1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *
4 * Copyright 2010 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
5 */
6
7#include <linux/types.h>
8#include <linux/string.h>
9#include <linux/kvm.h>
10#include <linux/kvm_host.h>
11#include <linux/highmem.h>
12#include <linux/gfp.h>
13#include <linux/slab.h>
14#include <linux/hugetlb.h>
15#include <linux/vmalloc.h>
16#include <linux/srcu.h>
17#include <linux/anon_inodes.h>
18#include <linux/file.h>
19#include <linux/debugfs.h>
20
21#include <asm/kvm_ppc.h>
22#include <asm/kvm_book3s.h>
23#include <asm/book3s/64/mmu-hash.h>
24#include <asm/hvcall.h>
25#include <asm/synch.h>
26#include <asm/ppc-opcode.h>
27#include <asm/cputable.h>
28#include <asm/pte-walk.h>
29
30#include "trace_hv.h"
31
32//#define DEBUG_RESIZE_HPT	1
33
34#ifdef DEBUG_RESIZE_HPT
35#define resize_hpt_debug(resize, ...)				\
36	do {							\
37		printk(KERN_DEBUG "RESIZE HPT %p: ", resize);	\
38		printk(__VA_ARGS__);				\
39	} while (0)
40#else
41#define resize_hpt_debug(resize, ...)				\
42	do { } while (0)
43#endif
44
45static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
46				long pte_index, unsigned long pteh,
47				unsigned long ptel, unsigned long *pte_idx_ret);
48
49struct kvm_resize_hpt {
50	/* These fields read-only after init */
51	struct kvm *kvm;
52	struct work_struct work;
53	u32 order;
54
55	/* These fields protected by kvm->arch.mmu_setup_lock */
56
57	/* Possible values and their usage:
58	 *  <0     an error occurred during allocation,
59	 *  -EBUSY allocation is in the progress,
60	 *  0      allocation made successfuly.
61	 */
62	int error;
63
64	/* Private to the work thread, until error != -EBUSY,
65	 * then protected by kvm->arch.mmu_setup_lock.
66	 */
67	struct kvm_hpt_info hpt;
68};
69
70int kvmppc_allocate_hpt(struct kvm_hpt_info *info, u32 order)
71{
72	unsigned long hpt = 0;
73	int cma = 0;
74	struct page *page = NULL;
75	struct revmap_entry *rev;
76	unsigned long npte;
77
78	if ((order < PPC_MIN_HPT_ORDER) || (order > PPC_MAX_HPT_ORDER))
79		return -EINVAL;
80
81	page = kvm_alloc_hpt_cma(1ul << (order - PAGE_SHIFT));
82	if (page) {
83		hpt = (unsigned long)pfn_to_kaddr(page_to_pfn(page));
84		memset((void *)hpt, 0, (1ul << order));
85		cma = 1;
86	}
87
88	if (!hpt)
89		hpt = __get_free_pages(GFP_KERNEL|__GFP_ZERO|__GFP_RETRY_MAYFAIL
90				       |__GFP_NOWARN, order - PAGE_SHIFT);
91
92	if (!hpt)
93		return -ENOMEM;
94
95	/* HPTEs are 2**4 bytes long */
96	npte = 1ul << (order - 4);
97
98	/* Allocate reverse map array */
99	rev = vmalloc(array_size(npte, sizeof(struct revmap_entry)));
100	if (!rev) {
101		if (cma)
102			kvm_free_hpt_cma(page, 1 << (order - PAGE_SHIFT));
103		else
104			free_pages(hpt, order - PAGE_SHIFT);
105		return -ENOMEM;
106	}
107
108	info->order = order;
109	info->virt = hpt;
110	info->cma = cma;
111	info->rev = rev;
112
113	return 0;
114}
115
116void kvmppc_set_hpt(struct kvm *kvm, struct kvm_hpt_info *info)
117{
118	atomic64_set(&kvm->arch.mmio_update, 0);
119	kvm->arch.hpt = *info;
120	kvm->arch.sdr1 = __pa(info->virt) | (info->order - 18);
121
122	pr_debug("KVM guest htab at %lx (order %ld), LPID %x\n",
123		 info->virt, (long)info->order, kvm->arch.lpid);
124}
125
126long kvmppc_alloc_reset_hpt(struct kvm *kvm, int order)
127{
128	long err = -EBUSY;
129	struct kvm_hpt_info info;
130
131	mutex_lock(&kvm->arch.mmu_setup_lock);
132	if (kvm->arch.mmu_ready) {
133		kvm->arch.mmu_ready = 0;
134		/* order mmu_ready vs. vcpus_running */
135		smp_mb();
136		if (atomic_read(&kvm->arch.vcpus_running)) {
137			kvm->arch.mmu_ready = 1;
138			goto out;
139		}
140	}
141	if (kvm_is_radix(kvm)) {
142		err = kvmppc_switch_mmu_to_hpt(kvm);
143		if (err)
144			goto out;
145	}
146
147	if (kvm->arch.hpt.order == order) {
148		/* We already have a suitable HPT */
149
150		/* Set the entire HPT to 0, i.e. invalid HPTEs */
151		memset((void *)kvm->arch.hpt.virt, 0, 1ul << order);
152		/*
153		 * Reset all the reverse-mapping chains for all memslots
154		 */
155		kvmppc_rmap_reset(kvm);
156		err = 0;
157		goto out;
158	}
159
160	if (kvm->arch.hpt.virt) {
161		kvmppc_free_hpt(&kvm->arch.hpt);
162		kvmppc_rmap_reset(kvm);
163	}
164
165	err = kvmppc_allocate_hpt(&info, order);
166	if (err < 0)
167		goto out;
168	kvmppc_set_hpt(kvm, &info);
169
170out:
171	if (err == 0)
172		/* Ensure that each vcpu will flush its TLB on next entry. */
173		cpumask_setall(&kvm->arch.need_tlb_flush);
174
175	mutex_unlock(&kvm->arch.mmu_setup_lock);
176	return err;
177}
178
179void kvmppc_free_hpt(struct kvm_hpt_info *info)
180{
181	vfree(info->rev);
182	info->rev = NULL;
183	if (info->cma)
184		kvm_free_hpt_cma(virt_to_page(info->virt),
185				 1 << (info->order - PAGE_SHIFT));
186	else if (info->virt)
187		free_pages(info->virt, info->order - PAGE_SHIFT);
188	info->virt = 0;
189	info->order = 0;
190}
191
192/* Bits in first HPTE dword for pagesize 4k, 64k or 16M */
193static inline unsigned long hpte0_pgsize_encoding(unsigned long pgsize)
194{
195	return (pgsize > 0x1000) ? HPTE_V_LARGE : 0;
196}
197
198/* Bits in second HPTE dword for pagesize 4k, 64k or 16M */
199static inline unsigned long hpte1_pgsize_encoding(unsigned long pgsize)
200{
201	return (pgsize == 0x10000) ? 0x1000 : 0;
202}
203
204void kvmppc_map_vrma(struct kvm_vcpu *vcpu, struct kvm_memory_slot *memslot,
205		     unsigned long porder)
206{
207	unsigned long i;
208	unsigned long npages;
209	unsigned long hp_v, hp_r;
210	unsigned long addr, hash;
211	unsigned long psize;
212	unsigned long hp0, hp1;
213	unsigned long idx_ret;
214	long ret;
215	struct kvm *kvm = vcpu->kvm;
216
217	psize = 1ul << porder;
218	npages = memslot->npages >> (porder - PAGE_SHIFT);
219
220	/* VRMA can't be > 1TB */
221	if (npages > 1ul << (40 - porder))
222		npages = 1ul << (40 - porder);
223	/* Can't use more than 1 HPTE per HPTEG */
224	if (npages > kvmppc_hpt_mask(&kvm->arch.hpt) + 1)
225		npages = kvmppc_hpt_mask(&kvm->arch.hpt) + 1;
226
227	hp0 = HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)) |
228		HPTE_V_BOLTED | hpte0_pgsize_encoding(psize);
229	hp1 = hpte1_pgsize_encoding(psize) |
230		HPTE_R_R | HPTE_R_C | HPTE_R_M | PP_RWXX;
231
232	for (i = 0; i < npages; ++i) {
233		addr = i << porder;
234		/* can't use hpt_hash since va > 64 bits */
235		hash = (i ^ (VRMA_VSID ^ (VRMA_VSID << 25)))
236			& kvmppc_hpt_mask(&kvm->arch.hpt);
237		/*
238		 * We assume that the hash table is empty and no
239		 * vcpus are using it at this stage.  Since we create
240		 * at most one HPTE per HPTEG, we just assume entry 7
241		 * is available and use it.
