-%d-%d",
197				 vcpu->kvm->arch.lpid, xc->server_num);
198	else
199		name = kasprintf(GFP_KERNEL, "kvm-%d-%d-%d",
200				 vcpu->kvm->arch.lpid, xc->server_num, prio);
201	if (!name) {
202		pr_err("Failed to allocate escalation irq name for queue %d of VCPU %d\n",
203		       prio, xc->server_num);
204		rc = -ENOMEM;
205		goto error;
206	}
207
208	pr_devel("Escalation %s irq %d (prio %d)\n", name, xc->esc_virq[prio], prio);
209
210	rc = request_irq(xc->esc_virq[prio], xive_esc_irq,
211			 IRQF_NO_THREAD, name, vcpu);
212	if (rc) {
213		pr_err("Failed to request escalation interrupt for queue %d of VCPU %d\n",
214		       prio, xc->server_num);
215		goto error;
216	}
217	xc->esc_virq_names[prio] = name;
218
219	/* In single escalation mode, we grab the ESB MMIO of the
220	 * interrupt and mask it. Also populate the VCPU v/raddr
221	 * of the ESB page for use by asm entry/exit code. Finally
222	 * set the XIVE_IRQ_NO_EOI flag which will prevent the
223	 * core code from performing an EOI on the escalation
224	 * interrupt, thus leaving it effectively masked after
225	 * it fires once.
226	 */
227	if (single_escalation) {
228		struct irq_data *d = irq_get_irq_data(xc->esc_virq[prio]);
229		struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
230
231		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
232		vcpu->arch.xive_esc_raddr = xd->eoi_page;
233		vcpu->arch.xive_esc_vaddr = (__force u64)xd->eoi_mmio;
234		xd->flags |= XIVE_IRQ_NO_EOI;
235	}
236
237	return 0;
238error:
239	irq_dispose_mapping(xc->esc_virq[prio]);
240	xc->esc_virq[prio] = 0;
241	kfree(name);
242	return rc;
243}
244
245static int xive_provision_queue(struct kvm_vcpu *vcpu, u8 prio)
246{
247	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
248	struct kvmppc_xive *xive = xc->xive;
249	struct xive_q *q =  &xc->queues[prio];
250	void *qpage;
251	int rc;
252
253	if (WARN_ON(q->qpage))
254		return 0;
255
256	/* Allocate the queue and retrieve infos on current node for now */
257	qpage = (__be32 *)__get_free_pages(GFP_KERNEL, xive->q_page_order);
258	if (!qpage) {
259		pr_err("Failed to allocate queue %d for VCPU %d\n",
260		       prio, xc->server_num);
261		return -ENOMEM;
262	}
263	memset(qpage, 0, 1 << xive->q_order);
264
265	/*
266	 * Reconfigure the queue. This will set q->qpage only once the
267	 * queue is fully configured. This is a requirement for prio 0
268	 * as we will stop doing EOIs for every IPI as soon as we observe
269	 * qpage being non-NULL, and instead will only EOI when we receive
270	 * corresponding queue 0 entries
271	 */
272	rc = xive_native_configure_queue(xc->vp_id, q, prio, qpage,
273					 xive->q_order, true);
274	if (rc)
275		pr_err("Failed to configure queue %d for VCPU %d\n",
276		       prio, xc->server_num);
277	return rc;
278}
279
280/* Called with xive->lock held */
281static int xive_check_provisioning(struct kvm *kvm, u8 prio)
282{
283	struct kvmppc_xive *xive = kvm->arch.xive;
284	struct kvm_vcpu *vcpu;
285	int i, rc;
286
287	lockdep_assert_held(&xive->lock);
288
289	/* Already provisioned ? */
290	if (xive->qmap & (1 << prio))
291		return 0;
292
293	pr_devel("Provisioning prio... %d\n", prio);
294
295	/* Provision each VCPU and enable escalations if needed */
296	kvm_for_each_vcpu(i, vcpu, kvm) {
297		if (!vcpu->arch.xive_vcpu)
298			continue;
299		rc = xive_provision_queue(vcpu, prio);
300		if (rc == 0 && !xive->single_escalation)
301			kvmppc_xive_attach_escalation(vcpu, prio,
302						      xive->single_escalation);
303		if (rc)
304			return rc;
305	}
306
307	/* Order previous stores and mark it as provisioned */
308	mb();
309	xive->qmap |= (1 << prio);
310	return 0;
311}
312
313static void xive_inc_q_pending(struct kvm *kvm, u32 server, u8 prio)
314{
315	struct kvm_vcpu *vcpu;
316	struct kvmppc_xive_vcpu *xc;
317	struct xive_q *q;
318
319	/* Locate target server */
320	vcpu = kvmppc_xive_find_server(kvm, server);
321	if (!vcpu) {
322		pr_warn("%s: Can't find server %d\n", __func__, server);
323		return;
324	}
325	xc = vcpu->arch.xive_vcpu;
326	if (WARN_ON(!xc))
327		return;
328
329	q = &xc->queues[prio];
330	atomic_inc(&q->pending_count);
331}
332
333static int xive_try_pick_queue(struct kvm_vcpu *vcpu, u8 prio)
334{
335	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
336	struct xive_q *q;
337	u32 max;
338
339	if (WARN_ON(!xc))
340		return -ENXIO;
341	if (!xc->valid)
342		return -ENXIO;
343
344	q = &xc->queues[prio];
345	if (WARN_ON(!q->qpage))
346		return -ENXIO;
347
348	/* Calculate max number of interrupts in that queue. */
349	max = (q->msk + 1) - XIVE_Q_GAP;
350	return atomic_add_unless(&q->count, 1, max) ? 0 : -EBUSY;
351}
352
353int kvmppc_xive_select_target(struct kvm *kvm, u32 *server, u8 prio)
354{
355	struct kvm_vcpu *vcpu;
356	int i, rc;
357
358	/* Locate target server */
359	vcpu = kvmppc_xive_find_server(kvm, *server);
360	if (!vcpu) {
361		pr_devel("Can't find server %d\n", *server);
362		return -EINVAL;
363	}
364
365	pr_devel("Finding irq target on 0x%x/%d...\n", *server, prio);
366
367	/* Try pick it */
368	rc = xive_try_pick_queue(vcpu, prio);
369	if (rc == 0)
370		return rc;
371
372	pr_devel(" .. failed, looking up candidate...\n");
373
374	/* Failed, pick another VCPU */
375	kvm_for_each_vcpu(i, vcpu, kvm) {
376		if (!vcpu->arch.xive_vcpu)
377			continue;
378		rc = xive_try_pick_queue(vcpu, prio);
379		if (rc == 0) {
380			*server = vcpu->arch.xive_vcpu->server_num;
381			pr_devel("  found on 0x%x/%d\n", *server, prio);
382			return rc;
383		}
384	}
385	pr_devel("  no available target !\n");
386
387	/* No available target ! */
388	return -EBUSY;
389}
390
391static u8 xive_lock_and_mask(struct kvmppc_xive *xive,
392			     struct kvmppc_xive_src_block *sb,
393			     struct kvmppc_xive_irq_state *state)
394{
395	struct xive_irq_data *xd;
396	u32 hw_num;
397	u8 old_prio;
398	u64 val;
399
400	/*
401	 * Take the lock, set masked, try again if racing
402	 * with H_EOI
403	 */
404	for (;;) {
405		arch_spin_lock(&sb->lock);
406		old_prio = state->guest_priority;
407		state->guest_priority = MASKED;
408		mb();
409		if (!state->in_eoi)
410			break;
411		state->guest_priority = old_prio;
412		arch_spin_unlock(&sb->lock);
413	}
414
415	/* No change ? Bail */
416	if (old_prio == MASKED)
417		return old_prio;
418
419	/* Get the right irq */
420	kvmppc_xive_select_irq(state, &hw_num, &xd);
421
422	/*
423	 * If the interrupt is marked as needing masking via
424	 * firmware, we do it here. Firmware masking however
425	 * is "lossy", it won't return the old p and q bits
426	 * and won't set the interrupt to a state where it will
427	 * record queued ones. If this is an issue we should do
428	 * lazy masking instead.
429	 *
430	 * For now, we work around this in unmask by forcing
431	 * an interrupt whenever we unmask a non-LSI via FW
432	 * (if ever).
433	 */
434	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
435		xive_native_configure_irq(hw_num,
436				kvmppc_xive_vp(xive, state->act_server),
437				MASKED, state->number);
438		/* set old_p so we can track if an H_EOI was done */
439		state->old_p = true;
440		state->old_q = false;
441	} else {
442		/* Set PQ to 10, return old P and old Q and remember them */
443		val = xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_10);
444		state->old_p = !!(val & 2);
445		state->old_q = !!(val & 1);
446
447		/*
448		 * Synchronize hardware to sensure the queues are updated
449		 * when masking
450		 */
451		xive_native_sync_source(hw_num);
452	}
453
454	return old_prio;
455}
456
457static void xive_lock_for_unmask(struct kvmppc_xive_src_block *sb,
458				 struct kvmppc_xive_irq_state *state)
459{
460	/*
461	 * Take the lock try again if racing with H_EOI
462	 */
463	for (;;) {
464		arch_spin_lock(&sb->lock);
465		if (!state->in_eoi)
466			break;
467		arch_spin_unlock(&sb->lock);
468	}
469}
470
471static void xive_finish_unmask(struct kvmppc_xive *xive,
472			       struct kvmppc_xive_src_block *sb,
473			       struct kvmppc_xive_irq_state *state,
474			       u8 prio)
475{
476	struct xive_irq_data *xd;
477	u32 hw_num;
478
479	/* If we aren't changing a thing, move on */
480	if (state->guest_priority != MASKED)
481		goto bail;
482
483	/* Get the right irq */
484	kvmppc_xive_select_irq(state, &hw_num, &xd);
485
486	/*
487	 * See comment in xive_lock_and_mask() concerning masking
488	 * via firmware.
