18c2ecf20Sopenharmony_ci/* Machine-dependent software floating-point definitions.  PPC version.
28c2ecf20Sopenharmony_ci   Copyright (C) 1997 Free Software Foundation, Inc.
38c2ecf20Sopenharmony_ci   This file is part of the GNU C Library.
48c2ecf20Sopenharmony_ci
58c2ecf20Sopenharmony_ci   The GNU C Library is free software; you can redistribute it and/or
68c2ecf20Sopenharmony_ci   modify it under the terms of the GNU Library General Public License as
78c2ecf20Sopenharmony_ci   published by the Free Software Foundation; either version 2 of the
88c2ecf20Sopenharmony_ci   License, or (at your option) any later version.
98c2ecf20Sopenharmony_ci
108c2ecf20Sopenharmony_ci   The GNU C Library is distributed in the hope that it will be useful,
118c2ecf20Sopenharmony_ci   but WITHOUT ANY WARRANTY; without even the implied warranty of
128c2ecf20Sopenharmony_ci   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
138c2ecf20Sopenharmony_ci   Library General Public License for more details.
148c2ecf20Sopenharmony_ci
158c2ecf20Sopenharmony_ci   You should have received a copy of the GNU Library General Public
168c2ecf20Sopenharmony_ci   License along with the GNU C Library; see the file COPYING.LIB.  If
178c2ecf20Sopenharmony_ci   not, write to the Free Software Foundation, Inc.,
188c2ecf20Sopenharmony_ci   59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_ci   Actually, this is a PPC (32bit) version, written based on the
218c2ecf20Sopenharmony_ci   i386, sparc, and sparc64 versions, by me,
228c2ecf20Sopenharmony_ci   Peter Maydell (pmaydell@chiark.greenend.org.uk).
238c2ecf20Sopenharmony_ci   Comments are by and large also mine, although they may be inaccurate.
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci   In picking out asm fragments I've gone with the lowest common
268c2ecf20Sopenharmony_ci   denominator, which also happens to be the hardware I have :->
278c2ecf20Sopenharmony_ci   That is, a SPARC without hardware multiply and divide.
288c2ecf20Sopenharmony_ci */
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci/* basic word size definitions */
318c2ecf20Sopenharmony_ci#define _FP_W_TYPE_SIZE		32
328c2ecf20Sopenharmony_ci#define _FP_W_TYPE		unsigned int
338c2ecf20Sopenharmony_ci#define _FP_WS_TYPE		signed int
348c2ecf20Sopenharmony_ci#define _FP_I_TYPE		int
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci#define __ll_B			((UWtype) 1 << (W_TYPE_SIZE / 2))
378c2ecf20Sopenharmony_ci#define __ll_lowpart(t)		((UWtype) (t) & (__ll_B - 1))
388c2ecf20Sopenharmony_ci#define __ll_highpart(t)	((UWtype) (t) >> (W_TYPE_SIZE / 2))
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci/* You can optionally code some things like addition in asm. For
418c2ecf20Sopenharmony_ci * example, i386 defines __FP_FRAC_ADD_2 as asm. If you don't
428c2ecf20Sopenharmony_ci * then you get a fragment of C code [if you change an #ifdef 0
438c2ecf20Sopenharmony_ci * in op-2.h] or a call to add_ssaaaa (see below).
448c2ecf20Sopenharmony_ci * Good places to look for asm fragments to use are gcc and glibc.
458c2ecf20Sopenharmony_ci * gcc's longlong.h is useful.
468c2ecf20Sopenharmony_ci */
478c2ecf20Sopenharmony_ci
488c2ecf20Sopenharmony_ci/* We need to know how to multiply and divide. If the host word size
498c2ecf20Sopenharmony_ci * is >= 2*fracbits you can use FP_MUL_MEAT_n_imm(t,R,X,Y) which
508c2ecf20Sopenharmony_ci * codes the multiply with whatever gcc does to 'a * b'.
518c2ecf20Sopenharmony_ci * _FP_MUL_MEAT_n_wide(t,R,X,Y,f) is used when you have an asm
528c2ecf20Sopenharmony_ci * function that can multiply two 1W values and get a 2W result.
538c2ecf20Sopenharmony_ci * Otherwise you're stuck with _FP_MUL_MEAT_n_hard(t,R,X,Y) which
548c2ecf20Sopenharmony_ci * does bitshifting to avoid overflow.