242		 */
243		hash = (hash << 3) + 7;
244		hp_v = hp0 | ((addr >> 16) & ~0x7fUL);
245		hp_r = hp1 | addr;
246		ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, hash, hp_v, hp_r,
247						 &idx_ret);
248		if (ret != H_SUCCESS) {
249			pr_err("KVM: map_vrma at %lx failed, ret=%ld\n",
250			       addr, ret);
251			break;
252		}
253	}
254}
255
256int kvmppc_mmu_hv_init(void)
257{
258	unsigned long host_lpid, rsvd_lpid;
259
260	if (!mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE))
261		return -EINVAL;
262
263	host_lpid = 0;
264	if (cpu_has_feature(CPU_FTR_HVMODE))
265		host_lpid = mfspr(SPRN_LPID);
266
267	/* POWER8 and above have 12-bit LPIDs (10-bit in POWER7) */
268	if (cpu_has_feature(CPU_FTR_ARCH_207S))
269		rsvd_lpid = LPID_RSVD;
270	else
271		rsvd_lpid = LPID_RSVD_POWER7;
272
273	kvmppc_init_lpid(rsvd_lpid + 1);
274
275	kvmppc_claim_lpid(host_lpid);
276	/* rsvd_lpid is reserved for use in partition switching */
277	kvmppc_claim_lpid(rsvd_lpid);
278
279	return 0;
280}
281
282static long kvmppc_virtmode_do_h_enter(struct kvm *kvm, unsigned long flags,
283				long pte_index, unsigned long pteh,
284				unsigned long ptel, unsigned long *pte_idx_ret)
285{
286	long ret;
287
288	preempt_disable();
289	ret = kvmppc_do_h_enter(kvm, flags, pte_index, pteh, ptel,
290				kvm->mm->pgd, false, pte_idx_ret);
291	preempt_enable();
292	if (ret == H_TOO_HARD) {
293		/* this can't happen */
294		pr_err("KVM: Oops, kvmppc_h_enter returned too hard!\n");
295		ret = H_RESOURCE;	/* or something */
296	}
297	return ret;
298
299}
300
301static struct kvmppc_slb *kvmppc_mmu_book3s_hv_find_slbe(struct kvm_vcpu *vcpu,
302							 gva_t eaddr)
303{
304	u64 mask;
305	int i;
306
307	for (i = 0; i < vcpu->arch.slb_nr; i++) {
308		if (!(vcpu->arch.slb[i].orige & SLB_ESID_V))
309			continue;
310
311		if (vcpu->arch.slb[i].origv & SLB_VSID_B_1T)
312			mask = ESID_MASK_1T;
313		else
314			mask = ESID_MASK;
315
316		if (((vcpu->arch.slb[i].orige ^ eaddr) & mask) == 0)
317			return &vcpu->arch.slb[i];
318	}
319	return NULL;
320}
321
322static unsigned long kvmppc_mmu_get_real_addr(unsigned long v, unsigned long r,
323			unsigned long ea)
324{
325	unsigned long ra_mask;
326
327	ra_mask = kvmppc_actual_pgsz(v, r) - 1;
328	return (r & HPTE_R_RPN & ~ra_mask) | (ea & ra_mask);
329}
330
331static int kvmppc_mmu_book3s_64_hv_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
332			struct kvmppc_pte *gpte, bool data, bool iswrite)
333{
334	struct kvm *kvm = vcpu->kvm;
335	struct kvmppc_slb *slbe;
336	unsigned long slb_v;
337	unsigned long pp, key;
338	unsigned long v, orig_v, gr;
339	__be64 *hptep;
340	long int index;
341	int virtmode = vcpu->arch.shregs.msr & (data ? MSR_DR : MSR_IR);
342
343	if (kvm_is_radix(vcpu->kvm))
344		return kvmppc_mmu_radix_xlate(vcpu, eaddr, gpte, data, iswrite);
345
346	/* Get SLB entry */
347	if (virtmode) {
348		slbe = kvmppc_mmu_book3s_hv_find_slbe(vcpu, eaddr);
349		if (!slbe)
350			return -EINVAL;
351		slb_v = slbe->origv;
352	} else {
353		/* real mode access */
354		slb_v = vcpu->kvm->arch.vrma_slb_v;
355	}
356
357	preempt_disable();
358	/* Find the HPTE in the hash table */
359	index = kvmppc_hv_find_lock_hpte(kvm, eaddr, slb_v,
360					 HPTE_V_VALID | HPTE_V_ABSENT);
361	if (index < 0) {
362		preempt_enable();
363		return -ENOENT;
364	}
365	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
366	v = orig_v = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
367	if (cpu_has_feature(CPU_FTR_ARCH_300))
368		v = hpte_new_to_old_v(v, be64_to_cpu(hptep[1]));
369	gr = kvm->arch.hpt.rev[index].guest_rpte;
370
371	unlock_hpte(hptep, orig_v);
372	preempt_enable();
373
374	gpte->eaddr = eaddr;
375	gpte->vpage = ((v & HPTE_V_AVPN) << 4) | ((eaddr >> 12) & 0xfff);
376
377	/* Get PP bits and key for permission check */
378	pp = gr & (HPTE_R_PP0 | HPTE_R_PP);
379	key = (vcpu->arch.shregs.msr & MSR_PR) ? SLB_VSID_KP : SLB_VSID_KS;
380	key &= slb_v;
381
382	/* Calculate permissions */
383	gpte->may_read = hpte_read_permission(pp, key);
384	gpte->may_write = hpte_write_permission(pp, key);
385	gpte->may_execute = gpte->may_read && !(gr & (HPTE_R_N | HPTE_R_G));
386
387	/* Storage key permission check for POWER7 */
388	if (data && virtmode) {
389		int amrfield = hpte_get_skey_perm(gr, vcpu->arch.amr);
390		if (amrfield & 1)
391			gpte->may_read = 0;
392		if (amrfield & 2)
393			gpte->may_write = 0;
394	}
395
396	/* Get the guest physical address */
397	gpte->raddr = kvmppc_mmu_get_real_addr(v, gr, eaddr);
398	return 0;
399}
400
401/*
402 * Quick test for whether an instruction is a load or a store.
403 * If the instruction is a load or a store, then this will indicate
404 * which it is, at least on server processors.  (Embedded processors
405 * have some external PID instructions that don't follow the rule
406 * embodied here.)  If the instruction isn't a load or store, then
407 * this doesn't return anything useful.
408 */
409static int instruction_is_store(unsigned int instr)
410{
411	unsigned int mask;
412
413	mask = 0x10000000;
414	if ((instr & 0xfc000000) == 0x7c000000)
415		mask = 0x100;		/* major opcode 31 */
416	return (instr & mask) != 0;
417}
418
419int kvmppc_hv_emulate_mmio(struct kvm_vcpu *vcpu,
420			   unsigned long gpa, gva_t ea, int is_store)
421{
422	u32 last_inst;
423
424	/*
425	 * Fast path - check if the guest physical address corresponds to a
426	 * device on the FAST_MMIO_BUS, if so we can avoid loading the
427	 * instruction all together, then we can just handle it and return.
428	 */
429	if (is_store) {
430		int idx, ret;
431
432		idx = srcu_read_lock(&vcpu->kvm->srcu);
433		ret = kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, (gpa_t) gpa, 0,
434				       NULL);
435		srcu_read_unlock(&vcpu->kvm->srcu, idx);
436		if (!ret) {
437			kvmppc_set_pc(vcpu, kvmppc_get_pc(vcpu) + 4);
438			return RESUME_GUEST;
439		}
440	}
441
442	/*
443	 * If we fail, we just return to the guest and try executing it again.
444	 */
445	if (kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst) !=
446		EMULATE_DONE)
447		return RESUME_GUEST;
448
449	/*
450	 * WARNING: We do not know for sure whether the instruction we just
451	 * read from memory is the same that caused the fault in the first
452	 * place.  If the instruction we read is neither an load or a store,
453	 * then it can't access memory, so we don't need to worry about
454	 * enforcing access permissions.  So, assuming it is a load or
455	 * store, we just check that its direction (load or store) is
456	 * consistent with the original fault, since that's what we
457	 * checked the access permissions against.  If there is a mismatch
458	 * we just return and retry the instruction.
459	 */
460
461	if (instruction_is_store(last_inst) != !!is_store)
462		return RESUME_GUEST;
463
464	/*
465	 * Emulated accesses are emulated by looking at the hash for
466	 * translation once, then performing the access later. The
467	 * translation could be invalidated in the meantime in which
468	 * point performing the subsequent memory access on the old
469	 * physical address could possibly be a security hole for the
470	 * guest (but not the host).
471	 *
472	 * This is less of an issue for MMIO stores since they aren't
473	 * globally visible. It could be an issue for MMIO loads to
474	 * a certain extent but we'll ignore it for now.
475	 */
476
477	vcpu->arch.paddr_accessed = gpa;
478	vcpu->arch.vaddr_accessed = ea;
479	return kvmppc_emulate_mmio(vcpu);
480}
481
482int kvmppc_book3s_hv_page_fault(struct kvm_vcpu *vcpu,
483				unsigned long ea, unsigned long dsisr)
484{
485	struct kvm *kvm = vcpu->kvm;
486	unsigned long hpte[3], r;
487	unsigned long hnow_v, hnow_r;
488	__be64 *hptep;
489	unsigned long mmu_seq, psize, pte_size;
490	unsigned long gpa_base, gfn_base;
491	unsigned long gpa, gfn, hva, pfn, hpa;
492	struct kvm_memory_slot *memslot;
493	unsigned long *rmap;
494	struct revmap_entry *rev;
495	struct page *page;
496	long index, ret;
497	bool is_ci;
498	bool writing, write_ok;
499	unsigned int shift;
500	unsigned long rcbits;
501	long mmio_update;
502	pte_t pte, *ptep;
503
504	if (kvm_is_radix(kvm))
505		return kvmppc_book3s_radix_page_fault(vcpu, ea, dsisr);
506
507	/*
508	 * Real-mode code has already searched the HPT and found the
509	 * entry we're interested in.  Lock the entry and check that
510	 * it hasn't changed.  If it has, just return and re-execute the
511	 * instruction.
