1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * 4 * Copyright 2012 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7#include <linux/types.h> 8#include <linux/string.h> 9#include <linux/kvm.h> 10#include <linux/kvm_host.h> 11#include <linux/kernel.h> 12#include <asm/lppaca.h> 13#include <asm/opal.h> 14#include <asm/mce.h> 15#include <asm/machdep.h> 16#include <asm/cputhreads.h> 17#include <asm/hmi.h> 18#include <asm/kvm_ppc.h> 19 20/* SRR1 bits for machine check on POWER7 */ 21#define SRR1_MC_LDSTERR (1ul << (63-42)) 22#define SRR1_MC_IFETCH_SH (63-45) 23#define SRR1_MC_IFETCH_MASK 0x7 24#define SRR1_MC_IFETCH_SLBPAR 2 /* SLB parity error */ 25#define SRR1_MC_IFETCH_SLBMULTI 3 /* SLB multi-hit */ 26#define SRR1_MC_IFETCH_SLBPARMULTI 4 /* SLB parity + multi-hit */ 27#define SRR1_MC_IFETCH_TLBMULTI 5 /* I-TLB multi-hit */ 28 29/* DSISR bits for machine check on POWER7 */ 30#define DSISR_MC_DERAT_MULTI 0x800 /* D-ERAT multi-hit */ 31#define DSISR_MC_TLB_MULTI 0x400 /* D-TLB multi-hit */ 32#define DSISR_MC_SLB_PARITY 0x100 /* SLB parity error */ 33#define DSISR_MC_SLB_MULTI 0x080 /* SLB multi-hit */ 34#define DSISR_MC_SLB_PARMULTI 0x040 /* SLB parity + multi-hit */ 35 36/* POWER7 SLB flush and reload */ 37static void reload_slb(struct kvm_vcpu *vcpu) 38{ 39 struct slb_shadow *slb; 40 unsigned long i, n; 41 42 /* First clear out SLB */ 43 asm volatile("slbmte %0,%0; slbia" : : "r" (0)); 44 45 /* Do they have an SLB shadow buffer registered? */ 46 slb = vcpu->arch.slb_shadow.pinned_addr; 47 if (!slb) 48 return; 49 50 /* Sanity check */ 51 n = min_t(u32, be32_to_cpu(slb->persistent), SLB_MIN_SIZE); 52 if ((void *) &slb->save_area[n] > vcpu->arch.slb_shadow.pinned_end) 53 return; 54 55 /* Load up the SLB from that */ 56 for (i = 0; i < n; ++i) { 57 unsigned long rb = be64_to_cpu(slb->save_area[i].esid); 58 unsigned long rs = be64_to_cpu(slb->save_area[i].vsid); 59 60 rb = (rb & ~0xFFFul) | i; /* insert entry number */ 61 asm volatile("slbmte %0,%1" : : "r" (rs), "r" (rb)); 62 } 63} 64 65/* 66 * On POWER7, see if we can handle a machine check that occurred inside 67 * the guest in real mode, without switching to the host partition. 68 */ 69static void kvmppc_realmode_mc_power7(struct kvm_vcpu *vcpu) 70{ 71 unsigned long srr1 = vcpu->arch.shregs.msr; 72 struct machine_check_event mce_evt; 73 long handled = 1; 74 75 if (srr1 & SRR1_MC_LDSTERR) { 76 /* error on load/store */ 77 unsigned long dsisr = vcpu->arch.shregs.dsisr; 78 79 if (dsisr & (DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | 80 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI)) { 81 /* flush and reload SLB; flushes D-ERAT too */ 82 reload_slb(vcpu); 83 dsisr &= ~(DSISR_MC_SLB_PARMULTI | DSISR_MC_SLB_MULTI | 84 DSISR_MC_SLB_PARITY | DSISR_MC_DERAT_MULTI); 85 } 86 if (dsisr & DSISR_MC_TLB_MULTI) { 87 tlbiel_all_lpid(vcpu->kvm->arch.radix); 88 dsisr &= ~DSISR_MC_TLB_MULTI; 89 } 90 /* Any other errors we don't understand? */ 91 if (dsisr & 0xffffffffUL) 92 handled = 0; 93 } 94 95 switch ((srr1 >> SRR1_MC_IFETCH_SH) & SRR1_MC_IFETCH_MASK) { 96 case 0: 97 break; 98 case SRR1_MC_IFETCH_SLBPAR: 99 case SRR1_MC_IFETCH_SLBMULTI: 100 case SRR1_MC_IFETCH_SLBPARMULTI: 101 reload_slb(vcpu); 102 break; 103 case SRR1_MC_IFETCH_TLBMULTI: 104 tlbiel_all_lpid(vcpu->kvm->arch.radix); 105 break; 106 default: 107 handled = 0; 108 } 109 110 /* 111 * Now get the event and stash it in the vcpu struct so it can 112 * be handled by the primary thread in virtual mode. We can't 113 * call machine_check_queue_event() here if we are running on 114 * an offline secondary thread. 