489	 */
490	if (xd->flags & OPAL_XIVE_IRQ_MASK_VIA_FW) {
491		xive_native_configure_irq(hw_num,
492				kvmppc_xive_vp(xive, state->act_server),
493				state->act_priority, state->number);
494		/* If an EOI is needed, do it here */
495		if (!state->old_p)
496			xive_vm_source_eoi(hw_num, xd);
497		/* If this is not an LSI, force a trigger */
498		if (!(xd->flags & OPAL_XIVE_IRQ_LSI))
499			xive_irq_trigger(xd);
500		goto bail;
501	}
502
503	/* Old Q set, set PQ to 11 */
504	if (state->old_q)
505		xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_11);
506
507	/*
508	 * If not old P, then perform an "effective" EOI,
509	 * on the source. This will handle the cases where
510	 * FW EOI is needed.
511	 */
512	if (!state->old_p)
513		xive_vm_source_eoi(hw_num, xd);
514
515	/* Synchronize ordering and mark unmasked */
516	mb();
517bail:
518	state->guest_priority = prio;
519}
520
521/*
522 * Target an interrupt to a given server/prio, this will fallback
523 * to another server if necessary and perform the HW targetting
524 * updates as needed
525 *
526 * NOTE: Must be called with the state lock held
527 */
528static int xive_target_interrupt(struct kvm *kvm,
529				 struct kvmppc_xive_irq_state *state,
530				 u32 server, u8 prio)
531{
532	struct kvmppc_xive *xive = kvm->arch.xive;
533	u32 hw_num;
534	int rc;
535
536	/*
537	 * This will return a tentative server and actual
538	 * priority. The count for that new target will have
539	 * already been incremented.
540	 */
541	rc = kvmppc_xive_select_target(kvm, &server, prio);
542
543	/*
544	 * We failed to find a target ? Not much we can do
545	 * at least until we support the GIQ.
546	 */
547	if (rc)
548		return rc;
549
550	/*
551	 * Increment the old queue pending count if there
552	 * was one so that the old queue count gets adjusted later
553	 * when observed to be empty.
554	 */
555	if (state->act_priority != MASKED)
556		xive_inc_q_pending(kvm,
557				   state->act_server,
558				   state->act_priority);
559	/*
560	 * Update state and HW
561	 */
562	state->act_priority = prio;
563	state->act_server = server;
564
565	/* Get the right irq */
566	kvmppc_xive_select_irq(state, &hw_num, NULL);
567
568	return xive_native_configure_irq(hw_num,
569					 kvmppc_xive_vp(xive, server),
570					 prio, state->number);
571}
572
573/*
574 * Targetting rules: In order to avoid losing track of
575 * pending interrupts accross mask and unmask, which would
576 * allow queue overflows, we implement the following rules:
577 *
578 *  - Unless it was never enabled (or we run out of capacity)
579 *    an interrupt is always targetted at a valid server/queue
580 *    pair even when "masked" by the guest. This pair tends to
581 *    be the last one used but it can be changed under some
582 *    circumstances. That allows us to separate targetting
583 *    from masking, we only handle accounting during (re)targetting,
584 *    this also allows us to let an interrupt drain into its target
585 *    queue after masking, avoiding complex schemes to remove
586 *    interrupts out of remote processor queues.
587 *
588 *  - When masking, we set PQ to 10 and save the previous value
589 *    of P and Q.
590 *
591 *  - When unmasking, if saved Q was set, we set PQ to 11
592 *    otherwise we leave PQ to the HW state which will be either
593 *    10 if nothing happened or 11 if the interrupt fired while
594 *    masked. Effectively we are OR'ing the previous Q into the
595 *    HW Q.
596 *
597 *    Then if saved P is clear, we do an effective EOI (Q->P->Trigger)
598 *    which will unmask the interrupt and shoot a new one if Q was
599 *    set.
600 *
601 *    Otherwise (saved P is set) we leave PQ unchanged (so 10 or 11,
602 *    effectively meaning an H_EOI from the guest is still expected
603 *    for that interrupt).
604 *
605 *  - If H_EOI occurs while masked, we clear the saved P.
606 *
607 *  - When changing target, we account on the new target and
608 *    increment a separate "pending" counter on the old one.
609 *    This pending counter will be used to decrement the old
610 *    target's count when its queue has been observed empty.
611 */
612
613int kvmppc_xive_set_xive(struct kvm *kvm, u32 irq, u32 server,
614			 u32 priority)
615{
616	struct kvmppc_xive *xive = kvm->arch.xive;
617	struct kvmppc_xive_src_block *sb;
618	struct kvmppc_xive_irq_state *state;
619	u8 new_act_prio;
620	int rc = 0;
621	u16 idx;
622
623	if (!xive)
624		return -ENODEV;
625
626	pr_devel("set_xive ! irq 0x%x server 0x%x prio %d\n",
627		 irq, server, priority);
628
629	/* First, check provisioning of queues */
630	if (priority != MASKED) {
631		mutex_lock(&xive->lock);
632		rc = xive_check_provisioning(xive->kvm,
633			      xive_prio_from_guest(priority));
634		mutex_unlock(&xive->lock);
635	}
636	if (rc) {
637		pr_devel("  provisioning failure %d !\n", rc);
638		return rc;
639	}
640
641	sb = kvmppc_xive_find_source(xive, irq, &idx);
642	if (!sb)
643		return -EINVAL;
644	state = &sb->irq_state[idx];
645
646	/*
647	 * We first handle masking/unmasking since the locking
648	 * might need to be retried due to EOIs, we'll handle
649	 * targetting changes later. These functions will return
650	 * with the SB lock held.
651	 *
652	 * xive_lock_and_mask() will also set state->guest_priority
653	 * but won't otherwise change other fields of the state.
654	 *
655	 * xive_lock_for_unmask will not actually unmask, this will
656	 * be done later by xive_finish_unmask() once the targetting
657	 * has been done, so we don't try to unmask an interrupt
658	 * that hasn't yet been targetted.
659	 */
660	if (priority == MASKED)
661		xive_lock_and_mask(xive, sb, state);
662	else
663		xive_lock_for_unmask(sb, state);
664
665
666	/*
667	 * Then we handle targetting.
668	 *
669	 * First calculate a new "actual priority"
670	 */
671	new_act_prio = state->act_priority;
672	if (priority != MASKED)
673		new_act_prio = xive_prio_from_guest(priority);
674
675	pr_devel(" new_act_prio=%x act_server=%x act_prio=%x\n",
676		 new_act_prio, state->act_server, state->act_priority);
677
678	/*
679	 * Then check if we actually need to change anything,
680	 *
681	 * The condition for re-targetting the interrupt is that
682	 * we have a valid new priority (new_act_prio is not 0xff)
683	 * and either the server or the priority changed.
684	 *
685	 * Note: If act_priority was ff and the new priority is
686	 *       also ff, we don't do anything and leave the interrupt
687	 *       untargetted. An attempt of doing an int_on on an
688	 *       untargetted interrupt will fail. If that is a problem
689	 *       we could initialize interrupts with valid default
690	 */
691
692	if (new_act_prio != MASKED &&
693	    (state->act_server != server ||
694	     state->act_priority != new_act_prio))
695		rc = xive_target_interrupt(kvm, state, server, new_act_prio);
696
697	/*
698	 * Perform the final unmasking of the interrupt source
699	 * if necessary
700	 */
701	if (priority != MASKED)
702		xive_finish_unmask(xive, sb, state, priority);
703
704	/*
705	 * Finally Update saved_priority to match. Only int_on/off
706	 * set this field to a different value.
707	 */
708	state->saved_priority = priority;
709
710	arch_spin_unlock(&sb->lock);
711	return rc;
712}
713
714int kvmppc_xive_get_xive(struct kvm *kvm, u32 irq, u32 *server,
715			 u32 *priority)
716{
717	struct kvmppc_xive *xive = kvm->arch.xive;
718	struct kvmppc_xive_src_block *sb;
719	struct kvmppc_xive_irq_state *state;
720	u16 idx;
721
722	if (!xive)
723		return -ENODEV;
724
725	sb = kvmppc_xive_find_source(xive, irq, &idx);
726	if (!sb)
727		return -EINVAL;
728	state = &sb->irq_state[idx];
729	arch_spin_lock(&sb->lock);
730	*server = state->act_server;
731	*priority = state->guest_priority;
732	arch_spin_unlock(&sb->lock);
733
734	return 0;
735}
736
737int kvmppc_xive_int_on(struct kvm *kvm, u32 irq)
738{
739	struct kvmppc_xive *xive = kvm->arch.xive;
740	struct kvmppc_xive_src_block *sb;
741	struct kvmppc_xive_irq_state *state;
742	u16 idx;
743
744	if (!xive)
745		return -ENODEV;
746
747	sb = kvmppc_xive_find_source(xive, irq, &idx);
748	if (!sb)
749		return -EINVAL;
750	state = &sb->irq_state[idx];
751
752	pr_devel("int_on(irq=0x%x)\n", irq);
753
754	/*
755	 * Check if interrupt was not targetted
756	 */
757	if (state->act_priority == MASKED) {
758		pr_devel("int_on on untargetted interrupt\n");
759		return -EINVAL;
760	}
761
762	/* If saved_priority is 0xff, do nothing */
763	if (state->saved_priority == MASKED)
764		return 0;
765
766	/*
767	 * Lock and unmask it.