512	 */
513	if (ea != vcpu->arch.pgfault_addr)
514		return RESUME_GUEST;
515
516	if (vcpu->arch.pgfault_cache) {
517		mmio_update = atomic64_read(&kvm->arch.mmio_update);
518		if (mmio_update == vcpu->arch.pgfault_cache->mmio_update) {
519			r = vcpu->arch.pgfault_cache->rpte;
520			psize = kvmppc_actual_pgsz(vcpu->arch.pgfault_hpte[0],
521						   r);
522			gpa_base = r & HPTE_R_RPN & ~(psize - 1);
523			gfn_base = gpa_base >> PAGE_SHIFT;
524			gpa = gpa_base | (ea & (psize - 1));
525			return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
526						dsisr & DSISR_ISSTORE);
527		}
528	}
529	index = vcpu->arch.pgfault_index;
530	hptep = (__be64 *)(kvm->arch.hpt.virt + (index << 4));
531	rev = &kvm->arch.hpt.rev[index];
532	preempt_disable();
533	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
534		cpu_relax();
535	hpte[0] = be64_to_cpu(hptep[0]) & ~HPTE_V_HVLOCK;
536	hpte[1] = be64_to_cpu(hptep[1]);
537	hpte[2] = r = rev->guest_rpte;
538	unlock_hpte(hptep, hpte[0]);
539	preempt_enable();
540
541	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
542		hpte[0] = hpte_new_to_old_v(hpte[0], hpte[1]);
543		hpte[1] = hpte_new_to_old_r(hpte[1]);
544	}
545	if (hpte[0] != vcpu->arch.pgfault_hpte[0] ||
546	    hpte[1] != vcpu->arch.pgfault_hpte[1])
547		return RESUME_GUEST;
548
549	/* Translate the logical address and get the page */
550	psize = kvmppc_actual_pgsz(hpte[0], r);
551	gpa_base = r & HPTE_R_RPN & ~(psize - 1);
552	gfn_base = gpa_base >> PAGE_SHIFT;
553	gpa = gpa_base | (ea & (psize - 1));
554	gfn = gpa >> PAGE_SHIFT;
555	memslot = gfn_to_memslot(kvm, gfn);
556
557	trace_kvm_page_fault_enter(vcpu, hpte, memslot, ea, dsisr);
558
559	/* No memslot means it's an emulated MMIO region */
560	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
561		return kvmppc_hv_emulate_mmio(vcpu, gpa, ea,
562					      dsisr & DSISR_ISSTORE);
563
564	/*
565	 * This should never happen, because of the slot_is_aligned()
566	 * check in kvmppc_do_h_enter().
567	 */
568	if (gfn_base < memslot->base_gfn)
569		return -EFAULT;
570
571	/* used to check for invalidations in progress */
572	mmu_seq = kvm->mmu_notifier_seq;
573	smp_rmb();
574
575	ret = -EFAULT;
576	page = NULL;
577	writing = (dsisr & DSISR_ISSTORE) != 0;
578	/* If writing != 0, then the HPTE must allow writing, if we get here */
579	write_ok = writing;
580	hva = gfn_to_hva_memslot(memslot, gfn);
581
582	/*
583	 * Do a fast check first, since __gfn_to_pfn_memslot doesn't
584	 * do it with !atomic && !async, which is how we call it.
585	 * We always ask for write permission since the common case
586	 * is that the page is writable.
587	 */
588	if (get_user_page_fast_only(hva, FOLL_WRITE, &page)) {
589		write_ok = true;
590	} else {
591		/* Call KVM generic code to do the slow-path check */
592		pfn = __gfn_to_pfn_memslot(memslot, gfn, false, NULL,
593					   writing, &write_ok);
594		if (is_error_noslot_pfn(pfn))
595			return -EFAULT;
596		page = NULL;
597		if (pfn_valid(pfn)) {
598			page = pfn_to_page(pfn);
599			if (PageReserved(page))
600				page = NULL;
601		}
602	}
603
604	/*
605	 * Read the PTE from the process' radix tree and use that
606	 * so we get the shift and attribute bits.
607	 */
608	spin_lock(&kvm->mmu_lock);
609	ptep = find_kvm_host_pte(kvm, mmu_seq, hva, &shift);
610	pte = __pte(0);
611	if (ptep)
612		pte = READ_ONCE(*ptep);
613	spin_unlock(&kvm->mmu_lock);
614	/*
615	 * If the PTE disappeared temporarily due to a THP
616	 * collapse, just return and let the guest try again.
617	 */
618	if (!pte_present(pte)) {
619		if (page)
620			put_page(page);
621		return RESUME_GUEST;
622	}
623	hpa = pte_pfn(pte) << PAGE_SHIFT;
624	pte_size = PAGE_SIZE;
625	if (shift)
626		pte_size = 1ul << shift;
627	is_ci = pte_ci(pte);
628
629	if (psize > pte_size)
630		goto out_put;
631	if (pte_size > psize)
632		hpa |= hva & (pte_size - psize);
633
634	/* Check WIMG vs. the actual page we're accessing */
635	if (!hpte_cache_flags_ok(r, is_ci)) {
636		if (is_ci)
637			goto out_put;
638		/*
639		 * Allow guest to map emulated device memory as
640		 * uncacheable, but actually make it cacheable.
641		 */
642		r = (r & ~(HPTE_R_W|HPTE_R_I|HPTE_R_G)) | HPTE_R_M;
643	}
644
645	/*
646	 * Set the HPTE to point to hpa.
647	 * Since the hpa is at PAGE_SIZE granularity, make sure we
648	 * don't mask out lower-order bits if psize < PAGE_SIZE.
649	 */
650	if (psize < PAGE_SIZE)
651		psize = PAGE_SIZE;
652	r = (r & HPTE_R_KEY_HI) | (r & ~(HPTE_R_PP0 - psize)) | hpa;
653	if (hpte_is_writable(r) && !write_ok)
654		r = hpte_make_readonly(r);
655	ret = RESUME_GUEST;
656	preempt_disable();
657	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
658		cpu_relax();
659	hnow_v = be64_to_cpu(hptep[0]);
660	hnow_r = be64_to_cpu(hptep[1]);
661	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
662		hnow_v = hpte_new_to_old_v(hnow_v, hnow_r);
663		hnow_r = hpte_new_to_old_r(hnow_r);
664	}
665
666	/*
667	 * If the HPT is being resized, don't update the HPTE,
668	 * instead let the guest retry after the resize operation is complete.
669	 * The synchronization for mmu_ready test vs. set is provided
670	 * by the HPTE lock.
671	 */
672	if (!kvm->arch.mmu_ready)
673		goto out_unlock;
674
675	if ((hnow_v & ~HPTE_V_HVLOCK) != hpte[0] || hnow_r != hpte[1] ||
676	    rev->guest_rpte != hpte[2])
677		/* HPTE has been changed under us; let the guest retry */
678		goto out_unlock;
679	hpte[0] = (hpte[0] & ~HPTE_V_ABSENT) | HPTE_V_VALID;
680
681	/* Always put the HPTE in the rmap chain for the page base address */
682	rmap = &memslot->arch.rmap[gfn_base - memslot->base_gfn];
683	lock_rmap(rmap);
684
685	/* Check if we might have been invalidated; let the guest retry if so */
686	ret = RESUME_GUEST;
687	if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) {
688		unlock_rmap(rmap);
689		goto out_unlock;
690	}
691
692	/* Only set R/C in real HPTE if set in both *rmap and guest_rpte */
693	rcbits = *rmap >> KVMPPC_RMAP_RC_SHIFT;
694	r &= rcbits | ~(HPTE_R_R | HPTE_R_C);
695
696	if (be64_to_cpu(hptep[0]) & HPTE_V_VALID) {
697		/* HPTE was previously valid, so we need to invalidate it */
698		unlock_rmap(rmap);
699		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
700		kvmppc_invalidate_hpte(kvm, hptep, index);
701		/* don't lose previous R and C bits */
702		r |= be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
703	} else {
704		kvmppc_add_revmap_chain(kvm, rev, rmap, index, 0);
705	}
706
707	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
708		r = hpte_old_to_new_r(hpte[0], r);
709		hpte[0] = hpte_old_to_new_v(hpte[0]);
710	}
711	hptep[1] = cpu_to_be64(r);
712	eieio();
713	__unlock_hpte(hptep, hpte[0]);
714	asm volatile("ptesync" : : : "memory");
715	preempt_enable();
716	if (page && hpte_is_writable(r))
717		set_page_dirty_lock(page);
718
719 out_put:
720	trace_kvm_page_fault_exit(vcpu, hpte, ret);
721
722	if (page)
723		put_page(page);
724	return ret;
725
726 out_unlock:
727	__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
728	preempt_enable();
729	goto out_put;
730}
731
732void kvmppc_rmap_reset(struct kvm *kvm)
733{
734	struct kvm_memslots *slots;
735	struct kvm_memory_slot *memslot;
736	int srcu_idx;
737
738	srcu_idx = srcu_read_lock(&kvm->srcu);
739	slots = kvm_memslots(kvm);
740	kvm_for_each_memslot(memslot, slots) {
741		/* Mutual exclusion with kvm_unmap_hva_range etc. */
742		spin_lock(&kvm->mmu_lock);
743		/*
744		 * This assumes it is acceptable to lose reference and
745		 * change bits across a reset.
746		 */
747		memset(memslot->arch.rmap, 0,
748		       memslot->npages * sizeof(*memslot->arch.rmap));
749		spin_unlock(&kvm->mmu_lock);
750	}
751	srcu_read_unlock(&kvm->srcu, srcu_idx);
752}
753
754typedef int (*hva_handler_fn)(struct kvm *kvm, struct kvm_memory_slot *memslot,
755			      unsigned long gfn);
756
757static int kvm_handle_hva_range(struct kvm *kvm,
758				unsigned long start,
759				unsigned long end,
760				hva_handler_fn handler)
761{
762	int ret;
763	int retval = 0;
764	struct kvm_memslots *slots;
765	struct kvm_memory_slot *memslot;
766
767	slots = kvm_memslots(kvm);
768	kvm_for_each_memslot(memslot, slots) {
769		unsigned long hva_start, hva_end;
770		gfn_t gfn, gfn_end;
771
772		hva_start = max(start, memslot->userspace_addr);
773		hva_end = min(end, memslot->userspace_addr +
774					(memslot->npages << PAGE_SHIFT));
775		if (hva_start >= hva_end)
776			continue;
777		/*
778		 * {gfn(page) | page intersects with [hva_start, hva_end)} =
779		 * {gfn, gfn+1, ..., gfn_end-1}.
