1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
3#define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_
4
5#include <asm-generic/pgtable-nop4d.h>
6
7#ifndef __ASSEMBLY__
8#include <linux/mmdebug.h>
9#include <linux/bug.h>
10#include <linux/sizes.h>
11#endif
12
13/*
14 * Common bits between hash and Radix page table
15 */
16#define _PAGE_BIT_SWAP_TYPE	0
17
18#define _PAGE_EXEC		0x00001 /* execute permission */
19#define _PAGE_WRITE		0x00002 /* write access allowed */
20#define _PAGE_READ		0x00004	/* read access allowed */
21#define _PAGE_RW		(_PAGE_READ | _PAGE_WRITE)
22#define _PAGE_RWX		(_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC)
23#define _PAGE_PRIVILEGED	0x00008 /* kernel access only */
24#define _PAGE_SAO		0x00010 /* Strong access order */
25#define _PAGE_NON_IDEMPOTENT	0x00020 /* non idempotent memory */
26#define _PAGE_TOLERANT		0x00030 /* tolerant memory, cache inhibited */
27#define _PAGE_DIRTY		0x00080 /* C: page changed */
28#define _PAGE_ACCESSED		0x00100 /* R: page referenced */
29/*
30 * Software bits
31 */
32#define _RPAGE_SW0		0x2000000000000000UL
33#define _RPAGE_SW1		0x00800
34#define _RPAGE_SW2		0x00400
35#define _RPAGE_SW3		0x00200
36#define _RPAGE_RSV1		0x00040UL
37
38#define _RPAGE_PKEY_BIT4	0x1000000000000000UL
39#define _RPAGE_PKEY_BIT3	0x0800000000000000UL
40#define _RPAGE_PKEY_BIT2	0x0400000000000000UL
41#define _RPAGE_PKEY_BIT1	0x0200000000000000UL
42#define _RPAGE_PKEY_BIT0	0x0100000000000000UL
43
44#define _PAGE_PTE		0x4000000000000000UL	/* distinguishes PTEs from pointers */
45#define _PAGE_PRESENT		0x8000000000000000UL	/* pte contains a translation */
46/*
47 * We need to mark a pmd pte invalid while splitting. We can do that by clearing
48 * the _PAGE_PRESENT bit. But then that will be taken as a swap pte. In order to
49 * differentiate between two use a SW field when invalidating.
50 *
51 * We do that temporary invalidate for regular pte entry in ptep_set_access_flags
52 *
53 * This is used only when _PAGE_PRESENT is cleared.
54 */
55#define _PAGE_INVALID		_RPAGE_SW0
56
57/*
58 * Top and bottom bits of RPN which can be used by hash
59 * translation mode, because we expect them to be zero
60 * otherwise.
61 */
62#define _RPAGE_RPN0		0x01000
63#define _RPAGE_RPN1		0x02000
64#define _RPAGE_RPN43		0x0080000000000000UL
65#define _RPAGE_RPN42		0x0040000000000000UL
66#define _RPAGE_RPN41		0x0020000000000000UL
67
68/* Max physical address bit as per radix table */
69#define _RPAGE_PA_MAX		56
70
71/*
72 * Max physical address bit we will use for now.
73 *
74 * This is mostly a hardware limitation and for now Power9 has
75 * a 51 bit limit.
76 *
77 * This is different from the number of physical bit required to address
78 * the last byte of memory. That is defined by MAX_PHYSMEM_BITS.
79 * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum
80 * number of sections we can support (SECTIONS_SHIFT).
81 *
82 * This is different from Radix page table limitation above and
83 * should always be less than that. The limit is done such that
84 * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX
85 * for hash linux page table specific bits.
86 *
87 * In order to be compatible with future hardware generations we keep
88 * some offsets and limit this for now to 53
89 */
90#define _PAGE_PA_MAX		53
91
92#define _PAGE_SOFT_DIRTY	_RPAGE_SW3 /* software: software dirty tracking */
93#define _PAGE_SPECIAL		_RPAGE_SW2 /* software: special page */
94#define _PAGE_DEVMAP		_RPAGE_SW1 /* software: ZONE_DEVICE page */
95
96/*
97 * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE
98 * Instead of fixing all of them, add an alternate define which
99 * maps CI pte mapping.
