1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_NOHASH_PGTABLE_H
3#define _ASM_POWERPC_NOHASH_PGTABLE_H
4
5#if defined(CONFIG_PPC64)
6#include <asm/nohash/64/pgtable.h>
7#else
8#include <asm/nohash/32/pgtable.h>
9#endif
10
11/* Permission masks used for kernel mappings */
12#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
13#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
14#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
15				 _PAGE_NO_CACHE | _PAGE_GUARDED)
16#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
17#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
18#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
19
20/*
21 * Protection used for kernel text. We want the debuggers to be able to
22 * set breakpoints anywhere, so don't write protect the kernel text
23 * on platforms where such control is possible.
24 */
25#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
26	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
27#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
28#else
29#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
30#endif
31
32/* Make modules code happy. We don't set RO yet */
33#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
34
35/* Advertise special mapping type for AGP */
36#define PAGE_AGP		(PAGE_KERNEL_NC)
37#define HAVE_PAGE_AGP
38
39#ifndef __ASSEMBLY__
40
41/* Generic accessors to PTE bits */
42#ifndef pte_write
43static inline int pte_write(pte_t pte)
44{
45	return pte_val(pte) & _PAGE_RW;
46}
47#endif
48#ifndef pte_read
49static inline int pte_read(pte_t pte)		{ return 1; }
50#endif
51static inline int pte_dirty(pte_t pte)		{ return pte_val(pte) & _PAGE_DIRTY; }
52static inline int pte_special(pte_t pte)	{ return pte_val(pte) & _PAGE_SPECIAL; }
53static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
54static inline bool pte_hashpte(pte_t pte)	{ return false; }
55static inline bool pte_ci(pte_t pte)		{ return pte_val(pte) & _PAGE_NO_CACHE; }
56static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
57
58#ifdef CONFIG_NUMA_BALANCING
59/*
60 * These work without NUMA balancing but the kernel does not care. See the
61 * comment in include/linux/pgtable.h . On powerpc, this will only
62 * work for user pages and always return true for kernel pages.
63 */
64static inline int pte_protnone(pte_t pte)
65{
66	return pte_present(pte) && !pte_user(pte);
67}
68
69static inline int pmd_protnone(pmd_t pmd)
70{
71	return pte_protnone(pmd_pte(pmd));
72}
73#endif /* CONFIG_NUMA_BALANCING */
74
75static inline int pte_present(pte_t pte)
76{
77	return pte_val(pte) & _PAGE_PRESENT;
78}
79
80static inline bool pte_hw_valid(pte_t pte)
81{
82	return pte_val(pte) & _PAGE_PRESENT;
83}
84
85/*
86 * Don't just check for any non zero bits in __PAGE_USER, since for book3e
87 * and PTE_64BIT, PAGE_KERNEL_X contains _PAGE_BAP_SR which is also in
88 * _PAGE_USER.  Need to explicitly match _PAGE_BAP_UR bit in that case too.
89 */
90#ifndef pte_user
91static inline bool pte_user(pte_t pte)
92{
93	return (pte_val(pte) & _PAGE_USER) == _PAGE_USER;
94}
95#endif
96
97/*
98 * We only find page table entry in the last level
99 * Hence no need for other accessors
100 */
101#define pte_access_permitted pte_access_permitted
102static inline bool pte_access_permitted(pte_t pte, bool write)
103{
104	/*
105	 * A read-only access is controlled by _PAGE_USER bit.
106	 * We have _PAGE_READ set for WRITE and EXECUTE
107	 */
108	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
109		return false;
110
111	if (write && !pte_write(pte))
112		return false;
113
114	return true;
115}
116
117/* Conversion functions: convert a page and protection to a page entry,
118 * and a page entry and page directory to the page they refer to.
119 *
120 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
121 * long for now.
122 */
123static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) {
124	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
125		     pgprot_val(pgprot)); }
126static inline unsigned long pte_pfn(pte_t pte)	{
127	return pte_val(pte) >> PTE_RPN_SHIFT; }
128
129/* Generic modifiers for PTE bits */
130static inline pte_t pte_exprotect(pte_t pte)
131{
132	return __pte(pte_val(pte) & ~_PAGE_EXEC);
133}
134
135static inline pte_t pte_mkclean(pte_t pte)
136{
137	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
138}
139
140static inline pte_t pte_mkold(pte_t pte)
141{
142	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
143}
144
145static inline pte_t pte_mkspecial(pte_t pte)
146{
147	return __pte(pte_val(pte) | _PAGE_SPECIAL);
148}
149
150#ifndef pte_mkhuge
151static inline pte_t pte_mkhuge(pte_t pte)
152{
153	return __pte(pte_val(pte));
154}
155#endif
156
157#ifndef pte_mkprivileged
158static inline pte_t pte_mkprivileged(pte_t pte)
159{
160	return __pte(pte_val(pte) & ~_PAGE_USER);
161}
162#endif
163
164#ifndef pte_mkuser
165static inline pte_t pte_mkuser(pte_t pte)
166{
167	return __pte(pte_val(pte) | _PAGE_USER);
168}
169#endif
170
171static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
172{
173	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
174}
175
176/* Insert a PTE, top-level function is out of line. It uses an inline
177 * low level function in the respective pgtable-* files
178 */
179extern void set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
180		       pte_t pte);
181
182/* This low level function performs the actual PTE insertion
183 * Setting the PTE depends on the MMU type and other factors. It's
184 * an horrible mess that I'm not going to try to clean up now but
185 * I'm keeping it in one place rather than spread around
186 */
187static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
188				pte_t *ptep, pte_t pte, int percpu)
189{
190	/* Second case is 32-bit with 64-bit PTE.  In this case, we
191	 * can just store as long as we do the two halves in the right order
192	 * with a barrier in between.