780		 */
781		gfn = hva_to_gfn_memslot(hva_start, memslot);
782		gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
783
784		for (; gfn < gfn_end; ++gfn) {
785			ret = handler(kvm, memslot, gfn);
786			retval |= ret;
787		}
788	}
789
790	return retval;
791}
792
793static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
794			  hva_handler_fn handler)
795{
796	return kvm_handle_hva_range(kvm, hva, hva + 1, handler);
797}
798
799/* Must be called with both HPTE and rmap locked */
800static void kvmppc_unmap_hpte(struct kvm *kvm, unsigned long i,
801			      struct kvm_memory_slot *memslot,
802			      unsigned long *rmapp, unsigned long gfn)
803{
804	__be64 *hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
805	struct revmap_entry *rev = kvm->arch.hpt.rev;
806	unsigned long j, h;
807	unsigned long ptel, psize, rcbits;
808
809	j = rev[i].forw;
810	if (j == i) {
811		/* chain is now empty */
812		*rmapp &= ~(KVMPPC_RMAP_PRESENT | KVMPPC_RMAP_INDEX);
813	} else {
814		/* remove i from chain */
815		h = rev[i].back;
816		rev[h].forw = j;
817		rev[j].back = h;
818		rev[i].forw = rev[i].back = i;
819		*rmapp = (*rmapp & ~KVMPPC_RMAP_INDEX) | j;
820	}
821
822	/* Now check and modify the HPTE */
823	ptel = rev[i].guest_rpte;
824	psize = kvmppc_actual_pgsz(be64_to_cpu(hptep[0]), ptel);
825	if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
826	    hpte_rpn(ptel, psize) == gfn) {
827		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
828		kvmppc_invalidate_hpte(kvm, hptep, i);
829		hptep[1] &= ~cpu_to_be64(HPTE_R_KEY_HI | HPTE_R_KEY_LO);
830		/* Harvest R and C */
831		rcbits = be64_to_cpu(hptep[1]) & (HPTE_R_R | HPTE_R_C);
832		*rmapp |= rcbits << KVMPPC_RMAP_RC_SHIFT;
833		if ((rcbits & HPTE_R_C) && memslot->dirty_bitmap)
834			kvmppc_update_dirty_map(memslot, gfn, psize);
835		if (rcbits & ~rev[i].guest_rpte) {
836			rev[i].guest_rpte = ptel | rcbits;
837			note_hpte_modification(kvm, &rev[i]);
838		}
839	}
840}
841
842static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
843			   unsigned long gfn)
844{
845	unsigned long i;
846	__be64 *hptep;
847	unsigned long *rmapp;
848
849	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
850	for (;;) {
851		lock_rmap(rmapp);
852		if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
853			unlock_rmap(rmapp);
854			break;
855		}
856
857		/*
858		 * To avoid an ABBA deadlock with the HPTE lock bit,
859		 * we can't spin on the HPTE lock while holding the
860		 * rmap chain lock.
861		 */
862		i = *rmapp & KVMPPC_RMAP_INDEX;
863		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
864		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
865			/* unlock rmap before spinning on the HPTE lock */
866			unlock_rmap(rmapp);
867			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
868				cpu_relax();
869			continue;
870		}
871
872		kvmppc_unmap_hpte(kvm, i, memslot, rmapp, gfn);
873		unlock_rmap(rmapp);
874		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
875	}
876	return 0;
877}
878
879int kvm_unmap_hva_range_hv(struct kvm *kvm, unsigned long start, unsigned long end)
880{
881	hva_handler_fn handler;
882
883	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
884	kvm_handle_hva_range(kvm, start, end, handler);
885	return 0;
886}
887
888void kvmppc_core_flush_memslot_hv(struct kvm *kvm,
889				  struct kvm_memory_slot *memslot)
890{
891	unsigned long gfn;
892	unsigned long n;
893	unsigned long *rmapp;
894
895	gfn = memslot->base_gfn;
896	rmapp = memslot->arch.rmap;
897	if (kvm_is_radix(kvm)) {
898		kvmppc_radix_flush_memslot(kvm, memslot);
899		return;
900	}
901
902	for (n = memslot->npages; n; --n, ++gfn) {
903		/*
904		 * Testing the present bit without locking is OK because
905		 * the memslot has been marked invalid already, and hence
906		 * no new HPTEs referencing this page can be created,
907		 * thus the present bit can't go from 0 to 1.
908		 */
909		if (*rmapp & KVMPPC_RMAP_PRESENT)
910			kvm_unmap_rmapp(kvm, memslot, gfn);
911		++rmapp;
912	}
913}
914
915static int kvm_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
916			 unsigned long gfn)
917{
918	struct revmap_entry *rev = kvm->arch.hpt.rev;
919	unsigned long head, i, j;
920	__be64 *hptep;
921	int ret = 0;
922	unsigned long *rmapp;
923
924	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
925 retry:
926	lock_rmap(rmapp);
927	if (*rmapp & KVMPPC_RMAP_REFERENCED) {
928		*rmapp &= ~KVMPPC_RMAP_REFERENCED;
929		ret = 1;
930	}
931	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
932		unlock_rmap(rmapp);
933		return ret;
934	}
935
936	i = head = *rmapp & KVMPPC_RMAP_INDEX;
937	do {
938		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
939		j = rev[i].forw;
940
941		/* If this HPTE isn't referenced, ignore it */
942		if (!(be64_to_cpu(hptep[1]) & HPTE_R_R))
943			continue;
944
945		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
946			/* unlock rmap before spinning on the HPTE lock */
947			unlock_rmap(rmapp);
948			while (be64_to_cpu(hptep[0]) & HPTE_V_HVLOCK)
949				cpu_relax();
950			goto retry;
951		}
952
953		/* Now check and modify the HPTE */
954		if ((be64_to_cpu(hptep[0]) & HPTE_V_VALID) &&
955		    (be64_to_cpu(hptep[1]) & HPTE_R_R)) {
956			kvmppc_clear_ref_hpte(kvm, hptep, i);
957			if (!(rev[i].guest_rpte & HPTE_R_R)) {
958				rev[i].guest_rpte |= HPTE_R_R;
959				note_hpte_modification(kvm, &rev[i]);
960			}
961			ret = 1;
962		}
963		__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
964	} while ((i = j) != head);
965
966	unlock_rmap(rmapp);
967	return ret;
968}
969
970int kvm_age_hva_hv(struct kvm *kvm, unsigned long start, unsigned long end)
971{
972	hva_handler_fn handler;
973
974	handler = kvm_is_radix(kvm) ? kvm_age_radix : kvm_age_rmapp;
975	return kvm_handle_hva_range(kvm, start, end, handler);
976}
977
978static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_memory_slot *memslot,
979			      unsigned long gfn)
980{
981	struct revmap_entry *rev = kvm->arch.hpt.rev;
982	unsigned long head, i, j;
983	unsigned long *hp;
984	int ret = 1;
985	unsigned long *rmapp;
986
987	rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
988	if (*rmapp & KVMPPC_RMAP_REFERENCED)
989		return 1;
990
991	lock_rmap(rmapp);
992	if (*rmapp & KVMPPC_RMAP_REFERENCED)
993		goto out;
994
995	if (*rmapp & KVMPPC_RMAP_PRESENT) {
996		i = head = *rmapp & KVMPPC_RMAP_INDEX;
997		do {
998			hp = (unsigned long *)(kvm->arch.hpt.virt + (i << 4));
999			j = rev[i].forw;
1000			if (be64_to_cpu(hp[1]) & HPTE_R_R)
1001				goto out;
1002		} while ((i = j) != head);
1003	}
1004	ret = 0;
1005
1006 out:
1007	unlock_rmap(rmapp);
1008	return ret;
1009}
1010
1011int kvm_test_age_hva_hv(struct kvm *kvm, unsigned long hva)
1012{
1013	hva_handler_fn handler;
1014
1015	handler = kvm_is_radix(kvm) ? kvm_test_age_radix : kvm_test_age_rmapp;
1016	return kvm_handle_hva(kvm, hva, handler);
1017}
1018
1019void kvm_set_spte_hva_hv(struct kvm *kvm, unsigned long hva, pte_t pte)
1020{
1021	hva_handler_fn handler;
1022
1023	handler = kvm_is_radix(kvm) ? kvm_unmap_radix : kvm_unmap_rmapp;
1024	kvm_handle_hva(kvm, hva, handler);
1025}
1026
1027static int vcpus_running(struct kvm *kvm)
1028{
1029	return atomic_read(&kvm->arch.vcpus_running) != 0;
1030}
1031
1032/*
1033 * Returns the number of system pages that are dirty.
1034 * This can be more than 1 if we find a huge-page HPTE.
1035 */
1036static int kvm_test_clear_dirty_npages(struct kvm *kvm, unsigned long *rmapp)
1037{
1038	struct revmap_entry *rev = kvm->arch.hpt.rev;
1039	unsigned long head, i, j;
1040	unsigned long n;
1041	unsigned long v, r;
1042	__be64 *hptep;
1043	int npages_dirty = 0;
1044
1045 retry:
1046	lock_rmap(rmapp);
1047	if (!(*rmapp & KVMPPC_RMAP_PRESENT)) {
1048		unlock_rmap(rmapp);
1049		return npages_dirty;
1050	}
1051
1052	i = head = *rmapp & KVMPPC_RMAP_INDEX;
1053	do {
1054		unsigned long hptep1;
1055		hptep = (__be64 *) (kvm->arch.hpt.virt + (i << 4));
1056		j = rev[i].forw;
1057
1058		/*
1059		 * Checking the C (changed) bit here is racy since there
1060		 * is no guarantee about when the hardware writes it back.
1061		 * If the HPTE is not writable then it is stable since the
1062		 * page can't be written to, and we would have done a tlbie
1063		 * (which forces the hardware to complete any writeback)
1064		 * when making the HPTE read-only.
1065		 * If vcpus are running then this call is racy anyway
1066		 * since the page could get dirtied subsequently, so we
1067		 * expect there to be a further call which would pick up
1068		 * any delayed C bit writeback.
1069		 * Otherwise we need to do the tlbie even if C==0 in
1070		 * order to pick up any delayed writeback of C.
