18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * PCI address cache; allows the lookup of PCI devices based on I/O address
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci * Copyright IBM Corporation 2004
68c2ecf20Sopenharmony_ci * Copyright Linas Vepstas <linas@austin.ibm.com> 2004
78c2ecf20Sopenharmony_ci */
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci#include <linux/list.h>
108c2ecf20Sopenharmony_ci#include <linux/pci.h>
118c2ecf20Sopenharmony_ci#include <linux/rbtree.h>
128c2ecf20Sopenharmony_ci#include <linux/slab.h>
138c2ecf20Sopenharmony_ci#include <linux/spinlock.h>
148c2ecf20Sopenharmony_ci#include <linux/atomic.h>
158c2ecf20Sopenharmony_ci#include <asm/pci-bridge.h>
168c2ecf20Sopenharmony_ci#include <asm/debugfs.h>
178c2ecf20Sopenharmony_ci#include <asm/ppc-pci.h>
188c2ecf20Sopenharmony_ci
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_ci/**
218c2ecf20Sopenharmony_ci * DOC: Overview
228c2ecf20Sopenharmony_ci *
238c2ecf20Sopenharmony_ci * The pci address cache subsystem.  This subsystem places
248c2ecf20Sopenharmony_ci * PCI device address resources into a red-black tree, sorted
258c2ecf20Sopenharmony_ci * according to the address range, so that given only an i/o
268c2ecf20Sopenharmony_ci * address, the corresponding PCI device can be **quickly**
278c2ecf20Sopenharmony_ci * found. It is safe to perform an address lookup in an interrupt
288c2ecf20Sopenharmony_ci * context; this ability is an important feature.
298c2ecf20Sopenharmony_ci *
308c2ecf20Sopenharmony_ci * Currently, the only customer of this code is the EEH subsystem;
318c2ecf20Sopenharmony_ci * thus, this code has been somewhat tailored to suit EEH better.
328c2ecf20Sopenharmony_ci * In particular, the cache does *not* hold the addresses of devices
338c2ecf20Sopenharmony_ci * for which EEH is not enabled.
348c2ecf20Sopenharmony_ci *
358c2ecf20Sopenharmony_ci * (Implementation Note: The RB tree seems to be better/faster
368c2ecf20Sopenharmony_ci * than any hash algo I could think of for this problem, even
378c2ecf20Sopenharmony_ci * with the penalty of slow pointer chases for d-cache misses).
388c2ecf20Sopenharmony_ci */
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_cistruct pci_io_addr_range {
418c2ecf20Sopenharmony_ci	struct rb_node rb_node;
428c2ecf20Sopenharmony_ci	resource_size_t addr_lo;
438c2ecf20Sopenharmony_ci	resource_size_t addr_hi;
448c2ecf20Sopenharmony_ci	struct eeh_dev *edev;
458c2ecf20Sopenharmony_ci	struct pci_dev *pcidev;
468c2ecf20Sopenharmony_ci	unsigned long flags;
478c2ecf20Sopenharmony_ci};
488c2ecf20Sopenharmony_ci
498c2ecf20Sopenharmony_cistatic struct pci_io_addr_cache {
508c2ecf20Sopenharmony_ci	struct rb_root rb_root;
518c2ecf20Sopenharmony_ci	spinlock_t piar_lock;
528c2ecf20Sopenharmony_ci} pci_io_addr_cache_root;
538c2ecf20Sopenharmony_ci
548c2ecf20Sopenharmony_cistatic inline struct eeh_dev *__eeh_addr_cache_get_device(unsigned long addr)
558c2ecf20Sopenharmony_ci{
568c2ecf20Sopenharmony_ci	struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
578c2ecf20Sopenharmony_ci
588c2ecf20Sopenharmony_ci	while (n) {
598c2ecf20Sopenharmony_ci		struct pci_io_addr_range *piar;
608c2ecf20Sopenharmony_ci		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
618c2ecf20Sopenharmony_ci
628c2ecf20Sopenharmony_ci		if (addr < piar->addr_lo)
638c2ecf20Sopenharmony_ci			n = n->rb_left;
648c2ecf20Sopenharmony_ci		else if (addr > piar->addr_hi)
658c2ecf20Sopenharmony_ci			n = n->rb_right;
668c2ecf20Sopenharmony_ci		else
678c2ecf20Sopenharmony_ci			return piar->edev;
688c2ecf20Sopenharmony_ci	}
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci	return NULL;
718c2ecf20Sopenharmony_ci}
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci/**
748c2ecf20Sopenharmony_ci * eeh_addr_cache_get_dev - Get device, given only address
758c2ecf20Sopenharmony_ci * @addr: mmio (PIO) phys address or i/o port number
768c2ecf20Sopenharmony_ci *
778c2ecf20Sopenharmony_ci * Given an mmio phys address, or a port number, find a pci device
788c2ecf20Sopenharmony_ci * that implements this address.  I/O port numbers are assumed to be offset
798c2ecf20Sopenharmony_ci * from zero (that is, they do *not* have pci_io_addr added in).