558c2ecf20Sopenharmony_ci * For division there is FP_DIV_MEAT_n_imm(t,R,X,Y,f) for word size
568c2ecf20Sopenharmony_ci * >= 2*fracbits, where f is either _FP_DIV_HELP_imm or
578c2ecf20Sopenharmony_ci * _FP_DIV_HELP_ldiv (see op-1.h).
588c2ecf20Sopenharmony_ci * _FP_DIV_MEAT_udiv() is if you have asm to do 2W/1W => (1W, 1W).
598c2ecf20Sopenharmony_ci * [GCC and glibc have longlong.h which has the asm macro udiv_qrnnd
608c2ecf20Sopenharmony_ci * to do this.]
618c2ecf20Sopenharmony_ci * In general, 'n' is the number of words required to hold the type,
628c2ecf20Sopenharmony_ci * and 't' is either S, D or Q for single/double/quad.
638c2ecf20Sopenharmony_ci *           -- PMM
648c2ecf20Sopenharmony_ci */
658c2ecf20Sopenharmony_ci/* Example: SPARC64:
668c2ecf20Sopenharmony_ci * #define _FP_MUL_MEAT_S(R,X,Y)	_FP_MUL_MEAT_1_imm(S,R,X,Y)
678c2ecf20Sopenharmony_ci * #define _FP_MUL_MEAT_D(R,X,Y)	_FP_MUL_MEAT_1_wide(D,R,X,Y,umul_ppmm)
688c2ecf20Sopenharmony_ci * #define _FP_MUL_MEAT_Q(R,X,Y)	_FP_MUL_MEAT_2_wide(Q,R,X,Y,umul_ppmm)
698c2ecf20Sopenharmony_ci *
708c2ecf20Sopenharmony_ci * #define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_imm(S,R,X,Y,_FP_DIV_HELP_imm)
718c2ecf20Sopenharmony_ci * #define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_1_udiv(D,R,X,Y)
728c2ecf20Sopenharmony_ci * #define _FP_DIV_MEAT_Q(R,X,Y)	_FP_DIV_MEAT_2_udiv_64(Q,R,X,Y)
738c2ecf20Sopenharmony_ci *
748c2ecf20Sopenharmony_ci * Example: i386:
758c2ecf20Sopenharmony_ci * #define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(S,R,X,Y,_i386_mul_32_64)
768c2ecf20Sopenharmony_ci * #define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(D,R,X,Y,_i386_mul_32_64)
778c2ecf20Sopenharmony_ci *
788c2ecf20Sopenharmony_ci * #define _FP_DIV_MEAT_S(R,X,Y)   _FP_DIV_MEAT_1_udiv(S,R,X,Y,_i386_div_64_32)
798c2ecf20Sopenharmony_ci * #define _FP_DIV_MEAT_D(R,X,Y)   _FP_DIV_MEAT_2_udiv_64(D,R,X,Y)
808c2ecf20Sopenharmony_ci */
818c2ecf20Sopenharmony_ci
828c2ecf20Sopenharmony_ci#define _FP_MUL_MEAT_S(R,X,Y)   _FP_MUL_MEAT_1_wide(_FP_WFRACBITS_S,R,X,Y,umul_ppmm)
838c2ecf20Sopenharmony_ci#define _FP_MUL_MEAT_D(R,X,Y)   _FP_MUL_MEAT_2_wide(_FP_WFRACBITS_D,R,X,Y,umul_ppmm)
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci#define _FP_DIV_MEAT_S(R,X,Y)	_FP_DIV_MEAT_1_udiv_norm(S,R,X,Y)
868c2ecf20Sopenharmony_ci#define _FP_DIV_MEAT_D(R,X,Y)	_FP_DIV_MEAT_2_udiv(D,R,X,Y)
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci/* These macros define what NaN looks like. They're supposed to expand to
898c2ecf20Sopenharmony_ci * a comma-separated set of 32bit unsigned ints that encode NaN.