1071		 */
1072		hptep1 = be64_to_cpu(hptep[1]);
1073		if (!(hptep1 & HPTE_R_C) &&
1074		    (!hpte_is_writable(hptep1) || vcpus_running(kvm)))
1075			continue;
1076
1077		if (!try_lock_hpte(hptep, HPTE_V_HVLOCK)) {
1078			/* unlock rmap before spinning on the HPTE lock */
1079			unlock_rmap(rmapp);
1080			while (hptep[0] & cpu_to_be64(HPTE_V_HVLOCK))
1081				cpu_relax();
1082			goto retry;
1083		}
1084
1085		/* Now check and modify the HPTE */
1086		if (!(hptep[0] & cpu_to_be64(HPTE_V_VALID))) {
1087			__unlock_hpte(hptep, be64_to_cpu(hptep[0]));
1088			continue;
1089		}
1090
1091		/* need to make it temporarily absent so C is stable */
1092		hptep[0] |= cpu_to_be64(HPTE_V_ABSENT);
1093		kvmppc_invalidate_hpte(kvm, hptep, i);
1094		v = be64_to_cpu(hptep[0]);
1095		r = be64_to_cpu(hptep[1]);
1096		if (r & HPTE_R_C) {
1097			hptep[1] = cpu_to_be64(r & ~HPTE_R_C);
1098			if (!(rev[i].guest_rpte & HPTE_R_C)) {
1099				rev[i].guest_rpte |= HPTE_R_C;
1100				note_hpte_modification(kvm, &rev[i]);
1101			}
1102			n = kvmppc_actual_pgsz(v, r);
1103			n = (n + PAGE_SIZE - 1) >> PAGE_SHIFT;
1104			if (n > npages_dirty)
1105				npages_dirty = n;
1106			eieio();
1107		}
1108		v &= ~HPTE_V_ABSENT;
1109		v |= HPTE_V_VALID;
1110		__unlock_hpte(hptep, v);
1111	} while ((i = j) != head);
1112
1113	unlock_rmap(rmapp);
1114	return npages_dirty;
1115}
1116
1117void kvmppc_harvest_vpa_dirty(struct kvmppc_vpa *vpa,
1118			      struct kvm_memory_slot *memslot,
1119			      unsigned long *map)
1120{
1121	unsigned long gfn;
1122
1123	if (!vpa->dirty || !vpa->pinned_addr)
1124		return;
1125	gfn = vpa->gpa >> PAGE_SHIFT;
1126	if (gfn < memslot->base_gfn ||
1127	    gfn >= memslot->base_gfn + memslot->npages)
1128		return;
1129
1130	vpa->dirty = false;
1131	if (map)
1132		__set_bit_le(gfn - memslot->base_gfn, map);
1133}
1134
1135long kvmppc_hv_get_dirty_log_hpt(struct kvm *kvm,
1136			struct kvm_memory_slot *memslot, unsigned long *map)
1137{
1138	unsigned long i;
1139	unsigned long *rmapp;
1140
1141	preempt_disable();
1142	rmapp = memslot->arch.rmap;
1143	for (i = 0; i < memslot->npages; ++i) {
1144		int npages = kvm_test_clear_dirty_npages(kvm, rmapp);
1145		/*
1146		 * Note that if npages > 0 then i must be a multiple of npages,
1147		 * since we always put huge-page HPTEs in the rmap chain
1148		 * corresponding to their page base address.
1149		 */
1150		if (npages)
1151			set_dirty_bits(map, i, npages);
1152		++rmapp;
1153	}
1154	preempt_enable();
1155	return 0;
1156}
1157
1158void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long gpa,
1159			    unsigned long *nb_ret)
1160{
1161	struct kvm_memory_slot *memslot;
1162	unsigned long gfn = gpa >> PAGE_SHIFT;
1163	struct page *page, *pages[1];
1164	int npages;
1165	unsigned long hva, offset;
1166	int srcu_idx;
1167
1168	srcu_idx = srcu_read_lock(&kvm->srcu);
1169	memslot = gfn_to_memslot(kvm, gfn);
1170	if (!memslot || (memslot->flags & KVM_MEMSLOT_INVALID))
1171		goto err;
1172	hva = gfn_to_hva_memslot(memslot, gfn);
1173	npages = get_user_pages_fast(hva, 1, FOLL_WRITE, pages);
1174	if (npages < 1)
1175		goto err;
1176	page = pages[0];
1177	srcu_read_unlock(&kvm->srcu, srcu_idx);
1178
1179	offset = gpa & (PAGE_SIZE - 1);
1180	if (nb_ret)
1181		*nb_ret = PAGE_SIZE - offset;
1182	return page_address(page) + offset;
1183
1184 err:
1185	srcu_read_unlock(&kvm->srcu, srcu_idx);
1186	return NULL;
1187}
1188
1189void kvmppc_unpin_guest_page(struct kvm *kvm, void *va, unsigned long gpa,
1190			     bool dirty)
1191{
1192	struct page *page = virt_to_page(va);
1193	struct kvm_memory_slot *memslot;
1194	unsigned long gfn;
1195	int srcu_idx;
1196
1197	put_page(page);
1198
1199	if (!dirty)
1200		return;
1201
1202	/* We need to mark this page dirty in the memslot dirty_bitmap, if any */
1203	gfn = gpa >> PAGE_SHIFT;
1204	srcu_idx = srcu_read_lock(&kvm->srcu);
1205	memslot = gfn_to_memslot(kvm, gfn);
1206	if (memslot && memslot->dirty_bitmap)
1207		set_bit_le(gfn - memslot->base_gfn, memslot->dirty_bitmap);
1208	srcu_read_unlock(&kvm->srcu, srcu_idx);
1209}
1210
1211/*
1212 * HPT resizing
1213 */
1214static int resize_hpt_allocate(struct kvm_resize_hpt *resize)
1215{
1216	int rc;
1217
1218	rc = kvmppc_allocate_hpt(&resize->hpt, resize->order);
1219	if (rc < 0)
1220		return rc;
1221
1222	resize_hpt_debug(resize, "resize_hpt_allocate(): HPT @ 0x%lx\n",
1223			 resize->hpt.virt);
1224
1225	return 0;
1226}
1227
1228static unsigned long resize_hpt_rehash_hpte(struct kvm_resize_hpt *resize,
1229					    unsigned long idx)
1230{
1231	struct kvm *kvm = resize->kvm;
1232	struct kvm_hpt_info *old = &kvm->arch.hpt;
1233	struct kvm_hpt_info *new = &resize->hpt;
1234	unsigned long old_hash_mask = (1ULL << (old->order - 7)) - 1;
1235	unsigned long new_hash_mask = (1ULL << (new->order - 7)) - 1;
1236	__be64 *hptep, *new_hptep;
1237	unsigned long vpte, rpte, guest_rpte;
1238	int ret;
1239	struct revmap_entry *rev;
1240	unsigned long apsize, avpn, pteg, hash;
1241	unsigned long new_idx, new_pteg, replace_vpte;
1242	int pshift;
1243
1244	hptep = (__be64 *)(old->virt + (idx << 4));
1245
1246	/* Guest is stopped, so new HPTEs can't be added or faulted
1247	 * in, only unmapped or altered by host actions.  So, it's
1248	 * safe to check this before we take the HPTE lock */
1249	vpte = be64_to_cpu(hptep[0]);
1250	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1251		return 0; /* nothing to do */
1252
1253	while (!try_lock_hpte(hptep, HPTE_V_HVLOCK))
1254		cpu_relax();
1255
1256	vpte = be64_to_cpu(hptep[0]);
1257
1258	ret = 0;
1259	if (!(vpte & HPTE_V_VALID) && !(vpte & HPTE_V_ABSENT))
1260		/* Nothing to do */
1261		goto out;
1262
1263	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1264		rpte = be64_to_cpu(hptep[1]);
1265		vpte = hpte_new_to_old_v(vpte, rpte);
1266	}
1267
1268	/* Unmap */
1269	rev = &old->rev[idx];
1270	guest_rpte = rev->guest_rpte;
1271
1272	ret = -EIO;
1273	apsize = kvmppc_actual_pgsz(vpte, guest_rpte);
1274	if (!apsize)
1275		goto out;
1276
1277	if (vpte & HPTE_V_VALID) {
1278		unsigned long gfn = hpte_rpn(guest_rpte, apsize);
1279		int srcu_idx = srcu_read_lock(&kvm->srcu);
1280		struct kvm_memory_slot *memslot =
1281			__gfn_to_memslot(kvm_memslots(kvm), gfn);
1282
1283		if (memslot) {
1284			unsigned long *rmapp;
1285			rmapp = &memslot->arch.rmap[gfn - memslot->base_gfn];
1286
1287			lock_rmap(rmapp);
1288			kvmppc_unmap_hpte(kvm, idx, memslot, rmapp, gfn);
1289			unlock_rmap(rmapp);
1290		}
1291
1292		srcu_read_unlock(&kvm->srcu, srcu_idx);
1293	}
1294
1295	/* Reload PTE after unmap */
1296	vpte = be64_to_cpu(hptep[0]);
1297	BUG_ON(vpte & HPTE_V_VALID);
1298	BUG_ON(!(vpte & HPTE_V_ABSENT));
1299
1300	ret = 0;
1301	if (!(vpte & HPTE_V_BOLTED))
1302		goto out;
1303
1304	rpte = be64_to_cpu(hptep[1]);
1305
1306	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1307		vpte = hpte_new_to_old_v(vpte, rpte);
1308		rpte = hpte_new_to_old_r(rpte);
1309	}
1310
1311	pshift = kvmppc_hpte_base_page_shift(vpte, rpte);
1312	avpn = HPTE_V_AVPN_VAL(vpte) & ~(((1ul << pshift) - 1) >> 23);
1313	pteg = idx / HPTES_PER_GROUP;
1314	if (vpte & HPTE_V_SECONDARY)
1315		pteg = ~pteg;
1316
1317	if (!(vpte & HPTE_V_1TB_SEG)) {
1318		unsigned long offset, vsid;
1319
1320		/* We only have 28 - 23 bits of offset in avpn */
1321		offset = (avpn & 0x1f) << 23;
1322		vsid = avpn >> 5;
1323		/* We can find more bits from the pteg value */
1324		if (pshift < 23)
1325			offset |= ((vsid ^ pteg) & old_hash_mask) << pshift;
1326