808c2ecf20Sopenharmony_ci * It is safe to call this function within an interrupt.
818c2ecf20Sopenharmony_ci */
828c2ecf20Sopenharmony_cistruct eeh_dev *eeh_addr_cache_get_dev(unsigned long addr)
838c2ecf20Sopenharmony_ci{
848c2ecf20Sopenharmony_ci	struct eeh_dev *edev;
858c2ecf20Sopenharmony_ci	unsigned long flags;
868c2ecf20Sopenharmony_ci
878c2ecf20Sopenharmony_ci	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
888c2ecf20Sopenharmony_ci	edev = __eeh_addr_cache_get_device(addr);
898c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
908c2ecf20Sopenharmony_ci	return edev;
918c2ecf20Sopenharmony_ci}
928c2ecf20Sopenharmony_ci
938c2ecf20Sopenharmony_ci#ifdef DEBUG
948c2ecf20Sopenharmony_ci/*
958c2ecf20Sopenharmony_ci * Handy-dandy debug print routine, does nothing more
968c2ecf20Sopenharmony_ci * than print out the contents of our addr cache.
978c2ecf20Sopenharmony_ci */
988c2ecf20Sopenharmony_cistatic void eeh_addr_cache_print(struct pci_io_addr_cache *cache)
998c2ecf20Sopenharmony_ci{
1008c2ecf20Sopenharmony_ci	struct rb_node *n;
1018c2ecf20Sopenharmony_ci	int cnt = 0;
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	n = rb_first(&cache->rb_root);
1048c2ecf20Sopenharmony_ci	while (n) {
1058c2ecf20Sopenharmony_ci		struct pci_io_addr_range *piar;
1068c2ecf20Sopenharmony_ci		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
1078c2ecf20Sopenharmony_ci		pr_info("PCI: %s addr range %d [%pap-%pap]: %s\n",
1088c2ecf20Sopenharmony_ci		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
1098c2ecf20Sopenharmony_ci		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
1108c2ecf20Sopenharmony_ci		cnt++;
1118c2ecf20Sopenharmony_ci		n = rb_next(n);
1128c2ecf20Sopenharmony_ci	}
1138c2ecf20Sopenharmony_ci}
1148c2ecf20Sopenharmony_ci#endif
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci/* Insert address range into the rb tree. */
1178c2ecf20Sopenharmony_cistatic struct pci_io_addr_range *
1188c2ecf20Sopenharmony_cieeh_addr_cache_insert(struct pci_dev *dev, resource_size_t alo,
1198c2ecf20Sopenharmony_ci		      resource_size_t ahi, unsigned long flags)
1208c2ecf20Sopenharmony_ci{
1218c2ecf20Sopenharmony_ci	struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
1228c2ecf20Sopenharmony_ci	struct rb_node *parent = NULL;
1238c2ecf20Sopenharmony_ci	struct pci_io_addr_range *piar;
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci	/* Walk tree, find a place to insert into tree */
1268c2ecf20Sopenharmony_ci	while (*p) {
1278c2ecf20Sopenharmony_ci		parent = *p;
1288c2ecf20Sopenharmony_ci		piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
1298c2ecf20Sopenharmony_ci		if (ahi < piar->addr_lo) {
1308c2ecf20Sopenharmony_ci			p = &parent->rb_left;
1318c2ecf20Sopenharmony_ci		} else if (alo > piar->addr_hi) {
1328c2ecf20Sopenharmony_ci			p = &parent->rb_right;
1338c2ecf20Sopenharmony_ci		} else {
1348c2ecf20Sopenharmony_ci			if (dev != piar->pcidev ||
1358c2ecf20Sopenharmony_ci			    alo != piar->addr_lo || ahi != piar->addr_hi) {
1368c2ecf20Sopenharmony_ci				pr_warn("PIAR: overlapping address range\n");
1378c2ecf20Sopenharmony_ci			}
1388c2ecf20Sopenharmony_ci			return piar;
1398c2ecf20Sopenharmony_ci		}
1408c2ecf20Sopenharmony_ci	}