908c2ecf20Sopenharmony_ci */
918c2ecf20Sopenharmony_ci#define _FP_NANFRAC_S		((_FP_QNANBIT_S << 1) - 1)
928c2ecf20Sopenharmony_ci#define _FP_NANFRAC_D		((_FP_QNANBIT_D << 1) - 1), -1
938c2ecf20Sopenharmony_ci#define _FP_NANFRAC_Q		((_FP_QNANBIT_Q << 1) - 1), -1, -1, -1
948c2ecf20Sopenharmony_ci#define _FP_NANSIGN_S		0
958c2ecf20Sopenharmony_ci#define _FP_NANSIGN_D		0
968c2ecf20Sopenharmony_ci#define _FP_NANSIGN_Q		0
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_ci#define _FP_KEEPNANFRACP 1
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci#ifdef FP_EX_BOOKE_E500_SPE
1018c2ecf20Sopenharmony_ci#define FP_EX_INEXACT		(1 << 21)
1028c2ecf20Sopenharmony_ci#define FP_EX_INVALID		(1 << 20)
1038c2ecf20Sopenharmony_ci#define FP_EX_DIVZERO		(1 << 19)
1048c2ecf20Sopenharmony_ci#define FP_EX_UNDERFLOW		(1 << 18)
1058c2ecf20Sopenharmony_ci#define FP_EX_OVERFLOW		(1 << 17)
1068c2ecf20Sopenharmony_ci#define FP_INHIBIT_RESULTS	0
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci#define __FPU_FPSCR	(current->thread.spefscr)
1098c2ecf20Sopenharmony_ci#define __FPU_ENABLED_EXC		\
1108c2ecf20Sopenharmony_ci({					\
1118c2ecf20Sopenharmony_ci	(__FPU_FPSCR >> 2) & 0x1f;	\
1128c2ecf20Sopenharmony_ci})
1138c2ecf20Sopenharmony_ci#else
1148c2ecf20Sopenharmony_ci/* Exception flags.  We use the bit positions of the appropriate bits
1158c2ecf20Sopenharmony_ci   in the FPSCR, which also correspond to the FE_* bits.  This makes
1168c2ecf20Sopenharmony_ci   everything easier ;-).  */
1178c2ecf20Sopenharmony_ci#define FP_EX_INVALID         (1 << (31 - 2))
1188c2ecf20Sopenharmony_ci#define FP_EX_INVALID_SNAN	EFLAG_VXSNAN
1198c2ecf20Sopenharmony_ci#define FP_EX_INVALID_ISI	EFLAG_VXISI
1208c2ecf20Sopenharmony_ci#define FP_EX_INVALID_IDI	EFLAG_VXIDI
1218c2ecf20Sopenharmony_ci#define FP_EX_INVALID_ZDZ	EFLAG_VXZDZ
1228c2ecf20Sopenharmony_ci#define FP_EX_INVALID_IMZ	EFLAG_VXIMZ
1238c2ecf20Sopenharmony_ci#define FP_EX_OVERFLOW        (1 << (31 - 3))
1248c2ecf20Sopenharmony_ci#define FP_EX_UNDERFLOW       (1 << (31 - 4))
1258c2ecf20Sopenharmony_ci#define FP_EX_DIVZERO         (1 << (31 - 5))
1268c2ecf20Sopenharmony_ci#define FP_EX_INEXACT         (1 << (31 - 6))
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci#define __FPU_FPSCR	(current->thread.fp_state.fpscr)
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_ci/* We only actually write to the destination register
1318c2ecf20Sopenharmony_ci * if exceptions signalled (if any) will not trap.
1328c2ecf20Sopenharmony_ci */
1338c2ecf20Sopenharmony_ci#define __FPU_ENABLED_EXC \
1348c2ecf20Sopenharmony_ci({						\
1358c2ecf20Sopenharmony_ci	(__FPU_FPSCR >> 3) & 0x1f;	\
1368c2ecf20Sopenharmony_ci})
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_ci#endif
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci/*
1418c2ecf20Sopenharmony_ci * If one NaN is signaling and the other is not,
1428c2ecf20Sopenharmony_ci * we choose that one, otherwise we choose X.