1327		hash = vsid ^ (offset >> pshift);
1328	} else {
1329		unsigned long offset, vsid;
1330
1331		/* We only have 40 - 23 bits of seg_off in avpn */
1332		offset = (avpn & 0x1ffff) << 23;
1333		vsid = avpn >> 17;
1334		if (pshift < 23)
1335			offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask) << pshift;
1336
1337		hash = vsid ^ (vsid << 25) ^ (offset >> pshift);
1338	}
1339
1340	new_pteg = hash & new_hash_mask;
1341	if (vpte & HPTE_V_SECONDARY)
1342		new_pteg = ~hash & new_hash_mask;
1343
1344	new_idx = new_pteg * HPTES_PER_GROUP + (idx % HPTES_PER_GROUP);
1345	new_hptep = (__be64 *)(new->virt + (new_idx << 4));
1346
1347	replace_vpte = be64_to_cpu(new_hptep[0]);
1348	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1349		unsigned long replace_rpte = be64_to_cpu(new_hptep[1]);
1350		replace_vpte = hpte_new_to_old_v(replace_vpte, replace_rpte);
1351	}
1352
1353	if (replace_vpte & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1354		BUG_ON(new->order >= old->order);
1355
1356		if (replace_vpte & HPTE_V_BOLTED) {
1357			if (vpte & HPTE_V_BOLTED)
1358				/* Bolted collision, nothing we can do */
1359				ret = -ENOSPC;
1360			/* Discard the new HPTE */
1361			goto out;
1362		}
1363
1364		/* Discard the previous HPTE */
1365	}
1366
1367	if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1368		rpte = hpte_old_to_new_r(vpte, rpte);
1369		vpte = hpte_old_to_new_v(vpte);
1370	}
1371
1372	new_hptep[1] = cpu_to_be64(rpte);
1373	new->rev[new_idx].guest_rpte = guest_rpte;
1374	/* No need for a barrier, since new HPT isn't active */
1375	new_hptep[0] = cpu_to_be64(vpte);
1376	unlock_hpte(new_hptep, vpte);
1377
1378out:
1379	unlock_hpte(hptep, vpte);
1380	return ret;
1381}
1382
1383static int resize_hpt_rehash(struct kvm_resize_hpt *resize)
1384{
1385	struct kvm *kvm = resize->kvm;
1386	unsigned  long i;
1387	int rc;
1388
1389	for (i = 0; i < kvmppc_hpt_npte(&kvm->arch.hpt); i++) {
1390		rc = resize_hpt_rehash_hpte(resize, i);
1391		if (rc != 0)
1392			return rc;
1393	}
1394
1395	return 0;
1396}
1397
1398static void resize_hpt_pivot(struct kvm_resize_hpt *resize)
1399{
1400	struct kvm *kvm = resize->kvm;
1401	struct kvm_hpt_info hpt_tmp;
1402
1403	/* Exchange the pending tables in the resize structure with
1404	 * the active tables */
1405
1406	resize_hpt_debug(resize, "resize_hpt_pivot()\n");
1407
1408	spin_lock(&kvm->mmu_lock);
1409	asm volatile("ptesync" : : : "memory");
1410
1411	hpt_tmp = kvm->arch.hpt;
1412	kvmppc_set_hpt(kvm, &resize->hpt);
1413	resize->hpt = hpt_tmp;
1414
1415	spin_unlock(&kvm->mmu_lock);
1416
1417	synchronize_srcu_expedited(&kvm->srcu);
1418
1419	if (cpu_has_feature(CPU_FTR_ARCH_300))
1420		kvmppc_setup_partition_table(kvm);
1421
1422	resize_hpt_debug(resize, "resize_hpt_pivot() done\n");
1423}
1424
1425static void resize_hpt_release(struct kvm *kvm, struct kvm_resize_hpt *resize)
1426{
1427	if (WARN_ON(!mutex_is_locked(&kvm->arch.mmu_setup_lock)))
1428		return;
1429
1430	if (!resize)
1431		return;
1432
1433	if (resize->error != -EBUSY) {
1434		if (resize->hpt.virt)
1435			kvmppc_free_hpt(&resize->hpt);
1436		kfree(resize);
1437	}
1438
1439	if (kvm->arch.resize_hpt == resize)
1440		kvm->arch.resize_hpt = NULL;
1441}
1442
1443static void resize_hpt_prepare_work(struct work_struct *work)
1444{
1445	struct kvm_resize_hpt *resize = container_of(work,
1446						     struct kvm_resize_hpt,
1447						     work);
1448	struct kvm *kvm = resize->kvm;
1449	int err = 0;
1450
1451	if (WARN_ON(resize->error != -EBUSY))
1452		return;
1453
1454	mutex_lock(&kvm->arch.mmu_setup_lock);
1455
1456	/* Request is still current? */
1457	if (kvm->arch.resize_hpt == resize) {
1458		/* We may request large allocations here:
1459		 * do not sleep with kvm->arch.mmu_setup_lock held for a while.
1460		 */
1461		mutex_unlock(&kvm->arch.mmu_setup_lock);
1462
1463		resize_hpt_debug(resize, "resize_hpt_prepare_work(): order = %d\n",
1464				 resize->order);
1465
1466		err = resize_hpt_allocate(resize);
1467
1468		/* We have strict assumption about -EBUSY
1469		 * when preparing for HPT resize.
1470		 */
1471		if (WARN_ON(err == -EBUSY))
1472			err = -EINPROGRESS;
1473
1474		mutex_lock(&kvm->arch.mmu_setup_lock);
1475		/* It is possible that kvm->arch.resize_hpt != resize
1476		 * after we grab kvm->arch.mmu_setup_lock again.
1477		 */
1478	}
1479
1480	resize->error = err;
1481
1482	if (kvm->arch.resize_hpt != resize)
1483		resize_hpt_release(kvm, resize);
1484
1485	mutex_unlock(&kvm->arch.mmu_setup_lock);
1486}
1487
1488long kvm_vm_ioctl_resize_hpt_prepare(struct kvm *kvm,
1489				     struct kvm_ppc_resize_hpt *rhpt)
1490{
1491	unsigned long flags = rhpt->flags;
1492	unsigned long shift = rhpt->shift;
1493	struct kvm_resize_hpt *resize;
1494	int ret;
1495
1496	if (flags != 0 || kvm_is_radix(kvm))
1497		return -EINVAL;
1498
1499	if (shift && ((shift < 18) || (shift > 46)))
1500		return -EINVAL;
1501
1502	mutex_lock(&kvm->arch.mmu_setup_lock);
1503
1504	resize = kvm->arch.resize_hpt;
1505
1506	if (resize) {
1507		if (resize->order == shift) {
1508			/* Suitable resize in progress? */
1509			ret = resize->error;
1510			if (ret == -EBUSY)
1511				ret = 100; /* estimated time in ms */
1512			else if (ret)
1513				resize_hpt_release(kvm, resize);
1514
1515			goto out;
1516		}
1517
1518		/* not suitable, cancel it */
1519		resize_hpt_release(kvm, resize);
1520	}
1521
1522	ret = 0;
1523	if (!shift)
1524		goto out; /* nothing to do */
1525
1526	/* start new resize */
1527
1528	resize = kzalloc(sizeof(*resize), GFP_KERNEL);
1529	if (!resize) {
1530		ret = -ENOMEM;
1531		goto out;
1532	}
1533
1534	resize->error = -EBUSY;
1535	resize->order = shift;
1536	resize->kvm = kvm;
1537	INIT_WORK(&resize->work, resize_hpt_prepare_work);
1538	kvm->arch.resize_hpt = resize;
1539
1540	schedule_work(&resize->work);
1541
1542	ret = 100; /* estimated time in ms */
1543
1544out:
1545	mutex_unlock(&kvm->arch.mmu_setup_lock);
1546	return ret;
1547}
1548
1549static void resize_hpt_boot_vcpu(void *opaque)
1550{
1551	/* Nothing to do, just force a KVM exit */
1552}
1553
1554long kvm_vm_ioctl_resize_hpt_commit(struct kvm *kvm,
1555				    struct kvm_ppc_resize_hpt *rhpt)
1556{
1557	unsigned long flags = rhpt->flags;
1558	unsigned long shift = rhpt->shift;
1559	struct kvm_resize_hpt *resize;
1560	long ret;
1561
1562	if (flags != 0 || kvm_is_radix(kvm))
1563		return -EINVAL;
1564
1565	if (shift && ((shift < 18) || (shift > 46)))
1566		return -EINVAL;
1567
1568	mutex_lock(&kvm->arch.mmu_setup_lock);
1569
1570	resize = kvm->arch.resize_hpt;
1571
1572	/* This shouldn't be possible */
1573	ret = -EIO;
1574	if (WARN_ON(!kvm->arch.mmu_ready))
1575		goto out_no_hpt;
1576
1577	/* Stop VCPUs from running while we mess with the HPT */
1578	kvm->arch.mmu_ready = 0;
1579	smp_mb();
1580
1581	/* Boot all CPUs out of the guest so they re-read
1582	 * mmu_ready */
1583	on_each_cpu(resize_hpt_boot_vcpu, NULL, 1);
1584
1585	ret = -ENXIO;
1586	if (!resize || (resize->order != shift))
1587		goto out;
1588
1589	ret = resize->error;
1590	if (ret)
1591		goto out;
1592
1593	ret = resize_hpt_rehash(resize);
1594	if (ret)
1595		goto out;
1596
1597	resize_hpt_pivot(resize);
1598
1599out:
1600	/* Let VCPUs run again */
1601	kvm->arch.mmu_ready = 1;
1602	smp_mb();
1603out_no_hpt:
1604	resize_hpt_release(kvm, resize);
1605	mutex_unlock(&kvm->arch.mmu_setup_lock);
1606	return ret;
1607}
1608
1609/*
1610 * Functions for reading and writing the hash table via reads and
1611 * writes on a file descriptor.