1418c2ecf20Sopenharmony_ci	piar = kzalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
1428c2ecf20Sopenharmony_ci	if (!piar)
1438c2ecf20Sopenharmony_ci		return NULL;
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci	piar->addr_lo = alo;
1468c2ecf20Sopenharmony_ci	piar->addr_hi = ahi;
1478c2ecf20Sopenharmony_ci	piar->edev = pci_dev_to_eeh_dev(dev);
1488c2ecf20Sopenharmony_ci	piar->pcidev = dev;
1498c2ecf20Sopenharmony_ci	piar->flags = flags;
1508c2ecf20Sopenharmony_ci
1518c2ecf20Sopenharmony_ci	eeh_edev_dbg(piar->edev, "PIAR: insert range=[%pap:%pap]\n",
1528c2ecf20Sopenharmony_ci		 &alo, &ahi);
1538c2ecf20Sopenharmony_ci
1548c2ecf20Sopenharmony_ci	rb_link_node(&piar->rb_node, parent, p);
1558c2ecf20Sopenharmony_ci	rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci	return piar;
1588c2ecf20Sopenharmony_ci}
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_cistatic void __eeh_addr_cache_insert_dev(struct pci_dev *dev)
1618c2ecf20Sopenharmony_ci{
1628c2ecf20Sopenharmony_ci	struct eeh_dev *edev;
1638c2ecf20Sopenharmony_ci	int i;
1648c2ecf20Sopenharmony_ci
1658c2ecf20Sopenharmony_ci	edev = pci_dev_to_eeh_dev(dev);
1668c2ecf20Sopenharmony_ci	if (!edev) {
1678c2ecf20Sopenharmony_ci		pr_warn("PCI: no EEH dev found for %s\n",
1688c2ecf20Sopenharmony_ci			pci_name(dev));
1698c2ecf20Sopenharmony_ci		return;
1708c2ecf20Sopenharmony_ci	}
1718c2ecf20Sopenharmony_ci
1728c2ecf20Sopenharmony_ci	/* Skip any devices for which EEH is not enabled. */
1738c2ecf20Sopenharmony_ci	if (!edev->pe) {
1748c2ecf20Sopenharmony_ci		dev_dbg(&dev->dev, "EEH: Skip building address cache\n");
1758c2ecf20Sopenharmony_ci		return;
1768c2ecf20Sopenharmony_ci	}
1778c2ecf20Sopenharmony_ci
1788c2ecf20Sopenharmony_ci	/*
1798c2ecf20Sopenharmony_ci	 * Walk resources on this device, poke the first 7 (6 normal BAR and 1
1808c2ecf20Sopenharmony_ci	 * ROM BAR) into the tree.
1818c2ecf20Sopenharmony_ci	 */
1828c2ecf20Sopenharmony_ci	for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
1838c2ecf20Sopenharmony_ci		resource_size_t start = pci_resource_start(dev,i);
1848c2ecf20Sopenharmony_ci		resource_size_t end = pci_resource_end(dev,i);
1858c2ecf20Sopenharmony_ci		unsigned long flags = pci_resource_flags(dev,i);
1868c2ecf20Sopenharmony_ci
1878c2ecf20Sopenharmony_ci		/* We are interested only bus addresses, not dma or other stuff */
1888c2ecf20Sopenharmony_ci		if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
1898c2ecf20Sopenharmony_ci			continue;
1908c2ecf20Sopenharmony_ci		if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
1918c2ecf20Sopenharmony_ci			 continue;
1928c2ecf20Sopenharmony_ci		eeh_addr_cache_insert(dev, start, end, flags);
1938c2ecf20Sopenharmony_ci	}
1948c2ecf20Sopenharmony_ci}
1958c2ecf20Sopenharmony_ci
1968c2ecf20Sopenharmony_ci/**
1978c2ecf20Sopenharmony_ci * eeh_addr_cache_insert_dev - Add a device to the address cache
1988c2ecf20Sopenharmony_ci * @dev: PCI device whose I/O addresses we are interested in.
1998c2ecf20Sopenharmony_ci *
2008c2ecf20Sopenharmony_ci * In order to support the fast lookup of devices based on addresses,
2018c2ecf20Sopenharmony_ci * we maintain a cache of devices that can be quickly searched.
2028c2ecf20Sopenharmony_ci * This routine adds a device to that cache.