1438c2ecf20Sopenharmony_ci */
1448c2ecf20Sopenharmony_ci#define _FP_CHOOSENAN(fs, wc, R, X, Y, OP)			\
1458c2ecf20Sopenharmony_ci  do {								\
1468c2ecf20Sopenharmony_ci    if ((_FP_FRAC_HIGH_RAW_##fs(Y) & _FP_QNANBIT_##fs)		\
1478c2ecf20Sopenharmony_ci	&& !(_FP_FRAC_HIGH_RAW_##fs(X) & _FP_QNANBIT_##fs))	\
1488c2ecf20Sopenharmony_ci      {								\
1498c2ecf20Sopenharmony_ci	R##_s = X##_s;						\
1508c2ecf20Sopenharmony_ci	_FP_FRAC_COPY_##wc(R,X);				\
1518c2ecf20Sopenharmony_ci      }								\
1528c2ecf20Sopenharmony_ci    else							\
1538c2ecf20Sopenharmony_ci      {								\
1548c2ecf20Sopenharmony_ci	R##_s = Y##_s;						\
1558c2ecf20Sopenharmony_ci	_FP_FRAC_COPY_##wc(R,Y);				\
1568c2ecf20Sopenharmony_ci      }								\
1578c2ecf20Sopenharmony_ci    R##_c = FP_CLS_NAN;						\
1588c2ecf20Sopenharmony_ci  } while (0)
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci
1618c2ecf20Sopenharmony_ci#include <linux/kernel.h>
1628c2ecf20Sopenharmony_ci#include <linux/sched.h>
1638c2ecf20Sopenharmony_ci
1648c2ecf20Sopenharmony_ci#define __FPU_TRAP_P(bits) \
1658c2ecf20Sopenharmony_ci	((__FPU_ENABLED_EXC & (bits)) != 0)
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci#define __FP_PACK_S(val,X)			\
1688c2ecf20Sopenharmony_ci({  int __exc = _FP_PACK_CANONICAL(S,1,X);	\
1698c2ecf20Sopenharmony_ci    if(!__exc || !__FPU_TRAP_P(__exc))		\
1708c2ecf20Sopenharmony_ci        _FP_PACK_RAW_1_P(S,val,X);		\
1718c2ecf20Sopenharmony_ci    __exc;					\
1728c2ecf20Sopenharmony_ci})
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci#define __FP_PACK_D(val,X)			\
1758c2ecf20Sopenharmony_ci   do {									\
1768c2ecf20Sopenharmony_ci	_FP_PACK_CANONICAL(D, 2, X);					\
1778c2ecf20Sopenharmony_ci	if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
1788c2ecf20Sopenharmony_ci		_FP_PACK_RAW_2_P(D, val, X);				\
1798c2ecf20Sopenharmony_ci   } while (0)
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci#define __FP_PACK_DS(val,X)							\
1828c2ecf20Sopenharmony_ci   do {										\
1838c2ecf20Sopenharmony_ci	   FP_DECL_S(__X);							\
1848c2ecf20Sopenharmony_ci	   FP_CONV(S, D, 1, 2, __X, X);						\
1858c2ecf20Sopenharmony_ci	   _FP_PACK_CANONICAL(S, 1, __X);					\
1868c2ecf20Sopenharmony_ci	   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS)) {	\
1878c2ecf20Sopenharmony_ci		   _FP_UNPACK_CANONICAL(S, 1, __X);				\
1888c2ecf20Sopenharmony_ci		   FP_CONV(D, S, 2, 1, X, __X);					\
1898c2ecf20Sopenharmony_ci		   _FP_PACK_CANONICAL(D, 2, X);					\
1908c2ecf20Sopenharmony_ci		   if (!FP_CUR_EXCEPTIONS || !__FPU_TRAP_P(FP_CUR_EXCEPTIONS))	\
1918c2ecf20Sopenharmony_ci		   _FP_PACK_RAW_2_P(D, val, X);					\
1928c2ecf20Sopenharmony_ci	   }									\
1938c2ecf20Sopenharmony_ci   } while (0)
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci/* Obtain the current rounding mode. */
1968c2ecf20Sopenharmony_ci#define FP_ROUNDMODE			\
1978c2ecf20Sopenharmony_ci({					\
1988c2ecf20Sopenharmony_ci	__FPU_FPSCR & 0x3;		\
1998c2ecf20Sopenharmony_ci})
2008c2ecf20Sopenharmony_ci
2018c2ecf20Sopenharmony_ci/* the asm fragments go here: all these are taken from glibc-2.0.5's
2028c2ecf20Sopenharmony_ci * stdlib/longlong.h
2038c2ecf20Sopenharmony_ci */
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_ci#include <linux/types.h>
2068c2ecf20Sopenharmony_ci#include <asm/byteorder.h>
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci/* add_ssaaaa is used in op-2.h and should be equivalent to
2098c2ecf20Sopenharmony_ci * #define add_ssaaaa(sh,sl,ah,al,bh,bl) (sh = ah+bh+ (( sl = al+bl) < al))
2108c2ecf20Sopenharmony_ci * add_ssaaaa(high_sum, low_sum, high_addend_1, low_addend_1,
2118c2ecf20Sopenharmony_ci * high_addend_2, low_addend_2) adds two UWtype integers, composed by
2128c2ecf20Sopenharmony_ci * HIGH_ADDEND_1 and LOW_ADDEND_1, and HIGH_ADDEND_2 and LOW_ADDEND_2
2138c2ecf20Sopenharmony_ci * respectively.  The result is placed in HIGH_SUM and LOW_SUM.  Overflow
2148c2ecf20Sopenharmony_ci * (i.e. carry out) is not stored anywhere, and is lost.