768	 */
769	xive_lock_for_unmask(sb, state);
770	xive_finish_unmask(xive, sb, state, state->saved_priority);
771	arch_spin_unlock(&sb->lock);
772
773	return 0;
774}
775
776int kvmppc_xive_int_off(struct kvm *kvm, u32 irq)
777{
778	struct kvmppc_xive *xive = kvm->arch.xive;
779	struct kvmppc_xive_src_block *sb;
780	struct kvmppc_xive_irq_state *state;
781	u16 idx;
782
783	if (!xive)
784		return -ENODEV;
785
786	sb = kvmppc_xive_find_source(xive, irq, &idx);
787	if (!sb)
788		return -EINVAL;
789	state = &sb->irq_state[idx];
790
791	pr_devel("int_off(irq=0x%x)\n", irq);
792
793	/*
794	 * Lock and mask
795	 */
796	state->saved_priority = xive_lock_and_mask(xive, sb, state);
797	arch_spin_unlock(&sb->lock);
798
799	return 0;
800}
801
802static bool xive_restore_pending_irq(struct kvmppc_xive *xive, u32 irq)
803{
804	struct kvmppc_xive_src_block *sb;
805	struct kvmppc_xive_irq_state *state;
806	u16 idx;
807
808	sb = kvmppc_xive_find_source(xive, irq, &idx);
809	if (!sb)
810		return false;
811	state = &sb->irq_state[idx];
812	if (!state->valid)
813		return false;
814
815	/*
816	 * Trigger the IPI. This assumes we never restore a pass-through
817	 * interrupt which should be safe enough
818	 */
819	xive_irq_trigger(&state->ipi_data);
820
821	return true;
822}
823
824u64 kvmppc_xive_get_icp(struct kvm_vcpu *vcpu)
825{
826	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
827
828	if (!xc)
829		return 0;
830
831	/* Return the per-cpu state for state saving/migration */
832	return (u64)xc->cppr << KVM_REG_PPC_ICP_CPPR_SHIFT |
833	       (u64)xc->mfrr << KVM_REG_PPC_ICP_MFRR_SHIFT |
834	       (u64)0xff << KVM_REG_PPC_ICP_PPRI_SHIFT;
835}
836
837int kvmppc_xive_set_icp(struct kvm_vcpu *vcpu, u64 icpval)
838{
839	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
840	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
841	u8 cppr, mfrr;
842	u32 xisr;
843
844	if (!xc || !xive)
845		return -ENOENT;
846
847	/* Grab individual state fields. We don't use pending_pri */
848	cppr = icpval >> KVM_REG_PPC_ICP_CPPR_SHIFT;
849	xisr = (icpval >> KVM_REG_PPC_ICP_XISR_SHIFT) &
850		KVM_REG_PPC_ICP_XISR_MASK;
851	mfrr = icpval >> KVM_REG_PPC_ICP_MFRR_SHIFT;
852
853	pr_devel("set_icp vcpu %d cppr=0x%x mfrr=0x%x xisr=0x%x\n",
854		 xc->server_num, cppr, mfrr, xisr);
855
856	/*
857	 * We can't update the state of a "pushed" VCPU, but that
858	 * shouldn't happen because the vcpu->mutex makes running a
859	 * vcpu mutually exclusive with doing one_reg get/set on it.
860	 */
861	if (WARN_ON(vcpu->arch.xive_pushed))
862		return -EIO;
863
864	/* Update VCPU HW saved state */
865	vcpu->arch.xive_saved_state.cppr = cppr;
866	xc->hw_cppr = xc->cppr = cppr;
867
868	/*
869	 * Update MFRR state. If it's not 0xff, we mark the VCPU as
870	 * having a pending MFRR change, which will re-evaluate the
871	 * target. The VCPU will thus potentially get a spurious
872	 * interrupt but that's not a big deal.
873	 */
874	xc->mfrr = mfrr;
875	if (mfrr < cppr)
876		xive_irq_trigger(&xc->vp_ipi_data);
877
878	/*
879	 * Now saved XIRR is "interesting". It means there's something in
880	 * the legacy "1 element" queue... for an IPI we simply ignore it,
881	 * as the MFRR restore will handle that. For anything else we need
882	 * to force a resend of the source.
883	 * However the source may not have been setup yet. If that's the
884	 * case, we keep that info and increment a counter in the xive to
885	 * tell subsequent xive_set_source() to go look.
886	 */
887	if (xisr > XICS_IPI && !xive_restore_pending_irq(xive, xisr)) {
888		xc->delayed_irq = xisr;
889		xive->delayed_irqs++;
890		pr_devel("  xisr restore delayed\n");
891	}
892
893	return 0;
894}
895
896int kvmppc_xive_set_mapped(struct kvm *kvm, unsigned long guest_irq,
897			   struct irq_desc *host_desc)
898{
899	struct kvmppc_xive *xive = kvm->arch.xive;
900	struct kvmppc_xive_src_block *sb;
901	struct kvmppc_xive_irq_state *state;
902	struct irq_data *host_data = irq_desc_get_irq_data(host_desc);
903	unsigned int host_irq = irq_desc_get_irq(host_desc);
904	unsigned int hw_irq = (unsigned int)irqd_to_hwirq(host_data);
905	u16 idx;
906	u8 prio;
907	int rc;
908
909	if (!xive)
910		return -ENODEV;
911
912	pr_devel("set_mapped girq 0x%lx host HW irq 0x%x...\n",guest_irq, hw_irq);
913
914	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
915	if (!sb)
916		return -EINVAL;
917	state = &sb->irq_state[idx];
918
919	/*
920	 * Mark the passed-through interrupt as going to a VCPU,
921	 * this will prevent further EOIs and similar operations
922	 * from the XIVE code. It will also mask the interrupt
923	 * to either PQ=10 or 11 state, the latter if the interrupt
924	 * is pending. This will allow us to unmask or retrigger it
925	 * after routing it to the guest with a simple EOI.
926	 *
927	 * The "state" argument is a "token", all it needs is to be
928	 * non-NULL to switch to passed-through or NULL for the
929	 * other way around. We may not yet have an actual VCPU
930	 * target here and we don't really care.
931	 */
932	rc = irq_set_vcpu_affinity(host_irq, state);
933	if (rc) {
934		pr_err("Failed to set VCPU affinity for irq %d\n", host_irq);
935		return rc;
936	}
937
938	/*
939	 * Mask and read state of IPI. We need to know if its P bit
940	 * is set as that means it's potentially already using a
941	 * queue entry in the target
942	 */
943	prio = xive_lock_and_mask(xive, sb, state);
944	pr_devel(" old IPI prio %02x P:%d Q:%d\n", prio,
945		 state->old_p, state->old_q);
946
947	/* Turn the IPI hard off */
948	xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
949
950	/*
951	 * Reset ESB guest mapping. Needed when ESB pages are exposed
952	 * to the guest in XIVE native mode
953	 */
954	if (xive->ops && xive->ops->reset_mapped)
955		xive->ops->reset_mapped(kvm, guest_irq);
956
957	/* Grab info about irq */
958	state->pt_number = hw_irq;
959	state->pt_data = irq_data_get_irq_handler_data(host_data);
960
961	/*
962	 * Configure the IRQ to match the existing configuration of
963	 * the IPI if it was already targetted. Otherwise this will
964	 * mask the interrupt in a lossy way (act_priority is 0xff)
965	 * which is fine for a never started interrupt.
966	 */
967	xive_native_configure_irq(hw_irq,
968				  kvmppc_xive_vp(xive, state->act_server),
969				  state->act_priority, state->number);
970
971	/*
972	 * We do an EOI to enable the interrupt (and retrigger if needed)
973	 * if the guest has the interrupt unmasked and the P bit was *not*
974	 * set in the IPI. If it was set, we know a slot may still be in
975	 * use in the target queue thus we have to wait for a guest
976	 * originated EOI
977	 */
978	if (prio != MASKED && !state->old_p)
979		xive_vm_source_eoi(hw_irq, state->pt_data);
980
981	/* Clear old_p/old_q as they are no longer relevant */
982	state->old_p = state->old_q = false;
983
984	/* Restore guest prio (unlocks EOI) */
985	mb();
986	state->guest_priority = prio;
987	arch_spin_unlock(&sb->lock);
988
989	return 0;
990}
991EXPORT_SYMBOL_GPL(kvmppc_xive_set_mapped);
992
993int kvmppc_xive_clr_mapped(struct kvm *kvm, unsigned long guest_irq,
994			   struct irq_desc *host_desc)
995{
996	struct kvmppc_xive *xive = kvm->arch.xive;
997	struct kvmppc_xive_src_block *sb;
998	struct kvmppc_xive_irq_state *state;
999	unsigned int host_irq = irq_desc_get_irq(host_desc);
1000	u16 idx;
1001	u8 prio;
1002	int rc;
1003
1004	if (!xive)
1005		return -ENODEV;
1006
1007	pr_devel("clr_mapped girq 0x%lx...\n", guest_irq);
1008
1009	sb = kvmppc_xive_find_source(xive, guest_irq, &idx);
1010	if (!sb)
1011		return -EINVAL;
1012	state = &sb->irq_state[idx];
1013
1014	/*
1015	 * Mask and read state of IRQ. We need to know if its P bit
1016	 * is set as that means it's potentially already using a
1017	 * queue entry in the target
1018	 */
1019	prio = xive_lock_and_mask(xive, sb, state);
1020	pr_devel(" old IRQ prio %02x P:%d Q:%d\n", prio,
1021		 state->old_p, state->old_q);
1022
1023	/*
1024	 * If old_p is set, the interrupt is pending, we switch it to
1025	 * PQ=11. This will force a resend in the host so the interrupt
1026	 * isn't lost to whatver host driver may pick it up
1027	 */
1028	if (state->old_p)
1029		xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_11);
1030
1031	/* Release the passed-through interrupt to the host */
1032	rc = irq_set_vcpu_affinity(host_irq, NULL);
1033	if (rc) {
1034		pr_err("Failed to clr VCPU affinity for irq %d\n", host_irq);
1035		return rc;
1036	}
1037
1038	/* Forget about the IRQ */
1039	state->pt_number = 0;
1040	state->pt_data = NULL;
1041
1042	/*
1043	 * Reset ESB guest mapping. Needed when ESB pages are exposed
1044	 * to the guest in XIVE native mode
1045	 */
1046	if (xive->ops && xive->ops->reset_mapped) {
1047		xive->ops->reset_mapped(kvm, guest_irq);
1048	}
1049
1050	/* Reconfigure the IPI */
1051	xive_native_configure_irq(state->ipi_number,
1052				  kvmppc_xive_vp(xive, state->act_server),
1053				  state->act_priority, state->number);
1054
1055	/*
1056	 * If old_p is set (we have a queue entry potentially
1057	 * occupied) or the interrupt is masked, we set the IPI
1058	 * to PQ=10 state. Otherwise we just re-enable it (PQ=00).
