1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * 4 * Copyright 2016 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> 5 */ 6 7#include <linux/types.h> 8#include <linux/string.h> 9#include <linux/kvm.h> 10#include <linux/kvm_host.h> 11#include <linux/anon_inodes.h> 12#include <linux/file.h> 13#include <linux/debugfs.h> 14#include <linux/pgtable.h> 15 16#include <asm/kvm_ppc.h> 17#include <asm/kvm_book3s.h> 18#include <asm/page.h> 19#include <asm/mmu.h> 20#include <asm/pgalloc.h> 21#include <asm/pte-walk.h> 22#include <asm/ultravisor.h> 23#include <asm/kvm_book3s_uvmem.h> 24 25/* 26 * Supported radix tree geometry. 27 * Like p9, we support either 5 or 9 bits at the first (lowest) level, 28 * for a page size of 64k or 4k. 29 */ 30static int p9_supported_radix_bits[4] = { 5, 9, 9, 13 }; 31 32unsigned long __kvmhv_copy_tofrom_guest_radix(int lpid, int pid, 33 gva_t eaddr, void *to, void *from, 34 unsigned long n) 35{ 36 int old_pid, old_lpid; 37 unsigned long quadrant, ret = n; 38 bool is_load = !!to; 39 40 /* Can't access quadrants 1 or 2 in non-HV mode, call the HV to do it */ 41 if (kvmhv_on_pseries()) 42 return plpar_hcall_norets(H_COPY_TOFROM_GUEST, lpid, pid, eaddr, 43 (to != NULL) ? __pa(to): 0, 44 (from != NULL) ? __pa(from): 0, n); 45 46 quadrant = 1; 47 if (!pid) 48 quadrant = 2; 49 if (is_load) 50 from = (void *) (eaddr | (quadrant << 62)); 51 else 52 to = (void *) (eaddr | (quadrant << 62)); 53 54 preempt_disable(); 55 56 /* switch the lpid first to avoid running host with unallocated pid */ 57 old_lpid = mfspr(SPRN_LPID); 58 if (old_lpid != lpid) 59 mtspr(SPRN_LPID, lpid); 60 if (quadrant == 1) { 61 old_pid = mfspr(SPRN_PID); 62 if (old_pid != pid) 63 mtspr(SPRN_PID, pid); 64 } 65 isync(); 66 67 pagefault_disable(); 68 if (is_load) 69 ret = __copy_from_user_inatomic(to, (const void __user *)from, n); 70 else 71 ret = __copy_to_user_inatomic((void __user *)to, from, n); 72 pagefault_enable(); 73 74 /* switch the pid first to avoid running host with unallocated pid */ 75 if (quadrant == 1 && pid != old_pid) 76 mtspr(SPRN_PID, old_pid); 77 if (lpid != old_lpid) 78 mtspr(SPRN_LPID, old_lpid); 79 isync(); 80 81 preempt_enable(); 82 83 return ret; 84} 85EXPORT_SYMBOL_GPL(__kvmhv_copy_tofrom_guest_radix); 86 87static long kvmhv_copy_tofrom_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, 88 void *to, void *from, unsigned long n) 89{ 90 int lpid = vcpu->kvm->arch.lpid; 91 int pid = vcpu->arch.pid; 92 93 /* This would cause a data segment intr so don't allow the access */ 94 if (eaddr & (0x3FFUL << 52)) 95 return -EINVAL; 96 97 /* Should we be using the nested lpid */ 98 if (vcpu->arch.nested) 99 lpid = vcpu->arch.nested->shadow_lpid; 100 101 /* If accessing quadrant 3 then pid is expected to be 0 */ 102 if (((eaddr >> 62) & 0x3) == 0x3) 103 pid = 0; 104 105 eaddr &= ~(0xFFFUL << 52); 106 107 return __kvmhv_copy_tofrom_guest_radix(lpid, pid, eaddr, to, from, n); 108} 109 110long kvmhv_copy_from_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *to, 111 unsigned long n) 112{ 113 long ret; 114 115 ret = kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, to, NULL, n); 116 if (ret > 0) 117 memset(to + (n - ret), 0, ret); 118 119 return ret; 120} 121EXPORT_SYMBOL_GPL(kvmhv_copy_from_guest_radix); 122 123long kvmhv_copy_to_guest_radix(struct kvm_vcpu *vcpu, gva_t eaddr, void *from, 124 unsigned long n) 125{ 126 return kvmhv_copy_tofrom_guest_radix(vcpu, eaddr, NULL, from, n); 127} 128EXPORT_SYMBOL_GPL(kvmhv_copy_to_guest_radix); 129 130int kvmppc_mmu_walk_radix_tree(struct kvm_vcpu *vcpu, gva_t eaddr, 131 struct kvmppc_pte *gpte, u64 root, 132 u64 *pte_ret_p) 133{ 134 struct kvm *kvm = vcpu->kvm; 135 int ret, level, ps; 136 unsigned long rts, bits, offset, index; 137 u64 pte, base, gpa; 138 __be64 rpte; 139 140 rts = ((root & RTS1_MASK) >> (RTS1_SHIFT - 3)) | 141 ((root & RTS2_MASK) >> RTS2_SHIFT); 142 bits = root & RPDS_MASK; 143 base = root & RPDB_MASK; 144 145 offset = rts + 31; 146 147 /* Current implementations only support 52-bit space */ 148 if (offset != 52) 149 return -EINVAL; 150 151 /* Walk each level of the radix tree */ 152 for (level = 3; level >= 0; --level) { 153 u64 addr; 154 /* Check a valid size */ 155 if (level && bits != p9_supported_radix_bits[level]) 156 return -EINVAL; 157 if (level == 0 && !(bits == 5 || bits == 9)) 158 return -EINVAL; 159 offset -= bits; 160 index = (eaddr >> offset) & ((1UL << bits) - 1); 161 /* Check that low bits of page table base are zero */ 162 if (base & ((1UL << (bits + 3)) - 1)) 163 return -EINVAL; 164 /* Read the entry from guest memory */ 165 addr = base + (index * sizeof(rpte)); 166 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 167 ret = kvm_read_guest(kvm, addr, &rpte, sizeof(rpte)); 168 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 169 if (ret) { 170 if (pte_ret_p) 171 *pte_ret_p = addr; 172 return ret; 173 } 174 pte = __be64_to_cpu(rpte); 175 if (!