100 */
101#define _PAGE_NO_CACHE		_PAGE_TOLERANT
102/*
103 * We support _RPAGE_PA_MAX bit real address in pte. On the linux side
104 * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX
105 * and every thing below PAGE_SHIFT;
106 */
107#define PTE_RPN_MASK	(((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK))
108/*
109 * set of bits not changed in pmd_modify. Even though we have hash specific bits
110 * in here, on radix we expect them to be zero.
111 */
112#define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
113			 _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \
114			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
115/*
116 * user access blocked by key
117 */
118#define _PAGE_KERNEL_RW		(_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY)
119#define _PAGE_KERNEL_RO		 (_PAGE_PRIVILEGED | _PAGE_READ)
120#define _PAGE_KERNEL_RWX	(_PAGE_PRIVILEGED | _PAGE_DIRTY |	\
121				 _PAGE_RW | _PAGE_EXEC)
122/*
123 * _PAGE_CHG_MASK masks of bits that are to be preserved across
124 * pgprot changes
125 */
126#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \
127			 _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE |	\
128			 _PAGE_SOFT_DIRTY | _PAGE_DEVMAP)
129
130/*
131 * We define 2 sets of base prot bits, one for basic pages (ie,
132 * cacheable kernel and user pages) and one for non cacheable
133 * pages. We always set _PAGE_COHERENT when SMP is enabled or
134 * the processor might need it for DMA coherency.
135 */
136#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
137#define _PAGE_BASE	(_PAGE_BASE_NC)
138
139/* Permission masks used to generate the __P and __S table,
140 *
141 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
142 *
143 * Write permissions imply read permissions for now (we could make write-only
144 * pages on BookE but we don't bother for now). Execute permission control is
145 * possible on platforms that define _PAGE_EXEC
146 */
147#define PAGE_NONE	__pgprot(_PAGE_BASE | _PAGE_PRIVILEGED)
148#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_RW)
149#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC)
150#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_READ)
151#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
152#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_READ)
153#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
154
155/* Permission masks used for kernel mappings */
156#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
157#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
158				 _PAGE_TOLERANT)
159#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
160				 _PAGE_NON_IDEMPOTENT)
161#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
162#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
163#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
164
165/*
166 * Protection used for kernel text. We want the debuggers to be able to
167 * set breakpoints anywhere, so don't write protect the kernel text
168 * on platforms where such control is possible.
169 */
170#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \
171	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
172#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
173#else
174#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
175#endif
176
177/* Make modules code happy. We don't set RO yet */
178#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
179#define PAGE_AGP		(PAGE_KERNEL_NC)
180
181#ifndef __ASSEMBLY__
182/*
183 * page table defines
184 */
185extern unsigned long __pte_index_size;
186extern unsigned long __pmd_index_size;
187extern unsigned long __pud_index_size;
188extern unsigned long __pgd_index_size;
189extern unsigned long __pud_cache_index;
190#define PTE_INDEX_SIZE  __pte_index_size
191#define PMD_INDEX_SIZE  __pmd_index_size
192#define PUD_INDEX_SIZE  __pud_index_size
193#define PGD_INDEX_SIZE  __pgd_index_size
194/* pmd table use page table fragments */
195#define PMD_CACHE_INDEX  0
196#define PUD_CACHE_INDEX __pud_cache_index
197/*
198 * Because of use of pte fragments and THP, size of page table
199 * are not always derived out of index size above.