1059	 */
1060	if (prio == MASKED || state->old_p)
1061		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_10);
1062	else
1063		xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_00);
1064
1065	/* Restore guest prio (unlocks EOI) */
1066	mb();
1067	state->guest_priority = prio;
1068	arch_spin_unlock(&sb->lock);
1069
1070	return 0;
1071}
1072EXPORT_SYMBOL_GPL(kvmppc_xive_clr_mapped);
1073
1074void kvmppc_xive_disable_vcpu_interrupts(struct kvm_vcpu *vcpu)
1075{
1076	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1077	struct kvm *kvm = vcpu->kvm;
1078	struct kvmppc_xive *xive = kvm->arch.xive;
1079	int i, j;
1080
1081	for (i = 0; i <= xive->max_sbid; i++) {
1082		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1083
1084		if (!sb)
1085			continue;
1086		for (j = 0; j < KVMPPC_XICS_IRQ_PER_ICS; j++) {
1087			struct kvmppc_xive_irq_state *state = &sb->irq_state[j];
1088
1089			if (!state->valid)
1090				continue;
1091			if (state->act_priority == MASKED)
1092				continue;
1093			if (state->act_server != xc->server_num)
1094				continue;
1095
1096			/* Clean it up */
1097			arch_spin_lock(&sb->lock);
1098			state->act_priority = MASKED;
1099			xive_vm_esb_load(&state->ipi_data, XIVE_ESB_SET_PQ_01);
1100			xive_native_configure_irq(state->ipi_number, 0, MASKED, 0);
1101			if (state->pt_number) {
1102				xive_vm_esb_load(state->pt_data, XIVE_ESB_SET_PQ_01);
1103				xive_native_configure_irq(state->pt_number, 0, MASKED, 0);
1104			}
1105			arch_spin_unlock(&sb->lock);
1106		}
1107	}
1108
1109	/* Disable vcpu's escalation interrupt */
1110	if (vcpu->arch.xive_esc_on) {
1111		__raw_readq((void __iomem *)(vcpu->arch.xive_esc_vaddr +
1112					     XIVE_ESB_SET_PQ_01));
1113		vcpu->arch.xive_esc_on = false;
1114	}
1115
1116	/*
1117	 * Clear pointers to escalation interrupt ESB.
1118	 * This is safe because the vcpu->mutex is held, preventing
1119	 * any other CPU from concurrently executing a KVM_RUN ioctl.
1120	 */
1121	vcpu->arch.xive_esc_vaddr = 0;
1122	vcpu->arch.xive_esc_raddr = 0;
1123}
1124
1125/*
1126 * In single escalation mode, the escalation interrupt is marked so
1127 * that EOI doesn't re-enable it, but just sets the stale_p flag to
1128 * indicate that the P bit has already been dealt with.  However, the
1129 * assembly code that enters the guest sets PQ to 00 without clearing
1130 * stale_p (because it has no easy way to address it).  Hence we have
1131 * to adjust stale_p before shutting down the interrupt.
1132 */
1133void xive_cleanup_single_escalation(struct kvm_vcpu *vcpu,
1134				    struct kvmppc_xive_vcpu *xc, int irq)
1135{
1136	struct irq_data *d = irq_get_irq_data(irq);
1137	struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
1138
1139	/*
1140	 * This slightly odd sequence gives the right result
1141	 * (i.e. stale_p set if xive_esc_on is false) even if
1142	 * we race with xive_esc_irq() and xive_irq_eoi().
1143	 */
1144	xd->stale_p = false;
1145	smp_mb();		/* paired with smb_wmb in xive_esc_irq */
1146	if (!vcpu->arch.xive_esc_on)
1147		xd->stale_p = true;
1148}
1149
1150void kvmppc_xive_cleanup_vcpu(struct kvm_vcpu *vcpu)
1151{
1152	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1153	struct kvmppc_xive *xive = vcpu->kvm->arch.xive;
1154	int i;
1155
1156	if (!kvmppc_xics_enabled(vcpu))
1157		return;
1158
1159	if (!xc)
1160		return;
1161
1162	pr_devel("cleanup_vcpu(cpu=%d)\n", xc->server_num);
1163
1164	/* Ensure no interrupt is still routed to that VP */
1165	xc->valid = false;
1166	kvmppc_xive_disable_vcpu_interrupts(vcpu);
1167
1168	/* Mask the VP IPI */
1169	xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_01);
1170
1171	/* Free escalations */
1172	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1173		if (xc->esc_virq[i]) {
1174			if (xc->xive->single_escalation)
1175				xive_cleanup_single_escalation(vcpu, xc,
1176							xc->esc_virq[i]);
1177			free_irq(xc->esc_virq[i], vcpu);
1178			irq_dispose_mapping(xc->esc_virq[i]);
1179			kfree(xc->esc_virq_names[i]);
1180		}
1181	}
1182
1183	/* Disable the VP */
1184	xive_native_disable_vp(xc->vp_id);
1185
1186	/* Clear the cam word so guest entry won't try to push context */
1187	vcpu->arch.xive_cam_word = 0;
1188
1189	/* Free the queues */
1190	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1191		struct xive_q *q = &xc->queues[i];
1192
1193		xive_native_disable_queue(xc->vp_id, q, i);
1194		if (q->qpage) {
1195			free_pages((unsigned long)q->qpage,
1196				   xive->q_page_order);
1197			q->qpage = NULL;
1198		}
1199	}
1200
1201	/* Free the IPI */
1202	if (xc->vp_ipi) {
1203		xive_cleanup_irq_data(&xc->vp_ipi_data);
1204		xive_native_free_irq(xc->vp_ipi);
1205	}
1206	/* Free the VP */
1207	kfree(xc);
1208
1209	/* Cleanup the vcpu */
1210	vcpu->arch.irq_type = KVMPPC_IRQ_DEFAULT;
1211	vcpu->arch.xive_vcpu = NULL;
1212}
1213
1214static bool kvmppc_xive_vcpu_id_valid(struct kvmppc_xive *xive, u32 cpu)
1215{
1216	/* We have a block of xive->nr_servers VPs. We just need to check
1217	 * packed vCPU ids are below that.