(pte & _PAGE_PRESENT)) 176 return -ENOENT; 177 /* Check if a leaf entry */ 178 if (pte & _PAGE_PTE) 179 break; 180 /* Get ready to walk the next level */ 181 base = pte & RPDB_MASK; 182 bits = pte & RPDS_MASK; 183 } 184 185 /* Need a leaf at lowest level; 512GB pages not supported */ 186 if (level < 0 || level == 3) 187 return -EINVAL; 188 189 /* We found a valid leaf PTE */ 190 /* Offset is now log base 2 of the page size */ 191 gpa = pte & 0x01fffffffffff000ul; 192 if (gpa & ((1ul << offset) - 1)) 193 return -EINVAL; 194 gpa |= eaddr & ((1ul << offset) - 1); 195 for (ps = MMU_PAGE_4K; ps < MMU_PAGE_COUNT; ++ps) 196 if (offset == mmu_psize_defs[ps].shift) 197 break; 198 gpte->page_size = ps; 199 gpte->page_shift = offset; 200 201 gpte->eaddr = eaddr; 202 gpte->raddr = gpa; 203 204 /* Work out permissions */ 205 gpte->may_read = !!(pte & _PAGE_READ); 206 gpte->may_write = !!(pte & _PAGE_WRITE); 207 gpte->may_execute = !!(pte & _PAGE_EXEC); 208 209 gpte->rc = pte & (_PAGE_ACCESSED | _PAGE_DIRTY); 210 211 if (pte_ret_p) 212 *pte_ret_p = pte; 213 214 return 0; 215} 216 217/* 218 * Used to walk a partition or process table radix tree in guest memory 219 * Note: We exploit the fact that a partition table and a process 220 * table have the same layout, a partition-scoped page table and a 221 * process-scoped page table have the same layout, and the 2nd 222 * doubleword of a partition table entry has the same layout as 223 * the PTCR register. 224 */ 225int kvmppc_mmu_radix_translate_table(struct kvm_vcpu *vcpu, gva_t eaddr, 226 struct kvmppc_pte *gpte, u64 table, 227 int table_index, u64 *pte_ret_p) 228{ 229 struct kvm *kvm = vcpu->kvm; 230 int ret; 231 unsigned long size, ptbl, root; 232 struct prtb_entry entry; 233 234 if ((table & PRTS_MASK) > 24) 235 return -EINVAL; 236 size = 1ul << ((table & PRTS_MASK) + 12); 237 238 /* Is the table big enough to contain this entry? */ 239 if ((table_index * sizeof(entry)) >= size) 240 return -EINVAL; 241 242 /* Read the table to find the root of the radix tree */ 243 ptbl = (table & PRTB_MASK) + (table_index * sizeof(entry)); 244 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); 245 ret = kvm_read_guest(kvm, ptbl, &entry, sizeof(entry)); 246 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); 247 if (ret) 248 return ret; 249 250 /* Root is stored in the first double word */ 251 root = be64_to_cpu(entry.prtb0); 252 253 return kvmppc_mmu_walk_radix_tree(vcpu, eaddr, gpte, root, pte_ret_p); 254} 255 256int kvmppc_mmu_radix_xlate(struct kvm_vcpu *vcpu, gva_t eaddr, 257 struct kvmppc_pte *gpte, bool data, bool iswrite) 258{ 259 u32 pid; 260 u64 pte; 261 int ret; 262 263 /* Work out effective PID */ 264 switch (eaddr >> 62) { 265 case 0: 266 pid = vcpu->arch.pid; 267 break; 268 case 3: 269 pid = 0; 270 break; 271 default: 272 return -EINVAL; 273 } 274 275 ret = kvmppc_mmu_radix_translate_table(vcpu, eaddr, gpte, 276 vcpu->kvm->arch.process_table, pid, &pte); 277 if (ret) 278 return ret; 279 280 /* Check privilege (applies only to process scoped translations) */ 281 if (kvmppc_get_msr(vcpu) & MSR_PR) { 282 if (pte & _PAGE_PRIVILEGED) { 283 gpte->may_read = 0; 284 gpte->may_write = 0; 285 gpte->may_execute = 0; 286 } 287 } else { 288 if (!(pte & _PAGE_PRIVILEGED)) { 289 /* Check AMR/IAMR to see if strict mode is in force */ 290 if (vcpu->arch.amr & (1ul << 62)) 291 gpte->may_read = 0; 292 if (vcpu->arch.amr & (1ul << 63)) 293 gpte->may_write = 0; 294 if (vcpu->arch.iamr & (1ul << 62)) 295 gpte->may_execute = 0; 296 } 297 } 298 299 return 0; 300} 301 302void kvmppc_radix_tlbie_page(struct kvm *kvm, unsigned long addr, 303 unsigned int pshift, unsigned int lpid) 304{ 305 unsigned long psize = PAGE_SIZE; 306 int psi; 307 long rc; 308 unsigned long rb; 309 310 if (pshift) 311 psize = 1UL << pshift; 312 else 313 pshift = PAGE_SHIFT; 314 315 addr &= ~(psize - 1); 316 317 if (!kvmhv_on_pseries()) { 318 radix__flush_tlb_lpid_page(lpid, addr, psize); 319 return; 320 } 321 322 psi = shift_to_mmu_psize(pshift); 323 rb = addr | (mmu_get_ap(psi) << PPC_BITLSHIFT(58)); 324 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(0, 0, 1), 325 lpid, rb); 326 if (rc) 327 pr_err("KVM: TLB page invalidation hcall failed, rc=%ld\n", rc); 328} 329 330static void kvmppc_radix_flush_pwc(struct kvm *kvm, unsigned int lpid) 331{ 332 long rc; 333 334 if (!kvmhv_on_pseries()) { 335 radix__flush_pwc_lpid(lpid); 336 return; 337 } 338 339 rc = plpar_hcall_norets(H_TLB_INVALIDATE, H_TLBIE_P1_ENC(1, 0, 1), 340 lpid, TLBIEL_INVAL_SET_LPID); 341 if (rc) 342 pr_err("KVM: TLB PWC invalidation hcall failed, rc=%ld\n", rc); 343} 344 345static unsigned long kvmppc_radix_update_pte(struct kvm *kvm, pte_t *ptep, 346 unsigned long clr, unsigned long set, 347 unsigned long addr, unsigned int shift) 348{ 349 return __radix_pte_update(ptep, clr, set); 350} 351 352static void kvmppc_radix_set_pte_at(struct kvm *kvm, unsigned long addr, 353 pte_t *ptep, pte_t pte) 354{ 355 radix__set_pte_at(kvm->mm, addr, ptep, pte, 0); 356} 357 358static struct kmem_cache *kvm_pte_cache; 359static struct kmem_cache *kvm_pmd_cache; 360 361static pte_t *kvmppc_pte_alloc(void) 362{ 363 pte_t *pte; 364 365 pte = kmem_cache_alloc(kvm_pte_cache, GFP_KERNEL); 366 /* pmd_populate() will only reference _pa(pte). */ 367 kmemleak_ignore(pte); 368 369 return pte; 370} 371 372static void kvmppc_pte_free(pte_t *ptep) 373{ 374 kmem_cache_free(kvm_pte_cache, ptep); 375} 376 377static pmd_t *kvmppc_pmd_alloc(void) 378{ 379 pmd_t *pmd; 380 381 pmd = kmem_cache_alloc(kvm_pmd_cache, GFP_KERNEL); 382 /* pud_populate() will only reference _pa(pmd). */ 383 kmemleak_ignore(pmd); 384 385 return pmd; 386} 387 388static void kvmppc_pmd_free(pmd_t *pmdp) 389{ 390 kmem_cache_free(kvm_pmd_cache, pmdp); 391} 392 393/* Called with kvm->mmu_lock held */ 394void kvmppc_unmap_pte(struct kvm *kvm, pte_t *pte, unsigned long gpa, 395 unsigned int shift, 396 const struct kvm_memory_slot *memslot, 397 unsigned int lpid) 398 399{ 400 unsigned long old; 401 unsigned long gfn = gpa >> PAGE_SHIFT; 402 unsigned long page_size = PAGE_SIZE; 403 unsigned long hpa; 404 405 old = kvmppc_radix_update_pte(kvm, pte, ~0UL, 0, gpa, shift); 406 kvmppc_radix_tlbie_page(kvm, gpa, shift, lpid); 407 408 /* The following only applies to L1 entries */ 409 if (lpid != kvm->arch.lpid) 410 return; 411 412 if (!memslot) { 413 memslot = gfn_to_memslot(kvm, gfn); 414 if (!memslot) 415 return; 416 } 417 if (shift) { /* 1GB or 2MB page */ 418 page_size = 1ul << shift; 419 if (shift == PMD_SHIFT) 420 kvm->stat.num_2M_pages--; 421 else if (shift == PUD_SHIFT) 422 kvm->stat.num_1G_pages--; 423 } 424 425 gpa &= ~(page_size - 1); 426 hpa = old & PTE_RPN_MASK; 427 kvmhv_remove_nest_rmap_range(kvm, memslot, gpa, hpa, page_size); 428 429 if ((old & _PAGE_DIRTY) && memslot->dirty_bitmap) 430 kvmppc_update_dirty_map(memslot, gfn, page_size); 431} 432 433/* 434 * kvmppc_free_p?d are used to free existing page tables, and recursively 435 * descend and clear and free children. 436 * Callers are responsible for flushing the PWC. 437 * 438 * When page tables are being unmapped/freed as part of page fault path 439 * (full == false), valid ptes are generally not expected; however, there 440 * is one situation where they arise, which is when dirty page logging is 441 * turned off for a memslot while the VM is running. The new memslot 442 * becomes visible to page faults before the memslot commit function 443 * gets to flush the memslot, which can lead to a 2MB page mapping being 444 * installed for a guest physical address where there are already 64kB 445 * (or 4kB) mappings (of sub-pages of the same 2MB page). 446 */ 447static void kvmppc_unmap_free_pte(struct kvm *kvm, pte_t *pte, bool full, 448 unsigned int lpid) 449{ 450 if (full) { 451 memset(pte, 0, sizeof(long) << RADIX_PTE_INDEX_SIZE); 452 } else { 453 pte_t *p = pte; 454 unsigned long it; 455 456 for (it = 0; it < PTRS_PER_PTE; ++it, ++p) { 457 if (pte_val(*p) == 0) 458 continue; 459 kvmppc_unmap_pte(kvm, p, 460 pte_pfn(*p) << PAGE_SHIFT, 461 PAGE_SHIFT, NULL, lpid); 462 } 463 } 464 465 kvmppc_pte_free(pte); 466} 467 468static void kvmppc_unmap_free_pmd(struct kvm *kvm, pmd_t *pmd, bool full, 469 unsigned int lpid) 470{ 471 unsigned long im; 472 pmd_t *p = pmd; 473 474 for (im = 0; im < PTRS_PER_PMD; ++im, ++p) { 475 if (!pmd_present(*p)) 476 continue; 477 if (pmd_is_leaf(*p)) { 478 if (full) { 479 pmd_clear(p); 480 } else { 481 WARN_ON_ONCE(1); 482 kvmppc_unmap_pte(kvm, (pte_t *)p, 483 pte_pfn(*(pte_t *)p) << PAGE_SHIFT, 484 PMD_SHIFT, NULL, lpid); 485 } 486 } else { 487 pte_t *pte; 488 489 pte = pte_offset_map(p, 0); 490 kvmppc_unmap_free_pte(kvm, pte, full, lpid); 491 pmd_clear(p); 492 } 493 } 494 kvmppc_pmd_free(pmd); 495} 496 497static void kvmppc_unmap_free_pud(struct kvm *kvm, pud_t *pud, 498 unsigned int lpid) 499{ 500 unsigned long iu; 501 pud_t *p = pud; 502 503 for (iu = 0; iu < PTRS_PER_PUD; ++iu, ++p) { 504 if (!pud_present(*p)) 505 continue; 506 if (pud_is_leaf(*p)) { 507 pud_clear(p); 508 } else { 509 pmd_t *pmd; 510 511 pmd = pmd_offset(p, 0); 512 kvmppc_unmap_free_pmd(kvm, pmd, true, lpid); 513 pud_clear(p); 514 } 515 } 516 pud_free(kvm->mm, pud); 517} 518 519void kvmppc_free_pgtable_radix(struct kvm *kvm, pgd_t *pgd, unsigned int lpid) 520{ 521 unsigned long ig; 522 523 for (ig = 0; ig < PTRS_PER_PGD; ++ig, ++pgd) { 524 p4d_t *p4d = p4d_offset(pgd, 0); 525 pud_t *pud; 526 527 if (!p4d_present(*p4d)) 528 continue; 529 pud = pud_offset(p4d, 0); 530 kvmppc_unmap_free_pud(kvm, pud, lpid); 531 p4d_clear(p4d); 532 } 533} 534 535void kvmppc_free_radix(struct kvm *kvm) 536{ 537 if (kvm->arch.pgtable) { 538 kvmppc_free_pgtable_radix(kvm, kvm->arch.pgtable, 539 kvm->arch.lpid); 540 pgd_free(kvm->mm, kvm->arch.pgtable); 541 kvm->arch.pgtable = NULL; 542 } 543} 544 545static void kvmppc_unmap_free_pmd_entry_table(struct kvm *kvm, pmd_t *pmd, 546 unsigned long gpa, unsigned int lpid) 547{ 548 pte_t *pte = pte_offset_kernel(pmd, 0); 549 550 /* 551 * Clearing the pmd entry then flushing the PWC ensures that the pte 552 * page no longer be cached by the MMU, so can be freed without 553 * flushing the PWC again. 