1612 *
1613 * Reads return the guest view of the hash table, which has to be
1614 * pieced together from the real hash table and the guest_rpte
1615 * values in the revmap array.
1616 *
1617 * On writes, each HPTE written is considered in turn, and if it
1618 * is valid, it is written to the HPT as if an H_ENTER with the
1619 * exact flag set was done.  When the invalid count is non-zero
1620 * in the header written to the stream, the kernel will make
1621 * sure that that many HPTEs are invalid, and invalidate them
1622 * if not.
1623 */
1624
1625struct kvm_htab_ctx {
1626	unsigned long	index;
1627	unsigned long	flags;
1628	struct kvm	*kvm;
1629	int		first_pass;
1630};
1631
1632#define HPTE_SIZE	(2 * sizeof(unsigned long))
1633
1634/*
1635 * Returns 1 if this HPT entry has been modified or has pending
1636 * R/C bit changes.
1637 */
1638static int hpte_dirty(struct revmap_entry *revp, __be64 *hptp)
1639{
1640	unsigned long rcbits_unset;
1641
1642	if (revp->guest_rpte & HPTE_GR_MODIFIED)
1643		return 1;
1644
1645	/* Also need to consider changes in reference and changed bits */
1646	rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1647	if ((be64_to_cpu(hptp[0]) & HPTE_V_VALID) &&
1648	    (be64_to_cpu(hptp[1]) & rcbits_unset))
1649		return 1;
1650
1651	return 0;
1652}
1653
1654static long record_hpte(unsigned long flags, __be64 *hptp,
1655			unsigned long *hpte, struct revmap_entry *revp,
1656			int want_valid, int first_pass)
1657{
1658	unsigned long v, r, hr;
1659	unsigned long rcbits_unset;
1660	int ok = 1;
1661	int valid, dirty;
1662
1663	/* Unmodified entries are uninteresting except on the first pass */
1664	dirty = hpte_dirty(revp, hptp);
1665	if (!first_pass && !dirty)
1666		return 0;
1667
1668	valid = 0;
1669	if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)) {
1670		valid = 1;
1671		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) &&
1672		    !(be64_to_cpu(hptp[0]) & HPTE_V_BOLTED))
1673			valid = 0;
1674	}
1675	if (valid != want_valid)
1676		return 0;
1677
1678	v = r = 0;
1679	if (valid || dirty) {
1680		/* lock the HPTE so it's stable and read it */
1681		preempt_disable();
1682		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
1683			cpu_relax();
1684		v = be64_to_cpu(hptp[0]);
1685		hr = be64_to_cpu(hptp[1]);
1686		if (cpu_has_feature(CPU_FTR_ARCH_300)) {
1687			v = hpte_new_to_old_v(v, hr);
1688			hr = hpte_new_to_old_r(hr);
1689		}
1690
1691		/* re-evaluate valid and dirty from synchronized HPTE value */
1692		valid = !!(v & HPTE_V_VALID);
1693		dirty = !!(revp->guest_rpte & HPTE_GR_MODIFIED);
1694
1695		/* Harvest R and C into guest view if necessary */
1696		rcbits_unset = ~revp->guest_rpte & (HPTE_R_R | HPTE_R_C);
1697		if (valid && (rcbits_unset & hr)) {
1698			revp->guest_rpte |= (hr &
1699				(HPTE_R_R | HPTE_R_C)) | HPTE_GR_MODIFIED;
1700			dirty = 1;
1701		}
1702
1703		if (v & HPTE_V_ABSENT) {
1704			v &= ~HPTE_V_ABSENT;
1705			v |= HPTE_V_VALID;
1706			valid = 1;
1707		}
1708		if ((flags & KVM_GET_HTAB_BOLTED_ONLY) && !(v & HPTE_V_BOLTED))
1709			valid = 0;
1710
1711		r = revp->guest_rpte;
1712		/* only clear modified if this is the right sort of entry */
1713		if (valid == want_valid && dirty) {
1714			r &= ~HPTE_GR_MODIFIED;
1715			revp->guest_rpte = r;
1716		}
1717		unlock_hpte(hptp, be64_to_cpu(hptp[0]));
1718		preempt_enable();
1719		if (!(valid == want_valid && (first_pass || dirty)))
1720			ok = 0;
1721	}
1722	hpte[0] = cpu_to_be64(v);
1723	hpte[1] = cpu_to_be64(r);
1724	return ok;
1725}
1726
1727static ssize_t kvm_htab_read(struct file *file, char __user *buf,
1728			     size_t count, loff_t *ppos)
1729{
1730	struct kvm_htab_ctx *ctx = file->private_data;
1731	struct kvm *kvm = ctx->kvm;
1732	struct kvm_get_htab_header hdr;
1733	__be64 *hptp;
1734	struct revmap_entry *revp;
1735	unsigned long i, nb, nw;
1736	unsigned long __user *lbuf;
1737	struct kvm_get_htab_header __user *hptr;
1738	unsigned long flags;
1739	int first_pass;
1740	unsigned long hpte[2];
1741
1742	if (!access_ok(buf, count))
1743		return -EFAULT;
1744	if (kvm_is_radix(kvm))
1745		return 0;
1746
1747	first_pass = ctx->first_pass;
1748	flags = ctx->flags;
1749
1750	i = ctx->index;
1751	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1752	revp = kvm->arch.hpt.rev + i;
1753	lbuf = (unsigned long __user *)buf;
1754
1755	nb = 0;
1756	while (nb + sizeof(hdr) + HPTE_SIZE < count) {
1757		/* Initialize header */
1758		hptr = (struct kvm_get_htab_header __user *)buf;
1759		hdr.n_valid = 0;
1760		hdr.n_invalid = 0;
1761		nw = nb;
1762		nb += sizeof(hdr);
1763		lbuf = (unsigned long __user *)(buf + sizeof(hdr));
1764
1765		/* Skip uninteresting entries, i.e. clean on not-first pass */
1766		if (!first_pass) {
1767			while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1768			       !hpte_dirty(revp, hptp)) {
1769				++i;
1770				hptp += 2;
1771				++revp;
1772			}
1773		}
1774		hdr.index = i;
1775
1776		/* Grab a series of valid entries */
1777		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1778		       hdr.n_valid < 0xffff &&
1779		       nb + HPTE_SIZE < count &&
1780		       record_hpte(flags, hptp, hpte, revp, 1, first_pass)) {
1781			/* valid entry, write it out */
1782			++hdr.n_valid;
1783			if (__put_user(hpte[0], lbuf) ||
1784			    __put_user(hpte[1], lbuf + 1))
1785				return -EFAULT;
1786			nb += HPTE_SIZE;
1787			lbuf += 2;
1788			++i;
1789			hptp += 2;
1790			++revp;
1791		}
1792		/* Now skip invalid entries while we can */
1793		while (i < kvmppc_hpt_npte(&kvm->arch.hpt) &&
1794		       hdr.n_invalid < 0xffff &&
1795		       record_hpte(flags, hptp, hpte, revp, 0, first_pass)) {
1796			/* found an invalid entry */
1797			++hdr.n_invalid;
1798			++i;
1799			hptp += 2;
1800			++revp;
1801		}
1802
1803		if (hdr.n_valid || hdr.n_invalid) {
1804			/* write back the header */
1805			if (__copy_to_user(hptr, &hdr, sizeof(hdr)))
1806				return -EFAULT;
1807			nw = nb;
1808			buf = (char __user *)lbuf;
1809		} else {
1810			nb = nw;
1811		}
1812
1813		/* Check if we've wrapped around the hash table */
1814		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt)) {
1815			i = 0;
1816			ctx->first_pass = 0;
1817			break;
1818		}
1819	}
1820
1821	ctx->index = i;
1822
1823	return nb;
1824}
1825
1826static ssize_t kvm_htab_write(struct file *file, const char __user *buf,
1827			      size_t count, loff_t *ppos)
1828{
1829	struct kvm_htab_ctx *ctx = file->private_data;
1830	struct kvm *kvm = ctx->kvm;
1831	struct kvm_get_htab_header hdr;
1832	unsigned long i, j;
1833	unsigned long v, r;
1834	unsigned long __user *lbuf;
1835	__be64 *hptp;
1836	unsigned long tmp[2];
1837	ssize_t nb;
1838	long int err, ret;
1839	int mmu_ready;
1840	int pshift;
1841
1842	if (!access_ok(buf, count))
1843		return -EFAULT;
1844	if (kvm_is_radix(kvm))
1845		return -EINVAL;
1846
1847	/* lock out vcpus from running while we're doing this */
1848	mutex_lock(&kvm->arch.mmu_setup_lock);
1849	mmu_ready = kvm->arch.mmu_ready;
1850	if (mmu_ready) {
1851		kvm->arch.mmu_ready = 0;	/* temporarily */
1852		/* order mmu_ready vs. vcpus_running */
1853		smp_mb();
1854		if (atomic_read(&kvm->arch.vcpus_running)) {
1855			kvm->arch.mmu_ready = 1;
1856			mutex_unlock(&kvm->arch.mmu_setup_lock);
1857			return -EBUSY;
1858		}
1859	}
1860
1861	err = 0;
1862	for (nb = 0; nb + sizeof(hdr) <= count; ) {
1863		err = -EFAULT;
1864		if (__copy_from_user(&hdr, buf, sizeof(hdr)))
1865			break;
1866
1867		err = 0;
1868		if (nb + hdr.n_valid * HPTE_SIZE > count)