1218	 */
1219	return kvmppc_pack_vcpu_id(xive->kvm, cpu) < xive->nr_servers;
1220}
1221
1222int kvmppc_xive_compute_vp_id(struct kvmppc_xive *xive, u32 cpu, u32 *vp)
1223{
1224	u32 vp_id;
1225
1226	if (!kvmppc_xive_vcpu_id_valid(xive, cpu)) {
1227		pr_devel("Out of bounds !\n");
1228		return -EINVAL;
1229	}
1230
1231	if (xive->vp_base == XIVE_INVALID_VP) {
1232		xive->vp_base = xive_native_alloc_vp_block(xive->nr_servers);
1233		pr_devel("VP_Base=%x nr_servers=%d\n", xive->vp_base, xive->nr_servers);
1234
1235		if (xive->vp_base == XIVE_INVALID_VP)
1236			return -ENOSPC;
1237	}
1238
1239	vp_id = kvmppc_xive_vp(xive, cpu);
1240	if (kvmppc_xive_vp_in_use(xive->kvm, vp_id)) {
1241		pr_devel("Duplicate !\n");
1242		return -EEXIST;
1243	}
1244
1245	*vp = vp_id;
1246
1247	return 0;
1248}
1249
1250int kvmppc_xive_connect_vcpu(struct kvm_device *dev,
1251			     struct kvm_vcpu *vcpu, u32 cpu)
1252{
1253	struct kvmppc_xive *xive = dev->private;
1254	struct kvmppc_xive_vcpu *xc;
1255	int i, r = -EBUSY;
1256	u32 vp_id;
1257
1258	pr_devel("connect_vcpu(cpu=%d)\n", cpu);
1259
1260	if (dev->ops != &kvm_xive_ops) {
1261		pr_devel("Wrong ops !\n");
1262		return -EPERM;
1263	}
1264	if (xive->kvm != vcpu->kvm)
1265		return -EPERM;
1266	if (vcpu->arch.irq_type != KVMPPC_IRQ_DEFAULT)
1267		return -EBUSY;
1268
1269	/* We need to synchronize with queue provisioning */
1270	mutex_lock(&xive->lock);
1271
1272	r = kvmppc_xive_compute_vp_id(xive, cpu, &vp_id);
1273	if (r)
1274		goto bail;
1275
1276	xc = kzalloc(sizeof(*xc), GFP_KERNEL);
1277	if (!xc) {
1278		r = -ENOMEM;
1279		goto bail;
1280	}
1281
1282	vcpu->arch.xive_vcpu = xc;
1283	xc->xive = xive;
1284	xc->vcpu = vcpu;
1285	xc->server_num = cpu;
1286	xc->vp_id = vp_id;
1287	xc->mfrr = 0xff;
1288	xc->valid = true;
1289
1290	r = xive_native_get_vp_info(xc->vp_id, &xc->vp_cam, &xc->vp_chip_id);
1291	if (r)
1292		goto bail;
1293
1294	/* Configure VCPU fields for use by assembly push/pull */
1295	vcpu->arch.xive_saved_state.w01 = cpu_to_be64(0xff000000);
1296	vcpu->arch.xive_cam_word = cpu_to_be32(xc->vp_cam | TM_QW1W2_VO);
1297
1298	/* Allocate IPI */
1299	xc->vp_ipi = xive_native_alloc_irq();
1300	if (!xc->vp_ipi) {
1301		pr_err("Failed to allocate xive irq for VCPU IPI\n");
1302		r = -EIO;
1303		goto bail;
1304	}
1305	pr_devel(" IPI=0x%x\n", xc->vp_ipi);
1306
1307	r = xive_native_populate_irq_data(xc->vp_ipi, &xc->vp_ipi_data);
1308	if (r)
1309		goto bail;
1310
1311	/*
1312	 * Enable the VP first as the single escalation mode will
1313	 * affect escalation interrupts numbering
1314	 */
1315	r = xive_native_enable_vp(xc->vp_id, xive->single_escalation);
1316	if (r) {
1317		pr_err("Failed to enable VP in OPAL, err %d\n", r);
1318		goto bail;
1319	}
1320
1321	/*
1322	 * Initialize queues. Initially we set them all for no queueing
1323	 * and we enable escalation for queue 0 only which we'll use for
1324	 * our mfrr change notifications. If the VCPU is hot-plugged, we
1325	 * do handle provisioning however based on the existing "map"
1326	 * of enabled queues.
1327	 */
1328	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
1329		struct xive_q *q = &xc->queues[i];
1330
1331		/* Single escalation, no queue 7 */
1332		if (i == 7 && xive->single_escalation)
1333			break;
1334
1335		/* Is queue already enabled ? Provision it */
1336		if (xive->qmap & (1 << i)) {
1337			r = xive_provision_queue(vcpu, i);
1338			if (r == 0 && !xive->single_escalation)
1339				kvmppc_xive_attach_escalation(
1340					vcpu, i, xive->single_escalation);
1341			if (r)
1342				goto bail;
1343		} else {
1344			r = xive_native_configure_queue(xc->vp_id,
1345							q, i, NULL, 0, true);
1346			if (r) {
1347				pr_err("Failed to configure queue %d for VCPU %d\n",
1348				       i, cpu);
1349				goto bail;
1350			}
1351		}
1352	}
1353
1354	/* If not done above, attach priority 0 escalation */
1355	r = kvmppc_xive_attach_escalation(vcpu, 0, xive->single_escalation);
1356	if (r)
1357		goto bail;
1358
1359	/* Route the IPI */
1360	r = xive_native_configure_irq(xc->vp_ipi, xc->vp_id, 0, XICS_IPI);
1361	if (!r)
1362		xive_vm_esb_load(&xc->vp_ipi_data, XIVE_ESB_SET_PQ_00);
1363
1364bail:
1365	mutex_unlock(&xive->lock);
1366	if (r) {
1367		kvmppc_xive_cleanup_vcpu(vcpu);
1368		return r;
1369	}
1370
1371	vcpu->arch.irq_type = KVMPPC_IRQ_XICS;
1372	return 0;
1373}
1374
1375/*
1376 * Scanning of queues before/after migration save
1377 */
1378static void xive_pre_save_set_queued(struct kvmppc_xive *xive, u32 irq)
1379{
1380	struct kvmppc_xive_src_block *sb;
1381	struct kvmppc_xive_irq_state *state;
1382	u16 idx;
1383
1384	sb = kvmppc_xive_find_source(xive, irq, &idx);
1385	if (!sb)
1386		return;
1387
1388	state = &sb->irq_state[idx];
1389
1390	/* Some sanity checking */
1391	if (!state->valid) {
1392		pr_err("invalid irq 0x%x in cpu queue!\n", irq);
1393		return;
1394	}
1395
1396	/*
1397	 * If the interrupt is in a queue it should have P set.
1398	 * We warn so that gets reported. A backtrace isn't useful
1399	 * so no need to use a WARN_ON.
1400	 */
1401	if (!state->saved_p)
1402		pr_err("Interrupt 0x%x is marked in a queue but P not set !\n", irq);
1403
1404	/* Set flag */
1405	state->in_queue = true;
1406}
1407
1408static void xive_pre_save_mask_irq(struct kvmppc_xive *xive,
1409				   struct kvmppc_xive_src_block *sb,
1410				   u32 irq)
1411{
1412	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1413
1414	if (!state->valid)
1415		return;
1416
1417	/* Mask and save state, this will also sync HW queues */
1418	state->saved_scan_prio = xive_lock_and_mask(xive, sb, state);
1419
1420	/* Transfer P and Q */
1421	state->saved_p = state->old_p;
1422	state->saved_q = state->old_q;
1423
1424	/* Unlock */
1425	arch_spin_unlock(&sb->lock);
1426}
1427
1428static void xive_pre_save_unmask_irq(struct kvmppc_xive *xive,
1429				     struct kvmppc_xive_src_block *sb,
1430				     u32 irq)
1431{
1432	struct kvmppc_xive_irq_state *state = &sb->irq_state[irq];
1433
1434	if (!state->valid)
1435		return;
1436
1437	/*
1438	 * Lock / exclude EOI (not technically necessary if the
1439	 * guest isn't running concurrently. If this becomes a
1440	 * performance issue we can probably remove the lock.
1441	 */
1442	xive_lock_for_unmask(sb, state);
1443
1444	/* Restore mask/prio if it wasn't masked */
1445	if (state->saved_scan_prio != MASKED)
1446		xive_finish_unmask(xive, sb, state, state->saved_scan_prio);
1447
1448	/* Unlock */
1449	arch_spin_unlock(&sb->lock);
1450}
1451
1452static void xive_pre_save_queue(struct kvmppc_xive *xive, struct xive_q *q)
1453{
1454	u32 idx = q->idx;
1455	u32 toggle = q->toggle;
1456	u32 irq;
1457
1458	do {
1459		irq = __xive_read_eq(q->qpage, q->msk, &idx, &toggle);
1460		if (irq > XICS_IPI)
1461			xive_pre_save_set_queued(xive, irq);
1462	} while(irq);
1463}
1464
1465static void xive_pre_save_scan(struct kvmppc_xive *xive)
1466{
1467	struct kvm_vcpu *vcpu = NULL;
1468	int i, j;
1469
1470	/*
1471	 * See comment in xive_get_source() about how this
1472	 * work. Collect a stable state for all interrupts
1473	 */
1474	for (i = 0; i <= xive->max_sbid; i++) {
1475		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1476		if (!sb)
1477			continue;
1478		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1479			xive_pre_save_mask_irq(xive, sb, j);
1480	}
1481
1482	/* Then scan the queues and update the "in_queue" flag */
1483	kvm_for_each_vcpu(i, vcpu, xive->kvm) {
1484		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1485		if (!xc)
1486			continue;
1487		for (j = 0; j < KVMPPC_XIVE_Q_COUNT; j++) {
1488			if (xc->queues[j].qpage)
1489				xive_pre_save_queue(xive, &xc->queues[j]);
1490		}
1491	}
1492
1493	/* Finally restore interrupt states */
1494	for (i = 0; i <= xive->max_sbid; i++) {
1495		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1496		if (!sb)
1497			continue;
1498		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1499			xive_pre_save_unmask_irq(xive, sb, j);
1500	}
1501}
1502
1503static void xive_post_save_scan(struct kvmppc_xive *xive)
1504{
1505	u32 i, j;
1506
1507	/* Clear all the in_queue flags */
1508	for (i = 0; i <= xive->max_sbid; i++) {
1509		struct kvmppc_xive_src_block *sb = xive->src_blocks[i];
1510		if (!sb)
1511			continue;
1512		for (j = 0;  j < KVMPPC_XICS_IRQ_PER_ICS; j++)
1513			sb->irq_state[j].in_queue = false;
1514	}
1515
1516	/* Next get_source() will do a new scan */
1517	xive->saved_src_count = 0;
1518}
1519
1520/*
1521 * This returns the source configuration and state to user space.
1522 */
1523static int xive_get_source(struct kvmppc_xive *xive, long irq, u64 addr)
1524{
1525	struct kvmppc_xive_src_block *sb;
1526	struct kvmppc_xive_irq_state *state;
1527	u64 __user *ubufp = (u64 __user *) addr;
1528	u64 val, prio;
1529	u16 idx;
1530
1531	sb = kvmppc_xive_find_source(xive, irq, &idx);
1532	if (!sb)
1533		return -ENOENT;
1534
1535	state = &sb->irq_state[idx];
1536
1537	if (!state->valid)
1538		return -ENOENT;
1539
1540	pr_devel("get_source(%ld)...\n", irq);
1541
1542	/*
1543	 * So to properly save the state into something that looks like a
1544	 * XICS migration stream we cannot treat interrupts individually.