2158c2ecf20Sopenharmony_ci */
2168c2ecf20Sopenharmony_ci#define add_ssaaaa(sh, sl, ah, al, bh, bl) \
2178c2ecf20Sopenharmony_ci  do {									\
2188c2ecf20Sopenharmony_ci    if (__builtin_constant_p (bh) && (bh) == 0)				\
2198c2ecf20Sopenharmony_ci      __asm__ ("add%I4c %1,%3,%4\n\taddze %0,%2"		\
2208c2ecf20Sopenharmony_ci	     : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\
2218c2ecf20Sopenharmony_ci    else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0)		\
2228c2ecf20Sopenharmony_ci      __asm__ ("add%I4c %1,%3,%4\n\taddme %0,%2"		\
2238c2ecf20Sopenharmony_ci	     : "=r" (sh), "=&r" (sl) : "r" (ah), "%r" (al), "rI" (bl));\
2248c2ecf20Sopenharmony_ci    else								\
2258c2ecf20Sopenharmony_ci      __asm__ ("add%I5c %1,%4,%5\n\tadde %0,%2,%3"		\
2268c2ecf20Sopenharmony_ci	     : "=r" (sh), "=&r" (sl)					\
2278c2ecf20Sopenharmony_ci	     : "%r" (ah), "r" (bh), "%r" (al), "rI" (bl));		\
2288c2ecf20Sopenharmony_ci  } while (0)
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci/* sub_ddmmss is used in op-2.h and udivmodti4.c and should be equivalent to
2318c2ecf20Sopenharmony_ci * #define sub_ddmmss(sh, sl, ah, al, bh, bl) (sh = ah-bh - ((sl = al-bl) > al))
2328c2ecf20Sopenharmony_ci * sub_ddmmss(high_difference, low_difference, high_minuend, low_minuend,
2338c2ecf20Sopenharmony_ci * high_subtrahend, low_subtrahend) subtracts two two-word UWtype integers,
2348c2ecf20Sopenharmony_ci * composed by HIGH_MINUEND_1 and LOW_MINUEND_1, and HIGH_SUBTRAHEND_2 and
2358c2ecf20Sopenharmony_ci * LOW_SUBTRAHEND_2 respectively.  The result is placed in HIGH_DIFFERENCE
2368c2ecf20Sopenharmony_ci * and LOW_DIFFERENCE.  Overflow (i.e. carry out) is not stored anywhere,
2378c2ecf20Sopenharmony_ci * and is lost.