1869			break;
1870
1871		nb += sizeof(hdr);
1872		buf += sizeof(hdr);
1873
1874		err = -EINVAL;
1875		i = hdr.index;
1876		if (i >= kvmppc_hpt_npte(&kvm->arch.hpt) ||
1877		    i + hdr.n_valid + hdr.n_invalid > kvmppc_hpt_npte(&kvm->arch.hpt))
1878			break;
1879
1880		hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
1881		lbuf = (unsigned long __user *)buf;
1882		for (j = 0; j < hdr.n_valid; ++j) {
1883			__be64 hpte_v;
1884			__be64 hpte_r;
1885
1886			err = -EFAULT;
1887			if (__get_user(hpte_v, lbuf) ||
1888			    __get_user(hpte_r, lbuf + 1))
1889				goto out;
1890			v = be64_to_cpu(hpte_v);
1891			r = be64_to_cpu(hpte_r);
1892			err = -EINVAL;
1893			if (!(v & HPTE_V_VALID))
1894				goto out;
1895			pshift = kvmppc_hpte_base_page_shift(v, r);
1896			if (pshift <= 0)
1897				goto out;
1898			lbuf += 2;
1899			nb += HPTE_SIZE;
1900
1901			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1902				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1903			err = -EIO;
1904			ret = kvmppc_virtmode_do_h_enter(kvm, H_EXACT, i, v, r,
1905							 tmp);
1906			if (ret != H_SUCCESS) {
1907				pr_err("kvm_htab_write ret %ld i=%ld v=%lx "
1908				       "r=%lx\n", ret, i, v, r);
1909				goto out;
1910			}
1911			if (!mmu_ready && is_vrma_hpte(v)) {
1912				unsigned long senc, lpcr;
1913
1914				senc = slb_pgsize_encoding(1ul << pshift);
1915				kvm->arch.vrma_slb_v = senc | SLB_VSID_B_1T |
1916					(VRMA_VSID << SLB_VSID_SHIFT_1T);
1917				if (!cpu_has_feature(CPU_FTR_ARCH_300)) {
1918					lpcr = senc << (LPCR_VRMASD_SH - 4);
1919					kvmppc_update_lpcr(kvm, lpcr,
1920							   LPCR_VRMASD);
1921				} else {
1922					kvmppc_setup_partition_table(kvm);
1923				}
1924				mmu_ready = 1;
1925			}
1926			++i;
1927			hptp += 2;
1928		}
1929
1930		for (j = 0; j < hdr.n_invalid; ++j) {
1931			if (be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT))
1932				kvmppc_do_h_remove(kvm, 0, i, 0, tmp);
1933			++i;
1934			hptp += 2;
1935		}
1936		err = 0;
1937	}
1938
1939 out:
1940	/* Order HPTE updates vs. mmu_ready */
1941	smp_wmb();
1942	kvm->arch.mmu_ready = mmu_ready;
1943	mutex_unlock(&kvm->arch.mmu_setup_lock);
1944
1945	if (err)
1946		return err;
1947	return nb;
1948}
1949
1950static int kvm_htab_release(struct inode *inode, struct file *filp)
1951{
1952	struct kvm_htab_ctx *ctx = filp->private_data;
1953
1954	filp->private_data = NULL;
1955	if (!(ctx->flags & KVM_GET_HTAB_WRITE))
1956		atomic_dec(&ctx->kvm->arch.hpte_mod_interest);
1957	kvm_put_kvm(ctx->kvm);
1958	kfree(ctx);
1959	return 0;
1960}
1961
1962static const struct file_operations kvm_htab_fops = {
1963	.read		= kvm_htab_read,
1964	.write		= kvm_htab_write,
1965	.llseek		= default_llseek,
1966	.release	= kvm_htab_release,
1967};
1968
1969int kvm_vm_ioctl_get_htab_fd(struct kvm *kvm, struct kvm_get_htab_fd *ghf)
1970{
1971	int ret;
1972	struct kvm_htab_ctx *ctx;
1973	int rwflag;
1974
1975	/* reject flags we don't recognize */
1976	if (ghf->flags & ~(KVM_GET_HTAB_BOLTED_ONLY | KVM_GET_HTAB_WRITE))
1977		return -EINVAL;
1978	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1979	if (!ctx)
1980		return -ENOMEM;
1981	kvm_get_kvm(kvm);
1982	ctx->kvm = kvm;
1983	ctx->index = ghf->start_index;
1984	ctx->flags = ghf->flags;
1985	ctx->first_pass = 1;
1986
1987	rwflag = (ghf->flags & KVM_GET_HTAB_WRITE) ? O_WRONLY : O_RDONLY;
1988	ret = anon_inode_getfd("kvm-htab", &kvm_htab_fops, ctx, rwflag | O_CLOEXEC);
1989	if (ret < 0) {
1990		kfree(ctx);
1991		kvm_put_kvm_no_destroy(kvm);
1992		return ret;
1993	}
1994
1995	if (rwflag == O_RDONLY) {
1996		mutex_lock(&kvm->slots_lock);
1997		atomic_inc(&kvm->arch.hpte_mod_interest);
1998		/* make sure kvmppc_do_h_enter etc. see the increment */
1999		synchronize_srcu_expedited(&kvm->srcu);
2000		mutex_unlock(&kvm->slots_lock);
2001	}
2002
2003	return ret;
2004}
2005
2006struct debugfs_htab_state {
2007	struct kvm	*kvm;
2008	struct mutex	mutex;
2009	unsigned long	hpt_index;
2010	int		chars_left;
2011	int		buf_index;
2012	char		buf[64];
2013};
2014
2015static int debugfs_htab_open(struct inode *inode, struct file *file)
2016{
2017	struct kvm *kvm = inode->i_private;
2018	struct debugfs_htab_state *p;
2019
2020	p = kzalloc(sizeof(*p), GFP_KERNEL);
2021	if (!p)
2022		return -ENOMEM;
2023
2024	kvm_get_kvm(kvm);
2025	p->kvm = kvm;
2026	mutex_init(&p->mutex);
2027	file->private_data = p;
2028
2029	return nonseekable_open(inode, file);
2030}
2031
2032static int debugfs_htab_release(struct inode *inode, struct file *file)
2033{
2034	struct debugfs_htab_state *p = file->private_data;
2035
2036	kvm_put_kvm(p->kvm);
2037	kfree(p);
2038	return 0;
2039}
2040
2041static ssize_t debugfs_htab_read(struct file *file, char __user *buf,
2042				 size_t len, loff_t *ppos)
2043{
2044	struct debugfs_htab_state *p = file->private_data;
2045	ssize_t ret, r;
2046	unsigned long i, n;
2047	unsigned long v, hr, gr;
2048	struct kvm *kvm;
2049	__be64 *hptp;
2050
2051	kvm = p->kvm;
2052	if (kvm_is_radix(kvm))
2053		return 0;
2054
2055	ret = mutex_lock_interruptible(&p->mutex);
2056	if (ret)
2057		return ret;
2058
2059	if (p->chars_left) {
2060		n = p->chars_left;
2061		if (n > len)
2062			n = len;
2063		r = copy_to_user(buf, p->buf + p->buf_index, n);
2064		n -= r;
2065		p->chars_left -= n;
2066		p->buf_index += n;
2067		buf += n;
2068		len -= n;
2069		ret = n;
2070		if (r) {
2071			if (!n)
2072				ret = -EFAULT;
2073			goto out;
2074		}
2075	}
2076
2077	i = p->hpt_index;
2078	hptp = (__be64 *)(kvm->arch.hpt.virt + (i * HPTE_SIZE));
2079	for (; len != 0 && i < kvmppc_hpt_npte(&kvm->arch.hpt);
2080	     ++i, hptp += 2) {
2081		if (!(be64_to_cpu(hptp[0]) & (HPTE_V_VALID | HPTE_V_ABSENT)))
2082			continue;
2083
2084		/* lock the HPTE so it's stable and read it */
2085		preempt_disable();
2086		while (!try_lock_hpte(hptp, HPTE_V_HVLOCK))
2087			cpu_relax();
2088		v = be64_to_cpu(hptp[0]) & ~HPTE_V_HVLOCK;
2089		hr = be64_to_cpu(hptp[1]);
2090		gr = kvm->arch.hpt.rev[i].guest_rpte;
2091		unlock_hpte(hptp, v);
2092		preempt_enable();
2093
2094		if (!(v & (HPTE_V_VALID | HPTE_V_ABSENT)))
2095			continue;
2096
2097		n = scnprintf(p->buf, sizeof(p->buf),
2098			      "%6lx %.16lx %.16lx %.16lx\n",
2099			      i, v, hr, gr);
2100		p->chars_left = n;
2101		if (n > len)
2102			n = len;
2103		r = copy_to_user(buf, p->buf, n);
2104		n -= r;
2105		p->chars_left -= n;
2106		p->buf_index = n;
2107		buf += n;
2108		len -= n;
2109		ret += n;
2110		if (r) {
2111			if (!ret)
2112				ret = -EFAULT;
2113			goto out;
2114		}
2115	}
2116	p->hpt_index = i;
2117
2118 out:
2119	mutex_unlock(&p->mutex);
2120	return ret;
2121}
2122
2123static ssize_t debugfs_htab_write(struct file *file, const char __user *buf,
2124			   size_t len, loff_t *ppos)
2125{
2126	return -EACCES;
2127}
2128
2129static const struct file_operations debugfs_htab_fops = {
2130	.owner	 = THIS_MODULE,
2131	.open	 = debugfs_htab_open,
2132	.release = debugfs_htab_release,
2133	.read	 = debugfs_htab_read,
2134	.write	 = debugfs_htab_write,
2135	.llseek	 = generic_file_llseek,
2136};
2137
2138void kvmppc_mmu_debugfs_init(struct kvm *kvm)
2139{
2140	debugfs_create_file("htab", 0400, kvm->arch.debugfs_dir, kvm,
2141			    &debugfs_htab_fops);
2142}
2143
2144void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu)
2145{
2146	struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
2147
2148	vcpu->arch.slb_nr = 32;		/* POWER7/POWER8 */
2149
2150	mmu->xlate = kvmppc_mmu_book3s_64_hv_xlate;
2151
2152	vcpu->arch.hflags |= BOOK3S_HFLAG_SLB;
2153}
2154