554 */ 555 pmd_clear(pmd); 556 kvmppc_radix_flush_pwc(kvm, lpid); 557 558 kvmppc_unmap_free_pte(kvm, pte, false, lpid); 559} 560 561static void kvmppc_unmap_free_pud_entry_table(struct kvm *kvm, pud_t *pud, 562 unsigned long gpa, unsigned int lpid) 563{ 564 pmd_t *pmd = pmd_offset(pud, 0); 565 566 /* 567 * Clearing the pud entry then flushing the PWC ensures that the pmd 568 * page and any children pte pages will no longer be cached by the MMU, 569 * so can be freed without flushing the PWC again. 570 */ 571 pud_clear(pud); 572 kvmppc_radix_flush_pwc(kvm, lpid); 573 574 kvmppc_unmap_free_pmd(kvm, pmd, false, lpid); 575} 576 577/* 578 * There are a number of bits which may differ between different faults to 579 * the same partition scope entry. RC bits, in the course of cleaning and 580 * aging. And the write bit can change, either the access could have been 581 * upgraded, or a read fault could happen concurrently with a write fault 582 * that sets those bits first. 583 */ 584#define PTE_BITS_MUST_MATCH (~(_PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED)) 585 586int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte, 587 unsigned long gpa, unsigned int level, 588 unsigned long mmu_seq, unsigned int lpid, 589 unsigned long *rmapp, struct rmap_nested **n_rmap) 590{ 591 pgd_t *pgd; 592 p4d_t *p4d; 593 pud_t *pud, *new_pud = NULL; 594 pmd_t *pmd, *new_pmd = NULL; 595 pte_t *ptep, *new_ptep = NULL; 596 int ret; 597 598 /* Traverse the guest's 2nd-level tree, allocate new levels needed */ 599 pgd = pgtable + pgd_index(gpa); 600 p4d = p4d_offset(pgd, gpa); 601 602 pud = NULL; 603 if (p4d_present(*p4d)) 604 pud = pud_offset(p4d, gpa); 605 else 606 new_pud = pud_alloc_one(kvm->mm, gpa); 607 608 pmd = NULL; 609 if (pud && pud_present(*pud) && !pud_is_leaf(*pud)) 610 pmd = pmd_offset(pud, gpa); 611 else if (level <= 1) 612 new_pmd = kvmppc_pmd_alloc(); 613 614 if (level == 0 && !(pmd && pmd_present(*pmd) && !pmd_is_leaf(*pmd))) 615 new_ptep = kvmppc_pte_alloc(); 616 617 /* Check if we might have been invalidated; let the guest retry if so */ 618 spin_lock(&kvm->mmu_lock); 619 ret = -EAGAIN; 620 if (mmu_notifier_retry(kvm, mmu_seq)) 621 goto out_unlock; 622 623 /* Now traverse again under the lock and change the tree */ 624 ret = -ENOMEM; 625 if (p4d_none(*p4d)) { 626 if (!new_pud) 627 goto out_unlock; 628 p4d_populate(kvm->mm, p4d, new_pud); 629 new_pud = NULL; 630 } 631 pud = pud_offset(p4d, gpa); 632 if (pud_is_leaf(*pud)) { 633 unsigned long hgpa = gpa & PUD_MASK; 634 635 /* Check if we raced and someone else has set the same thing */ 636 if (level == 2) { 637 if (pud_raw(*pud) == pte_raw(pte)) { 638 ret = 0; 639 goto out_unlock; 640 } 641 /* Valid 1GB page here already, add our extra bits */ 642 WARN_ON_ONCE((pud_val(*pud) ^ pte_val(pte)) & 643 PTE_BITS_MUST_MATCH); 644 kvmppc_radix_update_pte(kvm, (pte_t *)pud, 645 0, pte_val(pte), hgpa, PUD_SHIFT); 646 ret = 0; 647 goto out_unlock; 648 } 649 /* 650 * If we raced with another CPU which has just put 651 * a 1GB pte in after we saw a pmd page, try again. 652 */ 653 if (!new_pmd) { 654 ret = -EAGAIN; 655 goto out_unlock; 656 } 657 /* Valid 1GB page here already, remove it */ 658 kvmppc_unmap_pte(kvm, (pte_t *)pud, hgpa, PUD_SHIFT, NULL, 659 lpid); 660 } 661 if (level == 2) { 662 if (!pud_none(*pud)) { 663 /* 664 * There's a page table page here, but we wanted to 665 * install a large page, so remove and free the page 666 * table page. 667 */ 668 kvmppc_unmap_free_pud_entry_table(kvm, pud, gpa, lpid); 669 } 670 kvmppc_radix_set_pte_at(kvm, gpa, (pte_t *)pud, pte); 671 if (rmapp && n_rmap) 672 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 673 ret = 0; 674 goto out_unlock; 675 } 676 if (pud_none(*pud)) { 677 if (!new_pmd) 678 goto out_unlock; 679 pud_populate(kvm->mm, pud, new_pmd); 680 new_pmd = NULL; 681 } 682 pmd = pmd_offset(pud, gpa); 683 if (pmd_is_leaf(*pmd)) { 684 unsigned long lgpa = gpa & PMD_MASK; 685 686 /* Check if we raced and someone else has set the same thing */ 687 if (level == 1) { 688 if (pmd_raw(*pmd) == pte_raw(pte)) { 689 ret = 0; 690 goto out_unlock; 691 } 692 /* Valid 2MB page here already, add our extra bits */ 693 WARN_ON_ONCE((pmd_val(*pmd) ^ pte_val(pte)) & 694 PTE_BITS_MUST_MATCH); 695 kvmppc_radix_update_pte(kvm, pmdp_ptep(pmd), 696 0, pte_val(pte), lgpa, PMD_SHIFT); 697 ret = 0; 698 goto out_unlock; 699 } 700 701 /* 702 * If we raced with another CPU which has just put 703 * a 2MB pte in after we saw a pte page, try again. 