200 */
201extern unsigned long __pte_table_size;
202extern unsigned long __pmd_table_size;
203extern unsigned long __pud_table_size;
204extern unsigned long __pgd_table_size;
205#define PTE_TABLE_SIZE	__pte_table_size
206#define PMD_TABLE_SIZE	__pmd_table_size
207#define PUD_TABLE_SIZE	__pud_table_size
208#define PGD_TABLE_SIZE	__pgd_table_size
209
210extern unsigned long __pmd_val_bits;
211extern unsigned long __pud_val_bits;
212extern unsigned long __pgd_val_bits;
213#define PMD_VAL_BITS	__pmd_val_bits
214#define PUD_VAL_BITS	__pud_val_bits
215#define PGD_VAL_BITS	__pgd_val_bits
216
217extern unsigned long __pte_frag_nr;
218#define PTE_FRAG_NR __pte_frag_nr
219extern unsigned long __pte_frag_size_shift;
220#define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift
221#define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT)
222
223extern unsigned long __pmd_frag_nr;
224#define PMD_FRAG_NR __pmd_frag_nr
225extern unsigned long __pmd_frag_size_shift;
226#define PMD_FRAG_SIZE_SHIFT __pmd_frag_size_shift
227#define PMD_FRAG_SIZE (1UL << PMD_FRAG_SIZE_SHIFT)
228
229#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
230#define PTRS_PER_PMD	(1 << PMD_INDEX_SIZE)
231#define PTRS_PER_PUD	(1 << PUD_INDEX_SIZE)
232#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
233
234/* PMD_SHIFT determines what a second-level page table entry can map */
235#define PMD_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
236#define PMD_SIZE	(1UL << PMD_SHIFT)
237#define PMD_MASK	(~(PMD_SIZE-1))
238
239/* PUD_SHIFT determines what a third-level page table entry can map */
240#define PUD_SHIFT	(PMD_SHIFT + PMD_INDEX_SIZE)
241#define PUD_SIZE	(1UL << PUD_SHIFT)
242#define PUD_MASK	(~(PUD_SIZE-1))
243
244/* PGDIR_SHIFT determines what a fourth-level page table entry can map */
245#define PGDIR_SHIFT	(PUD_SHIFT + PUD_INDEX_SIZE)
246#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
247#define PGDIR_MASK	(~(PGDIR_SIZE-1))
248
249/* Bits to mask out from a PMD to get to the PTE page */
250#define PMD_MASKED_BITS		0xc0000000000000ffUL
251/* Bits to mask out from a PUD to get to the PMD page */
252#define PUD_MASKED_BITS		0xc0000000000000ffUL
253/* Bits to mask out from a PGD to get to the PUD page */
254#define P4D_MASKED_BITS		0xc0000000000000ffUL
255
256/*
257 * Used as an indicator for rcu callback functions
258 */
259enum pgtable_index {
260	PTE_INDEX = 0,
261	PMD_INDEX,
262	PUD_INDEX,
263	PGD_INDEX,
264	/*
265	 * Below are used with 4k page size and hugetlb
266	 */
267	HTLB_16M_INDEX,
268	HTLB_16G_INDEX,
269};
270
271extern unsigned long __vmalloc_start;
272extern unsigned long __vmalloc_end;
273#define VMALLOC_START	__vmalloc_start
274#define VMALLOC_END	__vmalloc_end
275
276static inline unsigned int ioremap_max_order(void)
277{
278	if (radix_enabled())
279		return PUD_SHIFT;
280	return 7 + PAGE_SHIFT; /* default from linux/vmalloc.h */
281}
282#define IOREMAP_MAX_ORDER ioremap_max_order()
283
284extern unsigned long __kernel_virt_start;
285extern unsigned long __kernel_io_start;
286extern unsigned long __kernel_io_end;
287#define KERN_VIRT_START __kernel_virt_start
288#define KERN_IO_START  __kernel_io_start
289#define KERN_IO_END __kernel_io_end
290
291extern struct page *vmemmap;
292extern unsigned long pci_io_base;
293#endif /* __ASSEMBLY__ */
294
295#include <asm/book3s/64/hash.h>
296#include <asm/book3s/64/radix.h>
297
298#if H_MAX_PHYSMEM_BITS > R_MAX_PHYSMEM_BITS
299#define  MAX_PHYSMEM_BITS	H_MAX_PHYSMEM_BITS
300#else
301#define  MAX_PHYSMEM_BITS	R_MAX_PHYSMEM_BITS
302#endif
303
304
305#ifdef CONFIG_PPC_64K_PAGES
306#include <asm/book3s/64/pgtable-64k.h>
307#else
308#include <asm/book3s/64/pgtable-4k.h>
309#endif
310
311#include <asm/barrier.h>
312/*
313 * IO space itself carved into the PIO region (ISA and PHB IO space) and
314 * the ioremap space
315 *
316 *  ISA_IO_BASE = KERN_IO_START, 64K reserved area
317 *  PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces
318 * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE
319 */
320#define FULL_IO_SIZE	0x80000000ul
321#define  ISA_IO_BASE	(KERN_IO_START)
322#define  ISA_IO_END	(KERN_IO_START + 0x10000ul)
323#define  PHB_IO_BASE	(ISA_IO_END)
324#define  PHB_IO_END	(KERN_IO_START + FULL_IO_SIZE)
325#define IOREMAP_BASE	(PHB_IO_END)
326#define IOREMAP_START	(ioremap_bot)
327#define IOREMAP_END	(KERN_IO_END - FIXADDR_SIZE)
328#define FIXADDR_SIZE	SZ_32M
329
330/* Advertise special mapping type for AGP */
331#define HAVE_PAGE_AGP
332
333#ifndef __ASSEMBLY__
334
335/*
336 * This is the default implementation of various PTE accessors, it's
337 * used in all cases except Book3S with 64K pages where we have a
338 * concept of sub-pages
339 */
340#ifndef __real_pte
341
342#define __real_pte(e, p, o)		((real_pte_t){(e)})
343#define __rpte_to_pte(r)	((r).pte)
344#define __rpte_to_hidx(r,index)	(pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT)
345
346#define pte_iterate_hashed_subpages(rpte, psize, va, index, shift)       \
347	do {							         \
348		index = 0;					         \
349		shift = mmu_psize_defs[psize].shift;		         \
350
351#define pte_iterate_hashed_end() } while(0)
352
353/*
354 * We expect this to be called only for user addresses or kernel virtual
355 * addresses other than the linear mapping.