115 */ 116 if (get_mce_event(&mce_evt, MCE_EVENT_RELEASE)) { 117 if (handled && mce_evt.version == MCE_V1) 118 mce_evt.disposition = MCE_DISPOSITION_RECOVERED; 119 } else { 120 memset(&mce_evt, 0, sizeof(mce_evt)); 121 } 122 123 vcpu->arch.mce_evt = mce_evt; 124} 125 126void kvmppc_realmode_machine_check(struct kvm_vcpu *vcpu) 127{ 128 kvmppc_realmode_mc_power7(vcpu); 129} 130 131/* Check if dynamic split is in force and return subcore size accordingly. */ 132static inline int kvmppc_cur_subcore_size(void) 133{ 134 if (local_paca->kvm_hstate.kvm_split_mode) 135 return local_paca->kvm_hstate.kvm_split_mode->subcore_size; 136 137 return threads_per_subcore; 138} 139 140void kvmppc_subcore_enter_guest(void) 141{ 142 int thread_id, subcore_id; 143 144 thread_id = cpu_thread_in_core(local_paca->paca_index); 145 subcore_id = thread_id / kvmppc_cur_subcore_size(); 146 147 local_paca->sibling_subcore_state->in_guest[subcore_id] = 1; 148} 149EXPORT_SYMBOL_GPL(kvmppc_subcore_enter_guest); 150 151void kvmppc_subcore_exit_guest(void) 152{ 153 int thread_id, subcore_id; 154 155 thread_id = cpu_thread_in_core(local_paca->paca_index); 156 subcore_id = thread_id / kvmppc_cur_subcore_size(); 157 158 local_paca->sibling_subcore_state->in_guest[subcore_id] = 0; 159} 160EXPORT_SYMBOL_GPL(kvmppc_subcore_exit_guest); 161 162static bool kvmppc_tb_resync_required(void) 163{ 164 if (test_and_set_bit(CORE_TB_RESYNC_REQ_BIT, 165 &local_paca->sibling_subcore_state->flags)) 166 return false; 167 168 return true; 169} 170 171static void kvmppc_tb_resync_done(void) 172{ 173 clear_bit(CORE_TB_RESYNC_REQ_BIT, 174 &local_paca->sibling_subcore_state->flags); 175} 176 177/* 178 * kvmppc_realmode_hmi_handler() is called only by primary thread during 179 * guest exit path. 180 * 181 * There are multiple reasons why HMI could occur, one of them is 182 * Timebase (TB) error. If this HMI is due to TB error, then TB would 183 * have been in stopped state. The opal hmi handler Will fix it and 184 * restore the TB value with host timebase value. For HMI caused due 185 * to non-TB errors, opal hmi handler will not touch/restore TB register 186 * and hence there won't be any change in TB value. 187 * 188 * Since we are not sure about the cause of this HMI, we can't be sure 189 * about the content of TB register whether it holds guest or host timebase 190 * value. Hence the idea is to resync the TB on every HMI, so that we 191 * know about the exact state of the TB value. Resync TB call will 192 * restore TB to host timebase. 193 * 194 * Things to consider: 195 * - On TB error, HMI interrupt is reported on all the threads of the core 196 * that has encountered TB error irrespective of split-core mode. 197 * - The very first thread on the core that get chance to fix TB error 198 * would rsync the TB with local chipTOD value. 199 * - The resync TB is a core level action i.e. it will sync all the TBs 200 * in that core independent of split-core mode. This means if we trigger 201 * TB sync from a thread from one subcore, it would affect TB values of 202 * sibling subcores of the same core. 203 * 204 * All threads need to co-ordinate before making opal hmi handler. 205 * All threads will use sibling_subcore_state->in_guest[] (shared by all 206 * threads in the core) in paca which holds information about whether 207 * sibling subcores are in Guest mode or host mode. The in_guest[] array 208 * is of size MAX_SUBCORE_PER_CORE=4, indexed using subcore id to set/unset 209 * subcore status. Only primary threads from each subcore is responsible 210 * to set/unset its designated array element while entering/exiting the 211 * guset. 212 * 213 * After invoking opal hmi handler call, one of the thread (of entire core) 214 * will need to resync the TB. Bit 63 from subcore state bitmap flags 215 * (sibling_subcore_state->flags) will be used to co-ordinate between 216 * primary threads to decide who takes up the responsibility. 