704 */ 705 if (!new_ptep) { 706 ret = -EAGAIN; 707 goto out_unlock; 708 } 709 /* Valid 2MB page here already, remove it */ 710 kvmppc_unmap_pte(kvm, pmdp_ptep(pmd), lgpa, PMD_SHIFT, NULL, 711 lpid); 712 } 713 if (level == 1) { 714 if (!pmd_none(*pmd)) { 715 /* 716 * There's a page table page here, but we wanted to 717 * install a large page, so remove and free the page 718 * table page. 719 */ 720 kvmppc_unmap_free_pmd_entry_table(kvm, pmd, gpa, lpid); 721 } 722 kvmppc_radix_set_pte_at(kvm, gpa, pmdp_ptep(pmd), pte); 723 if (rmapp && n_rmap) 724 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 725 ret = 0; 726 goto out_unlock; 727 } 728 if (pmd_none(*pmd)) { 729 if (!new_ptep) 730 goto out_unlock; 731 pmd_populate(kvm->mm, pmd, new_ptep); 732 new_ptep = NULL; 733 } 734 ptep = pte_offset_kernel(pmd, gpa); 735 if (pte_present(*ptep)) { 736 /* Check if someone else set the same thing */ 737 if (pte_raw(*ptep) == pte_raw(pte)) { 738 ret = 0; 739 goto out_unlock; 740 } 741 /* Valid page here already, add our extra bits */ 742 WARN_ON_ONCE((pte_val(*ptep) ^ pte_val(pte)) & 743 PTE_BITS_MUST_MATCH); 744 kvmppc_radix_update_pte(kvm, ptep, 0, pte_val(pte), gpa, 0); 745 ret = 0; 746 goto out_unlock; 747 } 748 kvmppc_radix_set_pte_at(kvm, gpa, ptep, pte); 749 if (rmapp && n_rmap) 750 kvmhv_insert_nest_rmap(kvm, rmapp, n_rmap); 751 ret = 0; 752 753 out_unlock: 754 spin_unlock(&kvm->mmu_lock); 755 if (new_pud) 756 pud_free(kvm->mm, new_pud); 757 if (new_pmd) 758 kvmppc_pmd_free(new_pmd); 759 if (new_ptep) 760 kvmppc_pte_free(new_ptep); 761 return ret; 762} 763 764bool kvmppc_hv_handle_set_rc(struct kvm *kvm, bool nested, bool writing, 765 unsigned long gpa, unsigned int lpid) 766{ 767 unsigned long pgflags; 768 unsigned int shift; 769 pte_t *ptep; 770 771 /* 772 * Need to set an R or C bit in the 2nd-level tables; 773 * since we are just helping out the hardware here, 774 * it is sufficient to do what the hardware does. 775 */ 776 pgflags = _PAGE_ACCESSED; 777 if (writing) 778 pgflags |= _PAGE_DIRTY; 779 780 if (nested) 781 ptep = find_kvm_nested_guest_pte(kvm, lpid, gpa, &shift); 782 else 783 ptep = find_kvm_secondary_pte(kvm, gpa, &shift); 784 785 if (ptep && pte_present(*ptep) && (!writing || pte_write(*ptep))) { 786 kvmppc_radix_update_pte(kvm, ptep, 0, pgflags, gpa, shift); 787 return true; 788 } 789 return false; 790} 791 792int kvmppc_book3s_instantiate_page(struct kvm_vcpu *vcpu, 793 unsigned long gpa, 794 struct kvm_memory_slot *memslot, 795 bool writing, bool kvm_ro, 796 pte_t *inserted_pte, unsigned int *levelp) 797{ 798 struct kvm *kvm = vcpu->kvm; 799 struct page *page = NULL; 800 unsigned long mmu_seq; 801 unsigned long hva, gfn = gpa >> PAGE_SHIFT; 802 bool upgrade_write = false; 803 bool *upgrade_p = &upgrade_write; 804 pte_t pte, *ptep; 805 unsigned int shift, level; 806 int ret; 807 bool large_enable; 808 809 /* used to check for invalidations in progress */ 810 mmu_seq = kvm->mmu_notifier_seq; 811 smp_rmb(); 812 813 /* 814 * Do a fast check first, since __gfn_to_pfn_memslot doesn't 815 * do it with !atomic && !async, which is how we call it. 816 * We always ask for write permission since the common case 817 * is that the page is writable. 818 */ 819 hva = gfn_to_hva_memslot(memslot, gfn); 820 if (!kvm_ro && get_user_page_fast_only(hva, FOLL_WRITE, &page)) { 821 upgrade_write = true; 822 } else { 823 unsigned long pfn; 824 825 /* Call KVM generic code to do the slow-path check */ 826 pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL, 827 writing, upgrade_p); 828 if (is_error_noslot_pfn(pfn)) 829 return -EFAULT; 830 page = NULL; 831 if (pfn_valid(pfn)) { 832 page = pfn_to_page(pfn); 833 if (PageReserved(page)) 834 page = NULL; 835 } 836 } 837 838 /* 839 * Read the PTE from the process' radix tree and use that 840 * so we get the shift and attribute bits. 841 */ 842 spin_lock(&kvm->mmu_lock); 843 ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift); 844 pte = __pte(0); 845 if (ptep) 846 pte = READ_ONCE(*ptep); 847 spin_unlock(&kvm->mmu_lock); 848 /* 849 * If the PTE disappeared temporarily due to a THP 850 * collapse, just return and let the guest try again. 851 */ 852 if (!pte_present(pte)) { 853 if (page) 854 put_page(page); 855 return RESUME_GUEST; 856 } 857 858 /* If we're logging dirty pages, always map single pages */ 859 large_enable = !(memslot->flags & KVM_MEM_LOG_DIRTY_PAGES); 860 861 /* Get pte level from shift/size */ 862 if (large_enable && shift == PUD_SHIFT && 863 (gpa & (PUD_SIZE - PAGE_SIZE)) == 864 (hva & (PUD_SIZE - PAGE_SIZE))) { 865 level = 2; 866 } else if (large_enable && shift == PMD_SHIFT && 867 (gpa & (PMD_SIZE - PAGE_SIZE)) == 868 (hva & (PMD_SIZE - PAGE_SIZE))) { 869 level = 1; 870 } else { 871 level = 0; 872 if (shift > PAGE_SHIFT) { 873 /* 874 * If the pte maps more than one page, bring over 875 * bits from the virtual address to get the real 876 * address of the specific single page we want. 877 */ 878 unsigned long rpnmask = (1ul << shift) - PAGE_SIZE; 879 pte = __pte(pte_val(pte) | (hva & rpnmask)); 880 } 881 } 882 883 pte = __pte(pte_val(pte) | _PAGE_EXEC | _PAGE_ACCESSED); 884 if (writing || upgrade_write) { 885 if (pte_val(pte) & _PAGE_WRITE) 886 pte = __pte(pte_val(pte) | _PAGE_DIRTY); 887 } else { 888 pte = __pte(pte_val(pte) & ~(_PAGE_WRITE | _PAGE_DIRTY)); 889 } 890 891 /* Allocate space in the tree and write the PTE */ 892 ret = kvmppc_create_pte(kvm, kvm->arch.pgtable, pte, gpa, level, 893 mmu_seq, kvm->arch.lpid, NULL, NULL); 894 if (inserted_pte) 895 *inserted_pte = pte; 896 if (levelp) 897 *levelp = level; 898 899 if (page) { 900 if (!ret && (pte_val(pte) & _PAGE_WRITE)) 901 set_page_dirty_lock(page); 902 put_page(page); 903 } 904 905 /* Increment number of large pages if we (successfully) inserted one */ 906 if (!ret) { 907 if (level == 1) 908 kvm->stat.num_2M_pages++; 909 else if (level == 2) 910 kvm->stat.num_1G_pages++; 911 } 912 913 return ret; 914} 915 916int kvmppc_book3s_radix_page_fault(struct kvm_vcpu *vcpu, 917 unsigned long ea, unsigned long dsisr) 918{ 919 struct kvm *kvm = vcpu->kvm; 920 unsigned long gpa, gfn; 921 struct kvm_memory_slot *memslot; 922 long ret; 923 bool writing = !!