1545	 *
1546	 * We need, instead, mask them all (& save their previous PQ state)
1547	 * to get a stable state in the HW, then sync them to ensure that
1548	 * any interrupt that had already fired hits its queue, and finally
1549	 * scan all the queues to collect which interrupts are still present
1550	 * in the queues, so we can set the "pending" flag on them and
1551	 * they can be resent on restore.
1552	 *
1553	 * So we do it all when the "first" interrupt gets saved, all the
1554	 * state is collected at that point, the rest of xive_get_source()
1555	 * will merely collect and convert that state to the expected
1556	 * userspace bit mask.
1557	 */
1558	if (xive->saved_src_count == 0)
1559		xive_pre_save_scan(xive);
1560	xive->saved_src_count++;
1561
1562	/* Convert saved state into something compatible with xics */
1563	val = state->act_server;
1564	prio = state->saved_scan_prio;
1565
1566	if (prio == MASKED) {
1567		val |= KVM_XICS_MASKED;
1568		prio = state->saved_priority;
1569	}
1570	val |= prio << KVM_XICS_PRIORITY_SHIFT;
1571	if (state->lsi) {
1572		val |= KVM_XICS_LEVEL_SENSITIVE;
1573		if (state->saved_p)
1574			val |= KVM_XICS_PENDING;
1575	} else {
1576		if (state->saved_p)
1577			val |= KVM_XICS_PRESENTED;
1578
1579		if (state->saved_q)
1580			val |= KVM_XICS_QUEUED;
1581
1582		/*
1583		 * We mark it pending (which will attempt a re-delivery)
1584		 * if we are in a queue *or* we were masked and had
1585		 * Q set which is equivalent to the XICS "masked pending"
1586		 * state
1587		 */
1588		if (state->in_queue || (prio == MASKED && state->saved_q))
1589			val |= KVM_XICS_PENDING;
1590	}
1591
1592	/*
1593	 * If that was the last interrupt saved, reset the
1594	 * in_queue flags
1595	 */
1596	if (xive->saved_src_count == xive->src_count)
1597		xive_post_save_scan(xive);
1598
1599	/* Copy the result to userspace */
1600	if (put_user(val, ubufp))
1601		return -EFAULT;
1602
1603	return 0;
1604}
1605
1606struct kvmppc_xive_src_block *kvmppc_xive_create_src_block(
1607	struct kvmppc_xive *xive, int irq)
1608{
1609	struct kvmppc_xive_src_block *sb;
1610	int i, bid;
1611
1612	bid = irq >> KVMPPC_XICS_ICS_SHIFT;
1613
1614	mutex_lock(&xive->lock);
1615
1616	/* block already exists - somebody else got here first */
1617	if (xive->src_blocks[bid])
1618		goto out;
1619
1620	/* Create the ICS */
1621	sb = kzalloc(sizeof(*sb), GFP_KERNEL);
1622	if (!sb)
1623		goto out;
1624
1625	sb->id = bid;
1626
1627	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1628		sb->irq_state[i].number = (bid << KVMPPC_XICS_ICS_SHIFT) | i;
1629		sb->irq_state[i].eisn = 0;
1630		sb->irq_state[i].guest_priority = MASKED;
1631		sb->irq_state[i].saved_priority = MASKED;
1632		sb->irq_state[i].act_priority = MASKED;
1633	}
1634	smp_wmb();
1635	xive->src_blocks[bid] = sb;
1636
1637	if (bid > xive->max_sbid)
1638		xive->max_sbid = bid;
1639
1640out:
1641	mutex_unlock(&xive->lock);
1642	return xive->src_blocks[bid];
1643}
1644
1645static bool xive_check_delayed_irq(struct kvmppc_xive *xive, u32 irq)
1646{
1647	struct kvm *kvm = xive->kvm;
1648	struct kvm_vcpu *vcpu = NULL;
1649	int i;
1650
1651	kvm_for_each_vcpu(i, vcpu, kvm) {
1652		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
1653
1654		if (!xc)
1655			continue;
1656
1657		if (xc->delayed_irq == irq) {
1658			xc->delayed_irq = 0;
1659			xive->delayed_irqs--;
1660			return true;
1661		}
1662	}
1663	return false;
1664}
1665
1666static int xive_set_source(struct kvmppc_xive *xive, long irq, u64 addr)
1667{
1668	struct kvmppc_xive_src_block *sb;
1669	struct kvmppc_xive_irq_state *state;
1670	u64 __user *ubufp = (u64 __user *) addr;
1671	u16 idx;
1672	u64 val;
1673	u8 act_prio, guest_prio;
1674	u32 server;
1675	int rc = 0;
1676
1677	if (irq < KVMPPC_XICS_FIRST_IRQ || irq >= KVMPPC_XICS_NR_IRQS)
1678		return -ENOENT;
1679
1680	pr_devel("set_source(irq=0x%lx)\n", irq);
1681
1682	/* Find the source */
1683	sb = kvmppc_xive_find_source(xive, irq, &idx);
1684	if (!sb) {
1685		pr_devel("No source, creating source block...\n");
1686		sb = kvmppc_xive_create_src_block(xive, irq);
1687		if (!sb) {
1688			pr_devel("Failed to create block...\n");
1689			return -ENOMEM;
1690		}
1691	}
1692	state = &sb->irq_state[idx];
1693
1694	/* Read user passed data */
1695	if (get_user(val, ubufp)) {
1696		pr_devel("fault getting user info !\n");
1697		return -EFAULT;
1698	}
1699
1700	server = val & KVM_XICS_DESTINATION_MASK;
1701	guest_prio = val >> KVM_XICS_PRIORITY_SHIFT;
1702
1703	pr_devel("  val=0x016%llx (server=0x%x, guest_prio=%d)\n",
1704		 val, server, guest_prio);
1705
1706	/*
1707	 * If the source doesn't already have an IPI, allocate
1708	 * one and get the corresponding data
1709	 */
1710	if (!state->ipi_number) {
1711		state->ipi_number = xive_native_alloc_irq();
1712		if (state->ipi_number == 0) {
1713			pr_devel("Failed to allocate IPI !\n");
1714			return -ENOMEM;
1715		}
1716		xive_native_populate_irq_data(state->ipi_number, &state->ipi_data);
1717		pr_devel(" src_ipi=0x%x\n", state->ipi_number);
1718	}
1719
1720	/*
1721	 * We use lock_and_mask() to set us in the right masked
1722	 * state. We will override that state from the saved state
1723	 * further down, but this will handle the cases of interrupts
1724	 * that need FW masking. We set the initial guest_priority to
1725	 * 0 before calling it to ensure it actually performs the masking.
1726	 */
1727	state->guest_priority = 0;
1728	xive_lock_and_mask(xive, sb, state);
1729
1730	/*
1731	 * Now, we select a target if we have one. If we don't we
1732	 * leave the interrupt untargetted. It means that an interrupt
1733	 * can become "untargetted" accross migration if it was masked
1734	 * by set_xive() but there is little we can do about it.
1735	 */
1736
1737	/* First convert prio and mark interrupt as untargetted */
1738	act_prio = xive_prio_from_guest(guest_prio);
1739	state->act_priority = MASKED;
1740
1741	/*
1742	 * We need to drop the lock due to the mutex below. Hopefully
1743	 * nothing is touching that interrupt yet since it hasn't been
1744	 * advertized to a running guest yet
1745	 */
1746	arch_spin_unlock(&sb->lock);
1747
1748	/* If we have a priority target the interrupt */
1749	if (act_prio != MASKED) {
1750		/* First, check provisioning of queues */
1751		mutex_lock(&xive->lock);
1752		rc = xive_check_provisioning(xive->kvm, act_prio);
1753		mutex_unlock(&xive->lock);
1754
1755		/* Target interrupt */
1756		if (rc == 0)
1757			rc = xive_target_interrupt(xive->kvm, state,
1758						   server, act_prio);
1759		/*
1760		 * If provisioning or targetting failed, leave it
1761		 * alone and masked. It will remain disabled until
1762		 * the guest re-targets it.
1763		 */
1764	}
1765
1766	/*
1767	 * Find out if this was a delayed irq stashed in an ICP,
1768	 * in which case, treat it as pending
1769	 */
1770	if (xive->delayed_irqs && xive_check_delayed_irq(xive, irq)) {
1771		val |= KVM_XICS_PENDING;
1772		pr_devel("  Found delayed ! forcing PENDING !\n");
1773	}
1774
1775	/* Cleanup the SW state */
1776	state->old_p = false;
1777	state->old_q = false;
1778	state->lsi = false;
1779	state->asserted = false;
1780
1781	/* Restore LSI state */
1782	if (val & KVM_XICS_LEVEL_SENSITIVE) {
1783		state->lsi = true;
1784		if (val & KVM_XICS_PENDING)
1785			state->asserted = true;
1786		pr_devel("  LSI ! Asserted=%d\n", state->asserted);
1787	}
1788
1789	/*
1790	 * Restore P and Q. If the interrupt was pending, we
1791	 * force Q and !P, which will trigger a resend.
1792	 *
1793	 * That means that a guest that had both an interrupt
1794	 * pending (queued) and Q set will restore with only
1795	 * one instance of that interrupt instead of 2, but that
1796	 * is perfectly fine as coalescing interrupts that haven't
1797	 * been presented yet is always allowed.