2388c2ecf20Sopenharmony_ci */
2398c2ecf20Sopenharmony_ci#define sub_ddmmss(sh, sl, ah, al, bh, bl) \
2408c2ecf20Sopenharmony_ci  do {									\
2418c2ecf20Sopenharmony_ci    if (__builtin_constant_p (ah) && (ah) == 0)				\
2428c2ecf20Sopenharmony_ci      __asm__ ("subf%I3c %1,%4,%3\n\tsubfze %0,%2"	\
2438c2ecf20Sopenharmony_ci	       : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\
2448c2ecf20Sopenharmony_ci    else if (__builtin_constant_p (ah) && (ah) == ~(USItype) 0)		\
2458c2ecf20Sopenharmony_ci      __asm__ ("subf%I3c %1,%4,%3\n\tsubfme %0,%2"	\
2468c2ecf20Sopenharmony_ci	       : "=r" (sh), "=&r" (sl) : "r" (bh), "rI" (al), "r" (bl));\
2478c2ecf20Sopenharmony_ci    else if (__builtin_constant_p (bh) && (bh) == 0)			\
2488c2ecf20Sopenharmony_ci      __asm__ ("subf%I3c %1,%4,%3\n\taddme %0,%2"		\
2498c2ecf20Sopenharmony_ci	       : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\
2508c2ecf20Sopenharmony_ci    else if (__builtin_constant_p (bh) && (bh) == ~(USItype) 0)		\
2518c2ecf20Sopenharmony_ci      __asm__ ("subf%I3c %1,%4,%3\n\taddze %0,%2"		\
2528c2ecf20Sopenharmony_ci	       : "=r" (sh), "=&r" (sl) : "r" (ah), "rI" (al), "r" (bl));\
2538c2ecf20Sopenharmony_ci    else								\
2548c2ecf20Sopenharmony_ci      __asm__ ("subf%I4c %1,%5,%4\n\tsubfe %0,%3,%2"	\
2558c2ecf20Sopenharmony_ci	       : "=r" (sh), "=&r" (sl)					\
2568c2ecf20Sopenharmony_ci	       : "r" (ah), "r" (bh), "rI" (al), "r" (bl));		\
2578c2ecf20Sopenharmony_ci  } while (0)
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci/* asm fragments for mul and div */
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci/* umul_ppmm(high_prod, low_prod, multipler, multiplicand) multiplies two
2628c2ecf20Sopenharmony_ci * UWtype integers MULTIPLER and MULTIPLICAND, and generates a two UWtype
2638c2ecf20Sopenharmony_ci * word product in HIGH_PROD and LOW_PROD.
2648c2ecf20Sopenharmony_ci */
2658c2ecf20Sopenharmony_ci#define umul_ppmm(ph, pl, m0, m1) \
2668c2ecf20Sopenharmony_ci  do {									\
2678c2ecf20Sopenharmony_ci    USItype __m0 = (m0), __m1 = (m1);					\
2688c2ecf20Sopenharmony_ci    __asm__ ("mulhwu %0,%1,%2" : "=r" (ph) : "%r" (m0), "r" (m1));	\
2698c2ecf20Sopenharmony_ci    (pl) = __m0 * __m1;							\
2708c2ecf20Sopenharmony_ci  } while (0)
2718c2ecf20Sopenharmony_ci
2728c2ecf20Sopenharmony_ci/* udiv_qrnnd(quotient, remainder, high_numerator, low_numerator,
2738c2ecf20Sopenharmony_ci * denominator) divides a UDWtype, composed by the UWtype integers
2748c2ecf20Sopenharmony_ci * HIGH_NUMERATOR and LOW_NUMERATOR, by DENOMINATOR and places the quotient
2758c2ecf20Sopenharmony_ci * in QUOTIENT and the remainder in REMAINDER.  HIGH_NUMERATOR must be less
2768c2ecf20Sopenharmony_ci * than DENOMINATOR for correct operation.  If, in addition, the most
2778c2ecf20Sopenharmony_ci * significant bit of DENOMINATOR must be 1, then the pre-processor symbol
2788c2ecf20Sopenharmony_ci * UDIV_NEEDS_NORMALIZATION is defined to 1.