(dsisr & DSISR_ISSTORE); 924 bool kvm_ro = false; 925 926 /* Check for unusual errors */ 927 if (dsisr & DSISR_UNSUPP_MMU) { 928 pr_err("KVM: Got unsupported MMU fault\n"); 929 return -EFAULT; 930 } 931 if (dsisr & DSISR_BADACCESS) { 932 /* Reflect to the guest as DSI */ 933 pr_err("KVM: Got radix HV page fault with DSISR=%lx\n", dsisr); 934 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 935 return RESUME_GUEST; 936 } 937 938 /* Translate the logical address */ 939 gpa = vcpu->arch.fault_gpa & ~0xfffUL; 940 gpa &= ~0xF000000000000000ul; 941 gfn = gpa >> PAGE_SHIFT; 942 if (!(dsisr & DSISR_PRTABLE_FAULT)) 943 gpa |= ea & 0xfff; 944 945 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 946 return kvmppc_send_page_to_uv(kvm, gfn); 947 948 /* Get the corresponding memslot */ 949 memslot = gfn_to_memslot(kvm, gfn); 950 951 /* No memslot means it's an emulated MMIO region */ 952 if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID)) { 953 if (dsisr & (DSISR_PRTABLE_FAULT | DSISR_BADACCESS | 954 DSISR_SET_RC)) { 955 /* 956 * Bad address in guest page table tree, or other 957 * unusual error - reflect it to the guest as DSI. 958 */ 959 kvmppc_core_queue_data_storage(vcpu, ea, dsisr); 960 return RESUME_GUEST; 961 } 962 return kvmppc_hv_emulate_mmio(vcpu, gpa, ea, writing); 963 } 964 965 if (memslot->flags & KVM_MEM_READONLY) { 966 if (writing) { 967 /* give the guest a DSI */ 968 kvmppc_core_queue_data_storage(vcpu, ea, DSISR_ISSTORE | 969 DSISR_PROTFAULT); 970 return RESUME_GUEST; 971 } 972 kvm_ro = true; 973 } 974 975 /* Failed to set the reference/change bits */ 976 if (dsisr & DSISR_SET_RC) { 977 spin_lock(&kvm->mmu_lock); 978 if (kvmppc_hv_handle_set_rc(kvm, false, writing, 979 gpa, kvm->arch.lpid)) 980 dsisr &= ~DSISR_SET_RC; 981 spin_unlock(&kvm->mmu_lock); 982 983 if (!(dsisr & (DSISR_BAD_FAULT_64S | DSISR_NOHPTE | 984 DSISR_PROTFAULT | DSISR_SET_RC))) 985 return RESUME_GUEST; 986 } 987 988 /* Try to insert a pte */ 989 ret = kvmppc_book3s_instantiate_page(vcpu, gpa, memslot, writing, 990 kvm_ro, NULL, NULL); 991 992 if (ret == 0 || ret == -EAGAIN) 993 ret = RESUME_GUEST; 994 return ret; 995} 996 997/* Called with kvm->mmu_lock held */ 998int kvm_unmap_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 999 unsigned long gfn) 1000{ 1001 pte_t *ptep; 1002 unsigned long gpa = gfn << PAGE_SHIFT; 1003 unsigned int shift; 1004 1005 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) { 1006 uv_page_inval(kvm->arch.lpid, gpa, PAGE_SHIFT); 1007 return 0; 1008 } 1009 1010 ptep = find_kvm_secondary_pte(kvm, gpa, &shift); 1011 if (ptep && pte_present(*ptep)) 1012 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 1013 kvm->arch.lpid); 1014 return 0; 1015} 1016 1017/* Called with kvm->mmu_lock held */ 1018int kvm_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 1019 unsigned long gfn) 1020{ 1021 pte_t *ptep; 1022 unsigned long gpa = gfn << PAGE_SHIFT; 1023 unsigned int shift; 1024 int ref = 0; 1025 unsigned long old, *rmapp; 1026 1027 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1028 return ref; 1029 1030 ptep = find_kvm_secondary_pte(kvm, gpa, &shift); 1031 if (ptep && pte_present(*ptep) && pte_young(*ptep)) { 1032 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_ACCESSED, 0, 1033 gpa, shift); 1034 /* XXX need to flush tlb here? */ 1035 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1036 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1037 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_ACCESSED, 0, 1038 old & PTE_RPN_MASK, 1039 1UL << shift); 1040 ref = 1; 1041 } 1042 return ref; 1043} 1044 1045/* Called with kvm->mmu_lock held */ 1046int kvm_test_age_radix(struct kvm *kvm, struct kvm_memory_slot *memslot, 1047 unsigned long gfn) 1048{ 1049 pte_t *ptep; 1050 unsigned long gpa = gfn << PAGE_SHIFT; 1051 unsigned int shift; 1052 int ref = 0; 1053 1054 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1055 return ref; 1056 1057 ptep = find_kvm_secondary_pte(kvm, gpa, &shift); 1058 if (ptep && pte_present(*ptep) && pte_young(*ptep)) 1059 ref = 1; 1060 return ref; 1061} 1062 1063/* Returns the number of PAGE_SIZE pages that are dirty */ 1064static int kvm_radix_test_clear_dirty(struct kvm *kvm, 1065 struct kvm_memory_slot *memslot, int pagenum) 1066{ 1067 unsigned long gfn = memslot->base_gfn + pagenum; 1068 unsigned long gpa = gfn << PAGE_SHIFT; 1069 pte_t *ptep, pte; 1070 unsigned int shift; 1071 int ret = 0; 1072 unsigned long old, *rmapp; 1073 1074 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1075 return ret; 1076 1077 /* 1078 * For performance reasons we don't hold kvm->mmu_lock while walking the 1079 * partition scoped table. 