356 */
357#define pte_pagesize_index(mm, addr, pte)	MMU_PAGE_4K
358
359#endif /* __real_pte */
360
361static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr,
362				       pte_t *ptep, unsigned long clr,
363				       unsigned long set, int huge)
364{
365	if (radix_enabled())
366		return radix__pte_update(mm, addr, ptep, clr, set, huge);
367	return hash__pte_update(mm, addr, ptep, clr, set, huge);
368}
369/*
370 * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update.
371 * We currently remove entries from the hashtable regardless of whether
372 * the entry was young or dirty.
373 *
374 * We should be more intelligent about this but for the moment we override
375 * these functions and force a tlb flush unconditionally
376 * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same
377 * function for both hash and radix.
378 */
379static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
380					      unsigned long addr, pte_t *ptep)
381{
382	unsigned long old;
383
384	if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
385		return 0;
386	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
387	return (old & _PAGE_ACCESSED) != 0;
388}
389
390#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
391#define ptep_test_and_clear_young(__vma, __addr, __ptep)	\
392({								\
393	int __r;						\
394	__r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \
395	__r;							\
396})
397
398static inline int __pte_write(pte_t pte)
399{
400	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE));
401}
402
403#ifdef CONFIG_NUMA_BALANCING
404#define pte_savedwrite pte_savedwrite
405static inline bool pte_savedwrite(pte_t pte)
406{
407	/*
408	 * Saved write ptes are prot none ptes that doesn't have
409	 * privileged bit sit. We mark prot none as one which has
410	 * present and pviliged bit set and RWX cleared. To mark
411	 * protnone which used to have _PAGE_WRITE set we clear
412	 * the privileged bit.
413	 */
414	return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED));
415}
416#else
417#define pte_savedwrite pte_savedwrite
418static inline bool pte_savedwrite(pte_t pte)
419{
420	return false;
421}
422#endif
423
424static inline int pte_write(pte_t pte)
425{
426	return __pte_write(pte) || pte_savedwrite(pte);
427}
428
429static inline int pte_read(pte_t pte)
430{
431	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ));
432}
433
434#define __HAVE_ARCH_PTEP_SET_WRPROTECT
435static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
436				      pte_t *ptep)
437{
438	if (__pte_write(*ptep))
439		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0);
440	else if (unlikely(pte_savedwrite(*ptep)))
441		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0);
442}
443
444#define __HAVE_ARCH_HUGE_PTEP_SET_WRPROTECT
445static inline void huge_ptep_set_wrprotect(struct mm_struct *mm,
446					   unsigned long addr, pte_t *ptep)
447{
448	/*
449	 * We should not find protnone for hugetlb, but this complete the
450	 * interface.
451	 */
452	if (__pte_write(*ptep))
453		pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1);
454	else if (unlikely(pte_savedwrite(*ptep)))
455		pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1);
456}
457
458#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
459static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
460				       unsigned long addr, pte_t *ptep)
461{
462	unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0);
463	return __pte(old);
464}
465
466#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
467static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
468					    unsigned long addr,
469					    pte_t *ptep, int full)
470{
471	if (full && radix_enabled()) {
472		/*
473		 * We know that this is a full mm pte clear and
474		 * hence can be sure there is no parallel set_pte.