2038c2ecf20Sopenharmony_ci */
2048c2ecf20Sopenharmony_civoid eeh_addr_cache_insert_dev(struct pci_dev *dev)
2058c2ecf20Sopenharmony_ci{
2068c2ecf20Sopenharmony_ci	unsigned long flags;
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
2098c2ecf20Sopenharmony_ci	__eeh_addr_cache_insert_dev(dev);
2108c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
2118c2ecf20Sopenharmony_ci}
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_cistatic inline void __eeh_addr_cache_rmv_dev(struct pci_dev *dev)
2148c2ecf20Sopenharmony_ci{
2158c2ecf20Sopenharmony_ci	struct rb_node *n;
2168c2ecf20Sopenharmony_ci
2178c2ecf20Sopenharmony_cirestart:
2188c2ecf20Sopenharmony_ci	n = rb_first(&pci_io_addr_cache_root.rb_root);
2198c2ecf20Sopenharmony_ci	while (n) {
2208c2ecf20Sopenharmony_ci		struct pci_io_addr_range *piar;
2218c2ecf20Sopenharmony_ci		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
2228c2ecf20Sopenharmony_ci
2238c2ecf20Sopenharmony_ci		if (piar->pcidev == dev) {
2248c2ecf20Sopenharmony_ci			eeh_edev_dbg(piar->edev, "PIAR: remove range=[%pap:%pap]\n",
2258c2ecf20Sopenharmony_ci				 &piar->addr_lo, &piar->addr_hi);
2268c2ecf20Sopenharmony_ci			rb_erase(n, &pci_io_addr_cache_root.rb_root);
2278c2ecf20Sopenharmony_ci			kfree(piar);
2288c2ecf20Sopenharmony_ci			goto restart;
2298c2ecf20Sopenharmony_ci		}
2308c2ecf20Sopenharmony_ci		n = rb_next(n);
2318c2ecf20Sopenharmony_ci	}
2328c2ecf20Sopenharmony_ci}
2338c2ecf20Sopenharmony_ci
2348c2ecf20Sopenharmony_ci/**
2358c2ecf20Sopenharmony_ci * eeh_addr_cache_rmv_dev - remove pci device from addr cache
2368c2ecf20Sopenharmony_ci * @dev: device to remove
2378c2ecf20Sopenharmony_ci *
2388c2ecf20Sopenharmony_ci * Remove a device from the addr-cache tree.
2398c2ecf20Sopenharmony_ci * This is potentially expensive, since it will walk
2408c2ecf20Sopenharmony_ci * the tree multiple times (once per resource).
2418c2ecf20Sopenharmony_ci * But so what; device removal doesn't need to be that fast.
2428c2ecf20Sopenharmony_ci */
2438c2ecf20Sopenharmony_civoid eeh_addr_cache_rmv_dev(struct pci_dev *dev)
2448c2ecf20Sopenharmony_ci{
2458c2ecf20Sopenharmony_ci	unsigned long flags;
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
2488c2ecf20Sopenharmony_ci	__eeh_addr_cache_rmv_dev(dev);
2498c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
2508c2ecf20Sopenharmony_ci}
2518c2ecf20Sopenharmony_ci
2528c2ecf20Sopenharmony_ci/**
2538c2ecf20Sopenharmony_ci * eeh_addr_cache_init - Initialize a cache of I/O addresses
2548c2ecf20Sopenharmony_ci *
2558c2ecf20Sopenharmony_ci * Initialize a cache of pci i/o addresses.  This cache will be used to
2568c2ecf20Sopenharmony_ci * find the pci device that corresponds to a given address.
2578c2ecf20Sopenharmony_ci */
2588c2ecf20Sopenharmony_civoid eeh_addr_cache_init(void)
2598c2ecf20Sopenharmony_ci{
2608c2ecf20Sopenharmony_ci	spin_lock_init(&pci_io_addr_cache_root.piar_lock);
2618c2ecf20Sopenharmony_ci}
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_cistatic int eeh_addr_cache_show(struct seq_file *s, void *v)
2648c2ecf20Sopenharmony_ci{
2658c2ecf20Sopenharmony_ci	struct pci_io_addr_range *piar;
2668c2ecf20Sopenharmony_ci	struct rb_node *n;
2678c2ecf20Sopenharmony_ci	unsigned long flags;
2688c2ecf20Sopenharmony_ci
2698c2ecf20Sopenharmony_ci	spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
2708c2ecf20Sopenharmony_ci	for (n = rb_first(&pci_io_addr_cache_root.rb_root); n; n = rb_next(n)) {
2718c2ecf20Sopenharmony_ci		piar = rb_entry(n, struct pci_io_addr_range, rb_node);
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci		seq_printf(s, "%s addr range [%pap-%pap]: %s\n",
2748c2ecf20Sopenharmony_ci		       (piar->flags & IORESOURCE_IO) ? "i/o" : "mem",
2758c2ecf20Sopenharmony_ci		       &piar->addr_lo, &piar->addr_hi, pci_name(piar->pcidev));
2768c2ecf20Sopenharmony_ci	}
2778c2ecf20Sopenharmony_ci	spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	return 0;
2808c2ecf20Sopenharmony_ci}
2818c2ecf20Sopenharmony_ciDEFINE_SHOW_ATTRIBUTE(eeh_addr_cache);
2828c2ecf20Sopenharmony_ci
2838c2ecf20Sopenharmony_civoid eeh_cache_debugfs_init(void)
2848c2ecf20Sopenharmony_ci{
2858c2ecf20Sopenharmony_ci	debugfs_create_file_unsafe("eeh_address_cache", 0400,
2868c2ecf20Sopenharmony_ci			powerpc_debugfs_root, NULL,
2878c2ecf20Sopenharmony_ci			&eeh_addr_cache_fops);
2888c2ecf20Sopenharmony_ci}
289