1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_POWERPC_NOHASH_64_PGTABLE_H 3#define _ASM_POWERPC_NOHASH_64_PGTABLE_H 4/* 5 * This file contains the functions and defines necessary to modify and use 6 * the ppc64 non-hashed page table. 7 */ 8 9#include <linux/sizes.h> 10 11#include <asm/nohash/64/pgtable-4k.h> 12#include <asm/barrier.h> 13#include <asm/asm-const.h> 14 15#define FIRST_USER_ADDRESS 0UL 16 17/* 18 * Size of EA range mapped by our pagetables. 19 */ 20#define PGTABLE_EADDR_SIZE (PTE_INDEX_SIZE + PMD_INDEX_SIZE + \ 21 PUD_INDEX_SIZE + PGD_INDEX_SIZE + PAGE_SHIFT) 22#define PGTABLE_RANGE (ASM_CONST(1) << PGTABLE_EADDR_SIZE) 23 24#define PMD_CACHE_INDEX PMD_INDEX_SIZE 25#define PUD_CACHE_INDEX PUD_INDEX_SIZE 26 27/* 28 * Define the address range of the kernel non-linear virtual area 29 */ 30#define KERN_VIRT_START ASM_CONST(0x8000000000000000) 31#define KERN_VIRT_SIZE ASM_CONST(0x0000100000000000) 32 33/* 34 * The vmalloc space starts at the beginning of that region, and 35 * occupies a quarter of it on Book3E 36 * (we keep a quarter for the virtual memmap) 37 */ 38#define VMALLOC_START KERN_VIRT_START 39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 2) 40#define VMALLOC_END (VMALLOC_START + VMALLOC_SIZE) 41 42/* 43 * The second half of the kernel virtual space is used for IO mappings, 44 * it's itself carved into the PIO region (ISA and PHB IO space) and 45 * the ioremap space 46 * 47 * ISA_IO_BASE = KERN_IO_START, 64K reserved area 48 * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces 49 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE 50 */ 51#define KERN_IO_START (KERN_VIRT_START + (KERN_VIRT_SIZE >> 1)) 52#define FULL_IO_SIZE 0x80000000ul 53#define ISA_IO_BASE (KERN_IO_START) 54#define ISA_IO_END (KERN_IO_START + 0x10000ul) 55#define PHB_IO_BASE (ISA_IO_END) 56#define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) 57#define IOREMAP_BASE (PHB_IO_END) 58#define IOREMAP_START (ioremap_bot) 59#define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE - FIXADDR_SIZE) 60#define FIXADDR_SIZE SZ_32M 61 62 63/* 64 * Region IDs 65 */ 66#define REGION_SHIFT 60UL 67#define REGION_MASK (0xfUL << REGION_SHIFT) 68#define REGION_ID(ea) (((unsigned long)(ea)) >> REGION_SHIFT) 69 70#define VMALLOC_REGION_ID (REGION_ID(VMALLOC_START)) 71#define KERNEL_REGION_ID (REGION_ID(PAGE_OFFSET)) 72#define USER_REGION_ID (0UL) 73 74/* 75 * Defines the address of the vmemap area, in its own region on 76 * after the vmalloc space on Book3E 77 */ 78#define VMEMMAP_BASE VMALLOC_END 79#define VMEMMAP_END KERN_IO_START 80#define vmemmap ((struct page *)VMEMMAP_BASE) 81 82 83/* 84 * Include the PTE bits definitions 85 */ 86#include <asm/nohash/pte-book3e.h> 87 88#define _PAGE_SAO 0 89 90#define PTE_RPN_MASK (~((1UL << PTE_RPN_SHIFT) - 1)) 91 92/* 93 * _PAGE_CHG_MASK masks of bits that are to be preserved across 94 * pgprot changes. 95 */ 96#define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_SPECIAL) 97 98#define H_PAGE_4K_PFN 0 99 100#ifndef __ASSEMBLY__ 101/* pte_clear moved to later in this file */ 102 103static inline pte_t pte_mkwrite(pte_t pte) 104{ 105 return __pte(pte_val(pte) | _PAGE_RW); 106} 107 108static inline pte_t pte_mkdirty(pte_t pte) 109{ 110 return __pte(pte_val(pte) | _PAGE_DIRTY); 111} 112 113static inline pte_t pte_mkyoung(pte_t pte) 114{ 115 return __pte(pte_val(pte) | _PAGE_ACCESSED); 116} 117 118static inline pte_t pte_wrprotect(pte_t pte) 119{ 120 return __pte(pte_val(pte) & ~_PAGE_RW); 121} 122 123static inline pte_t pte_mkexec(pte_t pte) 124{ 125 return __pte(pte_val(pte) | _PAGE_EXEC); 126} 127 128#define PMD_BAD_BITS (PTE_TABLE_SIZE-1) 129#define PUD_BAD_BITS (PMD_TABLE_SIZE-1) 130 131static inline void pmd_set(pmd_t *pmdp, unsigned long val) 132{ 133 *pmdp = __pmd(val); 134} 135 136static inline void pmd_clear(pmd_t *pmdp) 137{ 138 *pmdp = __pmd(0); 139} 140 141static inline pte_t pmd_pte(pmd_t pmd) 142{ 143 return __pte(pmd_val(pmd)); 144} 145 146#define pmd_none(pmd) (!pmd_val(pmd)) 147#define pmd_bad(pmd) (!is_kernel_addr(pmd_val(pmd)) \ 148 || (pmd_val(pmd) & PMD_BAD_BITS)) 149#define pmd_present(pmd) (!pmd_none(pmd)) 150#define pmd_page_vaddr(pmd) (pmd_val(pmd) & ~PMD_MASKED_BITS) 151extern struct page *pmd_page(pmd_t pmd); 152 153static inline void pud_set(pud_t *pudp, unsigned long val) 154{ 155 *pudp = __pud(val); 156} 157 158static inline void pud_clear(pud_t *pudp) 159{ 160 *pudp = __pud(0); 161} 162 163#define pud_none(pud) (!pud_val(pud)) 164#define pud_bad(pud) (!is_kernel_addr(pud_val(pud)) \ 165 || (pud_val(pud) & PUD_BAD_BITS)) 