193	 * In the percpu case, we also fallback to the simple update
194	 */
195	if (IS_ENABLED(CONFIG_PPC32) && IS_ENABLED(CONFIG_PTE_64BIT) && !percpu) {
196		__asm__ __volatile__("\
197			stw%X0 %2,%0\n\
198			eieio\n\
199			stw%X1 %L2,%1"
200		: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
201		: "r" (pte) : "memory");
202		return;
203	}
204	/* Anything else just stores the PTE normally. That covers all 64-bit
205	 * cases, and 32-bit non-hash with 32-bit PTEs.
206	 */
207#if defined(CONFIG_PPC_8xx) && defined(CONFIG_PPC_16K_PAGES)
208	ptep->pte = ptep->pte1 = ptep->pte2 = ptep->pte3 = pte_val(pte);
209#else
210	*ptep = pte;
211#endif
212
213	/*
214	 * With hardware tablewalk, a sync is needed to ensure that
215	 * subsequent accesses see the PTE we just wrote.  Unlike userspace
216	 * mappings, we can't tolerate spurious faults, so make sure
217	 * the new PTE will be seen the first time.
218	 */
219	if (IS_ENABLED(CONFIG_PPC_BOOK3E_64) && is_kernel_addr(addr))
220		mb();
221}
222
223
224#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
225extern int ptep_set_access_flags(struct vm_area_struct *vma, unsigned long address,
226				 pte_t *ptep, pte_t entry, int dirty);
227
228/*
229 * Macro to mark a page protection value as "uncacheable".
230 */
231
232#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
233			 _PAGE_WRITETHRU)
234
235#define pgprot_noncached(prot)	  (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
236				            _PAGE_NO_CACHE | _PAGE_GUARDED))
237
238#define pgprot_noncached_wc(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
239				            _PAGE_NO_CACHE))
240
241#define pgprot_cached(prot)       (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
242				            _PAGE_COHERENT))
243
244#if _PAGE_WRITETHRU != 0
245#define pgprot_cached_wthru(prot) (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
246				            _PAGE_COHERENT | _PAGE_WRITETHRU))
247#else
248#define pgprot_cached_wthru(prot)	pgprot_noncached(prot)
249#endif
250
251#define pgprot_cached_noncoherent(prot) \
252		(__pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL))
253
254#define pgprot_writecombine pgprot_noncached_wc
255
256struct file;
257extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
258				     unsigned long size, pgprot_t vma_prot);
259#define __HAVE_PHYS_MEM_ACCESS_PROT
260
261#ifdef CONFIG_HUGETLB_PAGE
262static inline int hugepd_ok(hugepd_t hpd)
263{
264#ifdef CONFIG_PPC_8xx
265	return ((hpd_val(hpd) & _PMD_PAGE_MASK) == _PMD_PAGE_8M);
266#else
267	/* We clear the top bit to indicate hugepd */
268	return (hpd_val(hpd) && (hpd_val(hpd) & PD_HUGE) == 0);
269#endif
270}
271
272static inline int pmd_huge(pmd_t pmd)
273{
274	return 0;
275}
276
277static inline int pud_huge(pud_t pud)
278{
279	return 0;
280}
281
282static inline int pgd_huge(pgd_t pgd)
283{
284	return 0;
285}
286#define pgd_huge		pgd_huge
287
288#define is_hugepd(hpd)		(hugepd_ok(hpd))
289#endif
290
291/*
292 * This gets called at the end of handling a page fault, when
293 * the kernel has put a new PTE into the page table for the process.
294 * We use it to ensure coherency between the i-cache and d-cache
295 * for the page which has just been mapped in.
296 */
297#if defined(CONFIG_PPC_FSL_BOOK3E) && defined(CONFIG_HUGETLB_PAGE)
298void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep);
299#else
300static inline
301void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep) {}
302#endif
303
304#endif /* __ASSEMBLY__ */
305#endif
306