217 * 218 * This is what we do: 219 * - Primary thread from each subcore tries to set resync required bit[63] 220 * of paca->sibling_subcore_state->flags. 221 * - The first primary thread that is able to set the flag takes the 222 * responsibility of TB resync. (Let us call it as thread leader) 223 * - All other threads which are in host will call 224 * wait_for_subcore_guest_exit() and wait for in_guest[0-3] from 225 * paca->sibling_subcore_state to get cleared. 226 * - All the primary thread will clear its subcore status from subcore 227 * state in_guest[] array respectively. 228 * - Once all primary threads clear in_guest[0-3], all of them will invoke 229 * opal hmi handler. 230 * - Now all threads will wait for TB resync to complete by invoking 231 * wait_for_tb_resync() except the thread leader. 232 * - Thread leader will do a TB resync by invoking opal_resync_timebase() 233 * call and the it will clear the resync required bit. 234 * - All other threads will now come out of resync wait loop and proceed 235 * with individual execution. 236 * - On return of this function, primary thread will signal all 237 * secondary threads to proceed. 238 * - All secondary threads will eventually call opal hmi handler on 239 * their exit path. 240 * 241 * Returns 1 if the timebase offset should be applied, 0 if not. 242 */ 243 244long kvmppc_realmode_hmi_handler(void) 245{ 246 bool resync_req; 247 248 local_paca->hmi_irqs++; 249 250 if (hmi_handle_debugtrig(NULL) >= 0) 251 return 1; 252 253 /* 254 * By now primary thread has already completed guest->host 255 * partition switch but haven't signaled secondaries yet. 256 * All the secondary threads on this subcore is waiting 257 * for primary thread to signal them to go ahead. 258 * 259 * For threads from subcore which isn't in guest, they all will 260 * wait until all other subcores on this core exit the guest. 261 * 262 * Now set the resync required bit. If you are the first to 263 * set this bit then kvmppc_tb_resync_required() function will 264 * return true. For rest all other subcores 265 * kvmppc_tb_resync_required() will return false. 266 * 267 * If resync_req == true, then this thread is responsible to 268 * initiate TB resync after hmi handler has completed. 269 * All other threads on this core will wait until this thread 270 * clears the resync required bit flag. 271 */ 272 resync_req = kvmppc_tb_resync_required(); 273 274 /* Reset the subcore status to indicate it has exited guest */ 275 kvmppc_subcore_exit_guest(); 276 277 /* 278 * Wait for other subcores on this core to exit the guest. 279 * All the primary threads and threads from subcore that are 280 * not in guest will wait here until all subcores are out 281 * of guest context. 282 */ 283 wait_for_subcore_guest_exit(); 284 285 /* 286 * At this point we are sure that primary threads from each 287 * subcore on this core have completed guest->host partition 288 * switch. Now it is safe to call HMI handler. 289 */ 290 if (ppc_md.hmi_exception_early) 291 ppc_md.hmi_exception_early(NULL); 292 293 /* 294 * Check if this thread is responsible to resync TB. 295 * All other threads will wait until this thread completes the 296 * TB resync. 297 */ 298 if (resync_req) { 299 opal_resync_timebase(); 300 /* Reset TB resync req bit */ 301 kvmppc_tb_resync_done(); 302 } else { 303 wait_for_tb_resync(); 304 } 305 306 /* 307 * Reset tb_offset_applied so the guest exit code won't try 308 * to subtract the previous timebase offset from the timebase. 309 */ 310 if (local_paca->kvm_hstate.kvm_vcore) 311 local_paca->kvm_hstate.kvm_vcore->tb_offset_applied = 0; 312 313 return 0; 314} 315