475		 */
476		return radix__ptep_get_and_clear_full(mm, addr, ptep, full);
477	}
478	return ptep_get_and_clear(mm, addr, ptep);
479}
480
481
482static inline void pte_clear(struct mm_struct *mm, unsigned long addr,
483			     pte_t * ptep)
484{
485	pte_update(mm, addr, ptep, ~0UL, 0, 0);
486}
487
488static inline int pte_dirty(pte_t pte)
489{
490	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY));
491}
492
493static inline int pte_young(pte_t pte)
494{
495	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED));
496}
497
498static inline int pte_special(pte_t pte)
499{
500	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL));
501}
502
503static inline bool pte_exec(pte_t pte)
504{
505	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_EXEC));
506}
507
508
509#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
510static inline bool pte_soft_dirty(pte_t pte)
511{
512	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY));
513}
514
515static inline pte_t pte_mksoft_dirty(pte_t pte)
516{
517	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SOFT_DIRTY));
518}
519
520static inline pte_t pte_clear_soft_dirty(pte_t pte)
521{
522	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SOFT_DIRTY));
523}
524#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
525
526#ifdef CONFIG_NUMA_BALANCING
527static inline int pte_protnone(pte_t pte)
528{
529	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) ==
530		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
531}
532
533#define pte_mk_savedwrite pte_mk_savedwrite
534static inline pte_t pte_mk_savedwrite(pte_t pte)
535{
536	/*
537	 * Used by Autonuma subsystem to preserve the write bit
538	 * while marking the pte PROT_NONE. Only allow this
539	 * on PROT_NONE pte
540	 */
541	VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) !=
542		  cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED));
543	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
544}
545
546#define pte_clear_savedwrite pte_clear_savedwrite
547static inline pte_t pte_clear_savedwrite(pte_t pte)
548{
549	/*
550	 * Used by KSM subsystem to make a protnone pte readonly.
551	 */
552	VM_BUG_ON(!pte_protnone(pte));
553	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
554}
555#else
556#define pte_clear_savedwrite pte_clear_savedwrite
557static inline pte_t pte_clear_savedwrite(pte_t pte)
558{
559	VM_WARN_ON(1);
560	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
561}
562#endif /* CONFIG_NUMA_BALANCING */
563
564static inline bool pte_hw_valid(pte_t pte)
565{
566	return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE)) ==
567		cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE);
568}
569
570static inline int pte_present(pte_t pte)
571{
572	/*
573	 * A pte is considerent present if _PAGE_PRESENT is set.
574	 * We also need to consider the pte present which is marked
575	 * invalid during ptep_set_access_flags. Hence we look for _PAGE_INVALID
576	 * if we find _PAGE_PRESENT cleared.
577	 */
578
579	if (pte_hw_valid(pte))
580		return true;
581	return (pte_raw(pte) & cpu_to_be64(_PAGE_INVALID | _PAGE_PTE)) ==
582		cpu_to_be64(_PAGE_INVALID | _PAGE_PTE);
583}
584
585#ifdef CONFIG_PPC_MEM_KEYS
586extern bool arch_pte_access_permitted(u64 pte, bool write, bool execute);
587#else
588static inline bool arch_pte_access_permitted(u64 pte, bool write, bool execute)
589{
590	return true;
591}
592#endif /* CONFIG_PPC_MEM_KEYS */
593
594static inline bool pte_user(pte_t pte)
595{
596	return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED));
597}
598
599#define pte_access_permitted pte_access_permitted
600static inline bool pte_access_permitted(pte_t pte, bool write)
601{
602	/*
603	 * _PAGE_READ is needed for any access and will be
604	 * cleared for PROT_NONE
605	 */
606	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
607		return false;
608
609	if (write && !pte_write(pte))
610		return false;
611
612	return arch_pte_access_permitted(pte_val(pte), write, 0);
613}
614
615/*
616 * Conversion functions: convert a page and protection to a page entry,
617 * and a page entry and page directory to the page they refer to.
618 *
619 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
620 * long for now.