1080 */ 1081 ptep = find_kvm_secondary_pte_unlocked(kvm, gpa, &shift); 1082 if (!ptep) 1083 return 0; 1084 1085 pte = READ_ONCE(*ptep); 1086 if (pte_present(pte) && pte_dirty(pte)) { 1087 spin_lock(&kvm->mmu_lock); 1088 /* 1089 * Recheck the pte again 1090 */ 1091 if (pte_val(pte) != pte_val(*ptep)) { 1092 /* 1093 * We have KVM_MEM_LOG_DIRTY_PAGES enabled. Hence we can 1094 * only find PAGE_SIZE pte entries here. We can continue 1095 * to use the pte addr returned by above page table 1096 * walk. 1097 */ 1098 if (!pte_present(*ptep) || !pte_dirty(*ptep)) { 1099 spin_unlock(&kvm->mmu_lock); 1100 return 0; 1101 } 1102 } 1103 1104 ret = 1; 1105 VM_BUG_ON(shift); 1106 old = kvmppc_radix_update_pte(kvm, ptep, _PAGE_DIRTY, 0, 1107 gpa, shift); 1108 kvmppc_radix_tlbie_page(kvm, gpa, shift, kvm->arch.lpid); 1109 /* Also clear bit in ptes in shadow pgtable for nested guests */ 1110 rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn]; 1111 kvmhv_update_nest_rmap_rc_list(kvm, rmapp, _PAGE_DIRTY, 0, 1112 old & PTE_RPN_MASK, 1113 1UL << shift); 1114 spin_unlock(&kvm->mmu_lock); 1115 } 1116 return ret; 1117} 1118 1119long kvmppc_hv_get_dirty_log_radix(struct kvm *kvm, 1120 struct kvm_memory_slot *memslot, unsigned long *map) 1121{ 1122 unsigned long i, j; 1123 int npages; 1124 1125 for (i = 0; i < memslot->npages; i = j) { 1126 npages = kvm_radix_test_clear_dirty(kvm, memslot, i); 1127 1128 /* 1129 * Note that if npages > 0 then i must be a multiple of npages, 1130 * since huge pages are only used to back the guest at guest 1131 * real addresses that are a multiple of their size. 1132 * Since we have at most one PTE covering any given guest 1133 * real address, if npages > 1 we can skip to i + npages. 1134 */ 1135 j = i + 1; 1136 if (npages) { 1137 set_dirty_bits(map, i, npages); 1138 j = i + npages; 1139 } 1140 } 1141 return 0; 1142} 1143 1144void kvmppc_radix_flush_memslot(struct kvm *kvm, 1145 const struct kvm_memory_slot *memslot) 1146{ 1147 unsigned long n; 1148 pte_t *ptep; 1149 unsigned long gpa; 1150 unsigned int shift; 1151 1152 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_START) 1153 kvmppc_uvmem_drop_pages(memslot, kvm, true); 1154 1155 if (kvm->arch.secure_guest & KVMPPC_SECURE_INIT_DONE) 1156 return; 1157 1158 gpa = memslot->base_gfn << PAGE_SHIFT; 1159 spin_lock(&kvm->mmu_lock); 1160 for (n = memslot->npages; n; --n) { 1161 ptep = find_kvm_secondary_pte(kvm, gpa, &shift); 1162 if (ptep && pte_present(*ptep)) 1163 kvmppc_unmap_pte(kvm, ptep, gpa, shift, memslot, 1164 kvm->arch.lpid); 1165 gpa += PAGE_SIZE; 1166 } 1167 /* 1168 * Increase the mmu notifier sequence number to prevent any page 1169 * fault that read the memslot earlier from writing a PTE. 1170 */ 1171 kvm->mmu_notifier_seq++; 1172 spin_unlock(&kvm->mmu_lock); 1173} 1174 1175static void add_rmmu_ap_encoding(struct kvm_ppc_rmmu_info *info, 1176 int psize, int *indexp) 1177{ 1178 if (!mmu_psize_defs[psize].shift) 1179 return; 1180 info->ap_encodings[*indexp] = mmu_psize_defs[psize].shift | 1181 (mmu_psize_defs[psize].ap << 29); 1182 ++(*indexp); 1183} 1184 1185int kvmhv_get_rmmu_info(struct kvm *kvm, struct kvm_ppc_rmmu_info *info) 1186{ 1187 int i; 1188 1189 if (!radix_enabled()) 1190 return -EINVAL; 1191 memset(info, 0, sizeof(*info)); 1192 1193 /* 4k page size */ 1194 info->geometries[0].page_shift = 12; 1195 info->geometries[0].level_bits[0] = 9; 1196 for (i = 1; i < 4; ++i) 1197 info->geometries[0].level_bits[i] = p9_supported_radix_bits[i]; 1198 /* 64k page size */ 1199 info->geometries[1].page_shift = 16; 1200 for (i = 0; i < 4; ++i) 1201 info->geometries[1].level_bits[i] = p9_supported_radix_bits[i]; 1202 1203 i = 0; 1204 add_rmmu_ap_encoding(info, MMU_PAGE_4K, &i); 1205 add_rmmu_ap_encoding(info, MMU_PAGE_64K, &i); 1206 add_rmmu_ap_encoding(info, MMU_PAGE_2M, &i); 1207 add_rmmu_ap_encoding(info, MMU_PAGE_1G, &i); 1208 1209 return 0; 1210} 1211 1212int kvmppc_init_vm_radix(struct kvm *kvm) 1213{ 1214 kvm->arch.pgtable = pgd_alloc(kvm->mm); 1215 if (!kvm->arch.pgtable) 1216 return -ENOMEM; 1217 return 0; 1218} 1219 1220static void pte_ctor(void *addr) 1221{ 1222 memset(addr, 0, RADIX_PTE_TABLE_SIZE); 1223} 1224 1225static void pmd_ctor(void *addr) 1226{ 1227 memset(addr, 0, RADIX_PMD_TABLE_SIZE); 1228} 1229 1230struct debugfs_radix_state { 1231 struct kvm *kvm; 1232 struct mutex mutex; 1233 unsigned long gpa; 1234 int lpid; 1235 int chars_left; 1236 int buf_index; 1237 char buf[128]; 1238 u8 hdr; 1239}; 1240 1241static int debugfs_radix_open(struct inode *inode, struct file *file) 1242{ 1243 struct kvm *kvm = inode->i_private; 1244 struct debugfs_radix_state *p; 