1798	 */
1799	if (val & KVM_XICS_PRESENTED && !(val & KVM_XICS_PENDING))
1800		state->old_p = true;
1801	if (val & KVM_XICS_QUEUED || val & KVM_XICS_PENDING)
1802		state->old_q = true;
1803
1804	pr_devel("  P=%d, Q=%d\n", state->old_p, state->old_q);
1805
1806	/*
1807	 * If the interrupt was unmasked, update guest priority and
1808	 * perform the appropriate state transition and do a
1809	 * re-trigger if necessary.
1810	 */
1811	if (val & KVM_XICS_MASKED) {
1812		pr_devel("  masked, saving prio\n");
1813		state->guest_priority = MASKED;
1814		state->saved_priority = guest_prio;
1815	} else {
1816		pr_devel("  unmasked, restoring to prio %d\n", guest_prio);
1817		xive_finish_unmask(xive, sb, state, guest_prio);
1818		state->saved_priority = guest_prio;
1819	}
1820
1821	/* Increment the number of valid sources and mark this one valid */
1822	if (!state->valid)
1823		xive->src_count++;
1824	state->valid = true;
1825
1826	return 0;
1827}
1828
1829int kvmppc_xive_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1830			bool line_status)
1831{
1832	struct kvmppc_xive *xive = kvm->arch.xive;
1833	struct kvmppc_xive_src_block *sb;
1834	struct kvmppc_xive_irq_state *state;
1835	u16 idx;
1836
1837	if (!xive)
1838		return -ENODEV;
1839
1840	sb = kvmppc_xive_find_source(xive, irq, &idx);
1841	if (!sb)
1842		return -EINVAL;
1843
1844	/* Perform locklessly .... (we need to do some RCUisms here...) */
1845	state = &sb->irq_state[idx];
1846	if (!state->valid)
1847		return -EINVAL;
1848
1849	/* We don't allow a trigger on a passed-through interrupt */
1850	if (state->pt_number)
1851		return -EINVAL;
1852
1853	if ((level == 1 && state->lsi) || level == KVM_INTERRUPT_SET_LEVEL)
1854		state->asserted = 1;
1855	else if (level == 0 || level == KVM_INTERRUPT_UNSET) {
1856		state->asserted = 0;
1857		return 0;
1858	}
1859
1860	/* Trigger the IPI */
1861	xive_irq_trigger(&state->ipi_data);
1862
1863	return 0;
1864}
1865
1866int kvmppc_xive_set_nr_servers(struct kvmppc_xive *xive, u64 addr)
1867{
1868	u32 __user *ubufp = (u32 __user *) addr;
1869	u32 nr_servers;
1870	int rc = 0;
1871
1872	if (get_user(nr_servers, ubufp))
1873		return -EFAULT;
1874
1875	pr_devel("%s nr_servers=%u\n", __func__, nr_servers);
1876
1877	if (!nr_servers || nr_servers > KVM_MAX_VCPU_ID)
1878		return -EINVAL;
1879
1880	mutex_lock(&xive->lock);
1881	if (xive->vp_base != XIVE_INVALID_VP)
1882		/* The VP block is allocated once and freed when the device
1883		 * is released. Better not allow to change its size since its
1884		 * used by connect_vcpu to validate vCPU ids are valid (eg,
1885		 * setting it back to a higher value could allow connect_vcpu
1886		 * to come up with a VP id that goes beyond the VP block, which
1887		 * is likely to cause a crash in OPAL).
1888		 */
1889		rc = -EBUSY;
1890	else if (nr_servers > KVM_MAX_VCPUS)
1891		/* We don't need more servers. Higher vCPU ids get packed
1892		 * down below KVM_MAX_VCPUS by kvmppc_pack_vcpu_id().
1893		 */
1894		xive->nr_servers = KVM_MAX_VCPUS;
1895	else
1896		xive->nr_servers = nr_servers;
1897
1898	mutex_unlock(&xive->lock);
1899
1900	return rc;
1901}
1902
1903static int xive_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1904{
1905	struct kvmppc_xive *xive = dev->private;
1906
1907	/* We honor the existing XICS ioctl */
1908	switch (attr->group) {
1909	case KVM_DEV_XICS_GRP_SOURCES:
1910		return xive_set_source(xive, attr->attr, attr->addr);
1911	case KVM_DEV_XICS_GRP_CTRL:
1912		switch (attr->attr) {
1913		case KVM_DEV_XICS_NR_SERVERS:
1914			return kvmppc_xive_set_nr_servers(xive, attr->addr);
1915		}
1916	}
1917	return -ENXIO;
1918}
1919
1920static int xive_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1921{
1922	struct kvmppc_xive *xive = dev->private;
1923
1924	/* We honor the existing XICS ioctl */
1925	switch (attr->group) {
1926	case KVM_DEV_XICS_GRP_SOURCES:
1927		return xive_get_source(xive, attr->attr, attr->addr);
1928	}
1929	return -ENXIO;
1930}
1931
1932static int xive_has_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1933{
1934	/* We honor the same limits as XICS, at least for now */
1935	switch (attr->group) {
1936	case KVM_DEV_XICS_GRP_SOURCES:
1937		if (attr->attr >= KVMPPC_XICS_FIRST_IRQ &&
1938		    attr->attr < KVMPPC_XICS_NR_IRQS)
1939			return 0;
1940		break;
1941	case KVM_DEV_XICS_GRP_CTRL:
1942		switch (attr->attr) {
1943		case KVM_DEV_XICS_NR_SERVERS:
1944			return 0;
1945		}
1946	}
1947	return -ENXIO;
1948}
1949
1950static void kvmppc_xive_cleanup_irq(u32 hw_num, struct xive_irq_data *xd)
1951{
1952	xive_vm_esb_load(xd, XIVE_ESB_SET_PQ_01);
1953	xive_native_configure_irq(hw_num, 0, MASKED, 0);
1954}
1955
1956void kvmppc_xive_free_sources(struct kvmppc_xive_src_block *sb)
1957{
1958	int i;
1959
1960	for (i = 0; i < KVMPPC_XICS_IRQ_PER_ICS; i++) {
1961		struct kvmppc_xive_irq_state *state = &sb->irq_state[i];
1962
1963		if (!state->valid)
1964			continue;
1965
1966		kvmppc_xive_cleanup_irq(state->ipi_number, &state->ipi_data);
1967		xive_cleanup_irq_data(&state->ipi_data);
1968		xive_native_free_irq(state->ipi_number);
1969
1970		/* Pass-through, cleanup too but keep IRQ hw data */
1971		if (state->pt_number)
1972			kvmppc_xive_cleanup_irq(state->pt_number, state->pt_data);
1973
1974		state->valid = false;
1975	}
1976}
1977
1978/*
1979 * Called when device fd is closed.  kvm->lock is held.
1980 */
1981static void kvmppc_xive_release(struct kvm_device *dev)
1982{
1983	struct kvmppc_xive *xive = dev->private;
1984	struct kvm *kvm = xive->kvm;
1985	struct kvm_vcpu *vcpu;
1986	int i;
1987
1988	pr_devel("Releasing xive device\n");
1989
1990	/*
1991	 * Since this is the device release function, we know that
1992	 * userspace does not have any open fd referring to the
1993	 * device.  Therefore there can not be any of the device
1994	 * attribute set/get functions being executed concurrently,
1995	 * and similarly, the connect_vcpu and set/clr_mapped
1996	 * functions also cannot be being executed.
1997	 */
1998
1999	debugfs_remove(xive->dentry);
2000
2001	/*
2002	 * We should clean up the vCPU interrupt presenters first.
2003	 */
2004	kvm_for_each_vcpu(i, vcpu, kvm) {
2005		/*
2006		 * Take vcpu->mutex to ensure that no one_reg get/set ioctl
2007		 * (i.e. kvmppc_xive_[gs]et_icp) can be done concurrently.
2008		 * Holding the vcpu->mutex also means that the vcpu cannot
2009		 * be executing the KVM_RUN ioctl, and therefore it cannot
2010		 * be executing the XIVE push or pull code or accessing
2011		 * the XIVE MMIO regions.
2012		 */
2013		mutex_lock(&vcpu->mutex);
2014		kvmppc_xive_cleanup_vcpu(vcpu);
2015		mutex_unlock(&vcpu->mutex);
2016	}
2017
2018	/*
2019	 * Now that we have cleared vcpu->arch.xive_vcpu, vcpu->arch.irq_type
2020	 * and vcpu->arch.xive_esc_[vr]addr on each vcpu, we are safe
2021	 * against xive code getting called during vcpu execution or
2022	 * set/get one_reg operations.
2023	 */
2024	kvm->arch.xive = NULL;
2025
2026	/* Mask and free interrupts */
2027	for (i = 0; i <= xive->max_sbid; i++) {
2028		if (xive->src_blocks[i])
2029			kvmppc_xive_free_sources(xive->src_blocks[i]);
2030		kfree(xive->src_blocks[i]);
2031		xive->src_blocks[i] = NULL;
2032	}
2033
2034	if (xive->vp_base != XIVE_INVALID_VP)
2035		xive_native_free_vp_block(xive->vp_base);
2036
2037	/*
2038	 * A reference of the kvmppc_xive pointer is now kept under
2039	 * the xive_devices struct of the machine for reuse. It is
2040	 * freed when the VM is destroyed for now until we fix all the
2041	 * execution paths.