166#define pud_present(pud) (pud_val(pud) != 0) 167 168static inline pmd_t *pud_pgtable(pud_t pud) 169{ 170 return (pmd_t *)(pud_val(pud) & ~PUD_MASKED_BITS); 171} 172 173extern struct page *pud_page(pud_t pud); 174 175static inline pte_t pud_pte(pud_t pud) 176{ 177 return __pte(pud_val(pud)); 178} 179 180static inline pud_t pte_pud(pte_t pte) 181{ 182 return __pud(pte_val(pte)); 183} 184#define pud_write(pud) pte_write(pud_pte(pud)) 185#define p4d_write(pgd) pte_write(p4d_pte(p4d)) 186 187static inline void p4d_set(p4d_t *p4dp, unsigned long val) 188{ 189 *p4dp = __p4d(val); 190} 191 192/* Atomic PTE updates */ 193static inline unsigned long pte_update(struct mm_struct *mm, 194 unsigned long addr, 195 pte_t *ptep, unsigned long clr, 196 unsigned long set, 197 int huge) 198{ 199 unsigned long old = pte_val(*ptep); 200 *ptep = __pte((old & ~clr) | set); 201 202 /* huge pages use the old page table lock */ 203 if (!huge) 204 assert_pte_locked(mm, addr); 205 206 return old; 207} 208 209static inline int pte_young(pte_t pte) 210{ 211 return pte_val(pte) & _PAGE_ACCESSED; 212} 213 214static inline int __ptep_test_and_clear_young(struct mm_struct *mm, 215 unsigned long addr, pte_t *ptep) 216{ 217 unsigned long old; 218 219 if (!pte_young(*ptep)) 220 return 0; 221 old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); 222 return (old & _PAGE_ACCESSED) != 0; 223} 224#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 225#define ptep_test_and_clear_young(__vma, __addr, __ptep) \ 226({ \ 227 int __r; \ 228 __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ 229 __r; \ 230}) 231 232#define __HAVE_ARCH_PTEP_SET_WRPROTECT 233static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, 234 pte_t *ptep) 235{ 236 237 if ((pte_val(*ptep) & _PAGE_RW) == 0) 238 return; 239 240 pte_update(mm, addr, ptep, _PAGE_RW, 0, 0); 241} 242 243#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT 244static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, 245 unsigned long addr, pte_t *ptep) 246{ 247 if ((pte_val(*ptep) & _PAGE_RW) == 0) 248 return; 249 250 pte_update(mm, addr, ptep, _PAGE_RW, 0, 1); 251} 252 253#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 254#define ptep_clear_flush_young(__vma, __address, __ptep) \ 255({ \ 256 int __young = __ptep_test_and_clear_young((__vma)->vm_mm, __address, \ 257 __ptep); \ 258 __young; \ 259}) 260 261#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 262static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 263 unsigned long addr, pte_t *ptep) 264{ 265 unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); 266 return __pte(old); 267} 268 269static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 270 pte_t * ptep) 271{ 272 pte_update(mm, addr, ptep, ~0UL, 0, 0); 273} 274 275 276/* Set the dirty and/or accessed bits atomically in a linux PTE */ 277static inline void __ptep_set_access_flags(struct vm_area_struct *vma, 278 pte_t *ptep, pte_t entry, 279 unsigned long address, 280 int psize) 281{ 282 unsigned long bits = pte_val(entry) & 283 (_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC); 284 285 unsigned long old = pte_val(*ptep); 286 *ptep = __pte(old | bits); 287 288 flush_tlb_page(vma, address); 289} 290 291#define __HAVE_ARCH_PTE_SAME 292#define pte_same(A,B) ((pte_val(A) ^ pte_val(B)) == 0) 293 294#define pte_ERROR(e) \ 295 pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 296#define pmd_ERROR(e) \ 297 pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) 298#define pgd_ERROR(e) \ 299 pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) 300 301/* Encode and de-code a swap entry */ 302#define MAX_SWAPFILES_CHECK() do { \ 303 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ 304 } while (0) 305 306#define SWP_TYPE_BITS 5 307#define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ 308 & ((1UL << SWP_TYPE_BITS) - 1)) 309#define __swp_offset(x) ((x).val >> PTE_RPN_SHIFT) 310#define __swp_entry(type, offset) ((swp_entry_t) { \ 311 ((type) << _PAGE_BIT_SWAP_TYPE) \ 312 | ((offset) << PTE_RPN_SHIFT) }) 313 314#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) }) 315#define __swp_entry_to_pte(x) __pte((x).val) 316 317int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot); 318void unmap_kernel_page(unsigned long va); 319extern int __meminit vmemmap_create_mapping(unsigned long start, 320 unsigned long page_size, 321 unsigned long phys); 322extern void vmemmap_remove_mapping(unsigned long start, 323 unsigned long page_size); 324#endif /* __ASSEMBLY__ */ 325 326#endif /* _ASM_POWERPC_NOHASH_64_PGTABLE_H */ 327