1245 1246 p = kzalloc(sizeof(*p), GFP_KERNEL); 1247 if (!p) 1248 return -ENOMEM; 1249 1250 kvm_get_kvm(kvm); 1251 p->kvm = kvm; 1252 mutex_init(&p->mutex); 1253 file->private_data = p; 1254 1255 return nonseekable_open(inode, file); 1256} 1257 1258static int debugfs_radix_release(struct inode *inode, struct file *file) 1259{ 1260 struct debugfs_radix_state *p = file->private_data; 1261 1262 kvm_put_kvm(p->kvm); 1263 kfree(p); 1264 return 0; 1265} 1266 1267static ssize_t debugfs_radix_read(struct file *file, char __user *buf, 1268 size_t len, loff_t *ppos) 1269{ 1270 struct debugfs_radix_state *p = file->private_data; 1271 ssize_t ret, r; 1272 unsigned long n; 1273 struct kvm *kvm; 1274 unsigned long gpa; 1275 pgd_t *pgt; 1276 struct kvm_nested_guest *nested; 1277 pgd_t *pgdp; 1278 p4d_t p4d, *p4dp; 1279 pud_t pud, *pudp; 1280 pmd_t pmd, *pmdp; 1281 pte_t *ptep; 1282 int shift; 1283 unsigned long pte; 1284 1285 kvm = p->kvm; 1286 if (!kvm_is_radix(kvm)) 1287 return 0; 1288 1289 ret = mutex_lock_interruptible(&p->mutex); 1290 if (ret) 1291 return ret; 1292 1293 if (p->chars_left) { 1294 n = p->chars_left; 1295 if (n > len) 1296 n = len; 1297 r = copy_to_user(buf, p->buf + p->buf_index, n); 1298 n -= r; 1299 p->chars_left -= n; 1300 p->buf_index += n; 1301 buf += n; 1302 len -= n; 1303 ret = n; 1304 if (r) { 1305 if (!n) 1306 ret = -EFAULT; 1307 goto out; 1308 } 1309 } 1310 1311 gpa = p->gpa; 1312 nested = NULL; 1313 pgt = NULL; 1314 while (len != 0 && p->lpid >= 0) { 1315 if (gpa >= RADIX_PGTABLE_RANGE) { 1316 gpa = 0; 1317 pgt = NULL; 1318 if (nested) { 1319 kvmhv_put_nested(nested); 1320 nested = NULL; 1321 } 1322 p->lpid = kvmhv_nested_next_lpid(kvm, p->lpid); 1323 p->hdr = 0; 1324 if (p->lpid < 0) 1325 break; 1326 } 1327 if (!pgt) { 1328 if (p->lpid == 0) { 1329 pgt = kvm->arch.pgtable; 1330 } else { 1331 nested = kvmhv_get_nested(kvm, p->lpid, false); 1332 if (!nested) { 1333 gpa = RADIX_PGTABLE_RANGE; 1334 continue; 1335 } 1336 pgt = nested->shadow_pgtable; 1337 } 1338 } 1339 n = 0; 1340 if (!p->hdr) { 1341 if (p->lpid > 0) 1342 n = scnprintf(p->buf, sizeof(p->buf), 1343 "\nNested LPID %d: ", p->lpid); 1344 n += scnprintf(p->buf + n, sizeof(p->buf) - n, 1345 "pgdir: %lx\n", (unsigned long)pgt); 1346 p->hdr = 1; 1347 goto copy; 1348 } 1349 1350 pgdp = pgt + pgd_index(gpa); 1351 p4dp = p4d_offset(pgdp, gpa); 1352 p4d = READ_ONCE(*p4dp); 1353 if (!(p4d_val(p4d) & _PAGE_PRESENT)) { 1354 gpa = (gpa & P4D_MASK) + P4D_SIZE; 1355 continue; 1356 } 1357 1358 pudp = pud_offset(&p4d, gpa); 1359 pud = READ_ONCE(*pudp); 1360 if (!(pud_val(pud) & _PAGE_PRESENT)) { 1361 gpa = (gpa & PUD_MASK) + PUD_SIZE; 1362 continue; 1363 } 1364 if (pud_val(pud) & _PAGE_PTE) { 1365 pte = pud_val(pud); 1366 shift = PUD_SHIFT; 1367 goto leaf; 1368 } 1369 1370 pmdp = pmd_offset(&pud, gpa); 1371 pmd = READ_ONCE(*pmdp); 1372 if (!(pmd_val(pmd) & _PAGE_PRESENT)) { 1373 gpa = (gpa & PMD_MASK) + PMD_SIZE; 1374 continue; 1375 } 1376 if (pmd_val(pmd) & _PAGE_PTE) { 1377 pte = pmd_val(pmd); 1378 shift = PMD_SHIFT; 1379 goto leaf; 1380 } 1381 1382 ptep = pte_offset_kernel(&pmd, gpa); 1383 pte = pte_val(READ_ONCE(*ptep)); 1384 if (!(pte & _PAGE_PRESENT)) { 1385 gpa += PAGE_SIZE; 1386 continue; 1387 } 1388 shift = PAGE_SHIFT; 1389 leaf: 1390 n = scnprintf(p->buf, sizeof(p->buf), 1391 " %lx: %lx %d\n", gpa, pte, shift); 1392 gpa += 1ul << shift; 1393 copy: 1394 p->chars_left = n; 1395 if (n > len) 1396 n = len; 1397 r = copy_to_user(buf, p->buf, n); 1398 n -= r; 1399 p->chars_left -= n; 1400 p->buf_index = n; 1401 buf += n; 1402 len -= n; 1403 ret += n; 1404 if (r) { 1405 if (!ret) 1406 ret = -EFAULT; 1407 break; 1408 } 1409 } 1410 p->gpa = gpa; 1411 if (nested) 1412 kvmhv_put_nested(nested); 1413 1414 out: 1415 mutex_unlock(&p->mutex); 1416 return ret; 1417} 1418 1419static ssize_t debugfs_radix_write(struct file *file, const char __user *buf, 1420 size_t len, loff_t *ppos) 1421{ 1422 return -EACCES; 1423} 1424 1425static const struct file_operations debugfs_radix_fops = { 1426 .owner = THIS_MODULE, 1427 .open = debugfs_radix_open, 1428 .release = debugfs_radix_release, 1429 .read = debugfs_radix_read, 1430 .write = debugfs_radix_write, 1431 .llseek = generic_file_llseek, 1432}; 1433 1434void kvmhv_radix_debugfs_init(struct kvm *kvm) 1435{ 1436 debugfs_create_file("radix", 0400, kvm->arch.debugfs_dir, kvm, 1437 &debugfs_radix_fops); 1438} 1439 1440int kvmppc_radix_init(void) 1441{ 1442 unsigned long size = sizeof(void *) << RADIX_PTE_INDEX_SIZE; 1443 1444 kvm_pte_cache = kmem_cache_create("kvm-pte", size, size, 0, pte_ctor); 1445 if (!kvm_pte_cache) 1446 return -ENOMEM; 1447 1448 size = sizeof(void *) << RADIX_PMD_INDEX_SIZE; 1449 1450 kvm_pmd_cache = kmem_cache_create("kvm-pmd", size, size, 0, pmd_ctor); 1451 if (!kvm_pmd_cache) { 1452 kmem_cache_destroy(kvm_pte_cache); 1453 return -ENOMEM; 1454 } 1455 1456 return 0; 1457} 1458 1459void kvmppc_radix_exit(void) 1460{ 1461 kmem_cache_destroy(kvm_pte_cache); 1462 kmem_cache_destroy(kvm_pmd_cache); 1463} 1464