2042	 */
2043
2044	kfree(dev);
2045}
2046
2047/*
2048 * When the guest chooses the interrupt mode (XICS legacy or XIVE
2049 * native), the VM will switch of KVM device. The previous device will
2050 * be "released" before the new one is created.
2051 *
2052 * Until we are sure all execution paths are well protected, provide a
2053 * fail safe (transitional) method for device destruction, in which
2054 * the XIVE device pointer is recycled and not directly freed.
2055 */
2056struct kvmppc_xive *kvmppc_xive_get_device(struct kvm *kvm, u32 type)
2057{
2058	struct kvmppc_xive **kvm_xive_device = type == KVM_DEV_TYPE_XIVE ?
2059		&kvm->arch.xive_devices.native :
2060		&kvm->arch.xive_devices.xics_on_xive;
2061	struct kvmppc_xive *xive = *kvm_xive_device;
2062
2063	if (!xive) {
2064		xive = kzalloc(sizeof(*xive), GFP_KERNEL);
2065		*kvm_xive_device = xive;
2066	} else {
2067		memset(xive, 0, sizeof(*xive));
2068	}
2069
2070	return xive;
2071}
2072
2073/*
2074 * Create a XICS device with XIVE backend.  kvm->lock is held.
2075 */
2076static int kvmppc_xive_create(struct kvm_device *dev, u32 type)
2077{
2078	struct kvmppc_xive *xive;
2079	struct kvm *kvm = dev->kvm;
2080
2081	pr_devel("Creating xive for partition\n");
2082
2083	/* Already there ? */
2084	if (kvm->arch.xive)
2085		return -EEXIST;
2086
2087	xive = kvmppc_xive_get_device(kvm, type);
2088	if (!xive)
2089		return -ENOMEM;
2090
2091	dev->private = xive;
2092	xive->dev = dev;
2093	xive->kvm = kvm;
2094	mutex_init(&xive->lock);
2095
2096	/* We use the default queue size set by the host */
2097	xive->q_order = xive_native_default_eq_shift();
2098	if (xive->q_order < PAGE_SHIFT)
2099		xive->q_page_order = 0;
2100	else
2101		xive->q_page_order = xive->q_order - PAGE_SHIFT;
2102
2103	/* VP allocation is delayed to the first call to connect_vcpu */
2104	xive->vp_base = XIVE_INVALID_VP;
2105	/* KVM_MAX_VCPUS limits the number of VMs to roughly 64 per sockets
2106	 * on a POWER9 system.
2107	 */
2108	xive->nr_servers = KVM_MAX_VCPUS;
2109
2110	xive->single_escalation = xive_native_has_single_escalation();
2111
2112	kvm->arch.xive = xive;
2113	return 0;
2114}
2115
2116int kvmppc_xive_debug_show_queues(struct seq_file *m, struct kvm_vcpu *vcpu)
2117{
2118	struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2119	unsigned int i;
2120
2121	for (i = 0; i < KVMPPC_XIVE_Q_COUNT; i++) {
2122		struct xive_q *q = &xc->queues[i];
2123		u32 i0, i1, idx;
2124
2125		if (!q->qpage && !xc->esc_virq[i])
2126			continue;
2127
2128		seq_printf(m, " [q%d]: ", i);
2129
2130		if (q->qpage) {
2131			idx = q->idx;
2132			i0 = be32_to_cpup(q->qpage + idx);
2133			idx = (idx + 1) & q->msk;
2134			i1 = be32_to_cpup(q->qpage + idx);
2135			seq_printf(m, "T=%d %08x %08x...\n", q->toggle,
2136				   i0, i1);
2137		}
2138		if (xc->esc_virq[i]) {
2139			struct irq_data *d = irq_get_irq_data(xc->esc_virq[i]);
2140			struct xive_irq_data *xd =
2141				irq_data_get_irq_handler_data(d);
2142			u64 pq = xive_vm_esb_load(xd, XIVE_ESB_GET);
2143
2144			seq_printf(m, "E:%c%c I(%d:%llx:%llx)",
2145				   (pq & XIVE_ESB_VAL_P) ? 'P' : 'p',
2146				   (pq & XIVE_ESB_VAL_Q) ? 'Q' : 'q',
2147				   xc->esc_virq[i], pq, xd->eoi_page);
2148			seq_puts(m, "\n");
2149		}
2150	}
2151	return 0;
2152}
2153
2154static int xive_debug_show(struct seq_file *m, void *private)
2155{
2156	struct kvmppc_xive *xive = m->private;
2157	struct kvm *kvm = xive->kvm;
2158	struct kvm_vcpu *vcpu;
2159	u64 t_rm_h_xirr = 0;
2160	u64 t_rm_h_ipoll = 0;
2161	u64 t_rm_h_cppr = 0;
2162	u64 t_rm_h_eoi = 0;
2163	u64 t_rm_h_ipi = 0;
2164	u64 t_vm_h_xirr = 0;
2165	u64 t_vm_h_ipoll = 0;
2166	u64 t_vm_h_cppr = 0;
2167	u64 t_vm_h_eoi = 0;
2168	u64 t_vm_h_ipi = 0;
2169	unsigned int i;
2170
2171	if (!kvm)
2172		return 0;
2173
2174	seq_printf(m, "=========\nVCPU state\n=========\n");
2175
2176	kvm_for_each_vcpu(i, vcpu, kvm) {
2177		struct kvmppc_xive_vcpu *xc = vcpu->arch.xive_vcpu;
2178
2179		if (!xc)
2180			continue;
2181
2182		seq_printf(m, "cpu server %#x VP:%#x CPPR:%#x HWCPPR:%#x"
2183			   " MFRR:%#x PEND:%#x h_xirr: R=%lld V=%lld\n",
2184			   xc->server_num, xc->vp_id, xc->cppr, xc->hw_cppr,
2185			   xc->mfrr, xc->pending,
2186			   xc->stat_rm_h_xirr, xc->stat_vm_h_xirr);
2187
2188		kvmppc_xive_debug_show_queues(m, vcpu);
2189
2190		t_rm_h_xirr += xc->stat_rm_h_xirr;
2191		t_rm_h_ipoll += xc->stat_rm_h_ipoll;
2192		t_rm_h_cppr += xc->stat_rm_h_cppr;
2193		t_rm_h_eoi += xc->stat_rm_h_eoi;
2194		t_rm_h_ipi += xc->stat_rm_h_ipi;
2195		t_vm_h_xirr += xc->stat_vm_h_xirr;
2196		t_vm_h_ipoll += xc->stat_vm_h_ipoll;
2197		t_vm_h_cppr += xc->stat_vm_h_cppr;
2198		t_vm_h_eoi += xc->stat_vm_h_eoi;
2199		t_vm_h_ipi += xc->stat_vm_h_ipi;
2200	}
2201
2202	seq_printf(m, "Hcalls totals\n");
2203	seq_printf(m, " H_XIRR  R=%10lld V=%10lld\n", t_rm_h_xirr, t_vm_h_xirr);
2204	seq_printf(m, " H_IPOLL R=%10lld V=%10lld\n", t_rm_h_ipoll, t_vm_h_ipoll);
2205	seq_printf(m, " H_CPPR  R=%10lld V=%10lld\n", t_rm_h_cppr, t_vm_h_cppr);
2206	seq_printf(m, " H_EOI   R=%10lld V=%10lld\n", t_rm_h_eoi, t_vm_h_eoi);
2207	seq_printf(m, " H_IPI   R=%10lld V=%10lld\n", t_rm_h_ipi, t_vm_h_ipi);
2208
2209	return 0;
2210}
2211
2212DEFINE_SHOW_ATTRIBUTE(xive_debug);
2213
2214static void xive_debugfs_init(struct kvmppc_xive *xive)
2215{
2216	char *name;
2217
2218	name = kasprintf(GFP_KERNEL, "kvm-xive-%p", xive);
2219	if (!name) {
2220		pr_err("%s: no memory for name\n", __func__);
2221		return;
2222	}
2223
2224	xive->dentry = debugfs_create_file(name, S_IRUGO, powerpc_debugfs_root,
2225					   xive, &xive_debug_fops);
2226
2227	pr_debug("%s: created %s\n", __func__, name);
2228	kfree(name);
2229}
2230
2231static void kvmppc_xive_init(struct kvm_device *dev)
2232{
2233	struct kvmppc_xive *xive = (struct kvmppc_xive *)dev->private;
2234
2235	/* Register some debug interfaces */
2236	xive_debugfs_init(xive);
2237}
2238
2239struct kvm_device_ops kvm_xive_ops = {
2240	.name = "kvm-xive",
2241	.create = kvmppc_xive_create,
2242	.init = kvmppc_xive_init,
2243	.release = kvmppc_xive_release,
2244	.set_attr = xive_set_attr,
2245	.get_attr = xive_get_attr,
2246	.has_attr = xive_has_attr,
2247};
2248
2249void kvmppc_xive_init_module(void)
2250{
2251	__xive_vm_h_xirr = xive_vm_h_xirr;
2252	__xive_vm_h_ipoll = xive_vm_h_ipoll;
2253	__xive_vm_h_ipi = xive_vm_h_ipi;
2254	__xive_vm_h_cppr = xive_vm_h_cppr;
2255	__xive_vm_h_eoi = xive_vm_h_eoi;
2256}
2257
2258void kvmppc_xive_exit_module(void)
2259{
2260	__xive_vm_h_xirr = NULL;
2261	__xive_vm_h_ipoll = NULL;
2262	__xive_vm_h_ipi = NULL;
2263	__xive_vm_h_cppr = NULL;
2264	__xive_vm_h_eoi = NULL;
2265}
2266