2798c2ecf20Sopenharmony_ci */
2808c2ecf20Sopenharmony_ci#define udiv_qrnnd(q, r, n1, n0, d) \
2818c2ecf20Sopenharmony_ci  do {									\
2828c2ecf20Sopenharmony_ci    UWtype __d1, __d0, __q1, __q0;					\
2838c2ecf20Sopenharmony_ci    UWtype __r1, __r0, __m;						\
2848c2ecf20Sopenharmony_ci    __d1 = __ll_highpart (d);						\
2858c2ecf20Sopenharmony_ci    __d0 = __ll_lowpart (d);						\
2868c2ecf20Sopenharmony_ci									\
2878c2ecf20Sopenharmony_ci    __r1 = (n1) % __d1;							\
2888c2ecf20Sopenharmony_ci    __q1 = (n1) / __d1;							\
2898c2ecf20Sopenharmony_ci    __m = (UWtype) __q1 * __d0;						\
2908c2ecf20Sopenharmony_ci    __r1 = __r1 * __ll_B | __ll_highpart (n0);				\
2918c2ecf20Sopenharmony_ci    if (__r1 < __m)							\
2928c2ecf20Sopenharmony_ci      {									\
2938c2ecf20Sopenharmony_ci	__q1--, __r1 += (d);						\
2948c2ecf20Sopenharmony_ci	if (__r1 >= (d)) /* i.e. we didn't get carry when adding to __r1 */\
2958c2ecf20Sopenharmony_ci	  if (__r1 < __m)						\
2968c2ecf20Sopenharmony_ci	    __q1--, __r1 += (d);					\
2978c2ecf20Sopenharmony_ci      }									\
2988c2ecf20Sopenharmony_ci    __r1 -= __m;							\
2998c2ecf20Sopenharmony_ci									\
3008c2ecf20Sopenharmony_ci    __r0 = __r1 % __d1;							\
3018c2ecf20Sopenharmony_ci    __q0 = __r1 / __d1;							\
3028c2ecf20Sopenharmony_ci    __m = (UWtype) __q0 * __d0;						\
3038c2ecf20Sopenharmony_ci    __r0 = __r0 * __ll_B | __ll_lowpart (n0);				\
3048c2ecf20Sopenharmony_ci    if (__r0 < __m)							\
3058c2ecf20Sopenharmony_ci      {									\
3068c2ecf20Sopenharmony_ci	__q0--, __r0 += (d);						\
3078c2ecf20Sopenharmony_ci	if (__r0 >= (d))						\
3088c2ecf20Sopenharmony_ci	  if (__r0 < __m)						\
3098c2ecf20Sopenharmony_ci	    __q0--, __r0 += (d);					\
3108c2ecf20Sopenharmony_ci      }									\
3118c2ecf20Sopenharmony_ci    __r0 -= __m;							\
3128c2ecf20Sopenharmony_ci									\
3138c2ecf20Sopenharmony_ci    (q) = (UWtype) __q1 * __ll_B | __q0;				\
3148c2ecf20Sopenharmony_ci    (r) = __r0;								\
3158c2ecf20Sopenharmony_ci  } while (0)
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci#define UDIV_NEEDS_NORMALIZATION 1
3188c2ecf20Sopenharmony_ci
3198c2ecf20Sopenharmony_ci#define abort()								\
3208c2ecf20Sopenharmony_ci	return 0
3218c2ecf20Sopenharmony_ci
3228c2ecf20Sopenharmony_ci#ifdef __BIG_ENDIAN
3238c2ecf20Sopenharmony_ci#define __BYTE_ORDER __BIG_ENDIAN
3248c2ecf20Sopenharmony_ci#else
3258c2ecf20Sopenharmony_ci#define __BYTE_ORDER __LITTLE_ENDIAN
3268c2ecf20Sopenharmony_ci#endif
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci/* Exception flags. */
3298c2ecf20Sopenharmony_ci#define EFLAG_INVALID		(1 << (31 - 2))
3308c2ecf20Sopenharmony_ci#define EFLAG_OVERFLOW		(1 << (31 - 3))
3318c2ecf20Sopenharmony_ci#define EFLAG_UNDERFLOW		(1 << (31 - 4))
3328c2ecf20Sopenharmony_ci#define EFLAG_DIVZERO		(1 << (31 - 5))
3338c2ecf20Sopenharmony_ci#define EFLAG_INEXACT		(1 << (31 - 6))
3348c2ecf20Sopenharmony_ci
3358c2ecf20Sopenharmony_ci#define EFLAG_VXSNAN		(1 << (31 - 7))
3368c2ecf20Sopenharmony_ci#define EFLAG_VXISI		(1 << (31 - 8))
3378c2ecf20Sopenharmony_ci#define EFLAG_VXIDI		(1 << (31 - 9))
3388c2ecf20Sopenharmony_ci#define EFLAG_VXZDZ		(1 << (31 - 10))
3398c2ecf20Sopenharmony_ci#define EFLAG_VXIMZ		(1 << (31 - 11))
3408c2ecf20Sopenharmony_ci#define EFLAG_VXVC		(1 << (31 - 12))
3418c2ecf20Sopenharmony_ci#define EFLAG_VXSOFT		(1 << (31 - 21))
3428c2ecf20Sopenharmony_ci#define EFLAG_VXSQRT		(1 << (31 - 22))
3438c2ecf20Sopenharmony_ci#define EFLAG_VXCVI		(1 << (31 - 23))
344