621 */
622static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
623{
624	VM_BUG_ON(pfn >> (64 - PAGE_SHIFT));
625	VM_BUG_ON((pfn << PAGE_SHIFT) & ~PTE_RPN_MASK);
626
627	return __pte(((pte_basic_t)pfn << PAGE_SHIFT) | pgprot_val(pgprot) | _PAGE_PTE);
628}
629
630static inline unsigned long pte_pfn(pte_t pte)
631{
632	return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT;
633}
634
635/* Generic modifiers for PTE bits */
636static inline pte_t pte_wrprotect(pte_t pte)
637{
638	if (unlikely(pte_savedwrite(pte)))
639		return pte_clear_savedwrite(pte);
640	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_WRITE));
641}
642
643static inline pte_t pte_exprotect(pte_t pte)
644{
645	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_EXEC));
646}
647
648static inline pte_t pte_mkclean(pte_t pte)
649{
650	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_DIRTY));
651}
652
653static inline pte_t pte_mkold(pte_t pte)
654{
655	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_ACCESSED));
656}
657
658static inline pte_t pte_mkexec(pte_t pte)
659{
660	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_EXEC));
661}
662
663static inline pte_t pte_mkwrite(pte_t pte)
664{
665	/*
666	 * write implies read, hence set both
667	 */
668	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_RW));
669}
670
671static inline pte_t pte_mkdirty(pte_t pte)
672{
673	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
674}
675
676static inline pte_t pte_mkyoung(pte_t pte)
677{
678	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_ACCESSED));
679}
680
681static inline pte_t pte_mkspecial(pte_t pte)
682{
683	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL));
684}
685
686static inline pte_t pte_mkhuge(pte_t pte)
687{
688	return pte;
689}
690
691static inline pte_t pte_mkdevmap(pte_t pte)
692{
693	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SPECIAL | _PAGE_DEVMAP));
694}
695
696static inline pte_t pte_mkprivileged(pte_t pte)
697{
698	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PRIVILEGED));
699}
700
701static inline pte_t pte_mkuser(pte_t pte)
702{
703	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_PRIVILEGED));
704}
705
706/*
707 * This is potentially called with a pmd as the argument, in which case it's not
708 * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set.
709 * That's because the bit we use for _PAGE_DEVMAP is not reserved for software
710 * use in page directory entries (ie. non-ptes).
711 */
712static inline int pte_devmap(pte_t pte)
713{
714	u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE);
715
716	return (pte_raw(pte) & mask) == mask;
717}
718
719static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
720{
721	/* FIXME!! check whether this need to be a conditional */
722	return __pte_raw((pte_raw(pte) & cpu_to_be64(_PAGE_CHG_MASK)) |
723			 cpu_to_be64(pgprot_val(newprot)));
724}
725
726/* Encode and de-code a swap entry */
727#define MAX_SWAPFILES_CHECK() do { \
728	BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \
729	/*							\
730	 * Don't have overlapping bits with _PAGE_HPTEFLAGS	\
731	 * We filter HPTEFLAGS on set_pte.			\
732	 */							\
733	BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \
734	BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY);	\
735	} while (0)
736
737#define SWP_TYPE_BITS 5
738#define __swp_type(x)		(((x).val >> _PAGE_BIT_SWAP_TYPE) \
739				& ((1UL << SWP_TYPE_BITS) - 1))
740#define __swp_offset(x)		(((x).val & PTE_RPN_MASK) >> PAGE_SHIFT)
741#define __swp_entry(type, offset)	((swp_entry_t) { \
742				((type) << _PAGE_BIT_SWAP_TYPE) \
743				| (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)})
744/*
745 * swp_entry_t must be independent of pte bits. We build a swp_entry_t from
746 * swap type and offset we get from swap and convert that to pte to find a
747 * matching pte in linux page table.
748 * Clear bits not found in swap entries here.
749 */
750#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE })
751#define __swp_entry_to_pte(x)	__pte((x).val | _PAGE_PTE)
752#define __pmd_to_swp_entry(pmd)	(__pte_to_swp_entry(pmd_pte(pmd)))
753#define __swp_entry_to_pmd(x)	(pte_pmd(__swp_entry_to_pte(x)))
754
755#ifdef CONFIG_MEM_SOFT_DIRTY
756#define _PAGE_SWP_SOFT_DIRTY   (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE))
757#else
758#define _PAGE_SWP_SOFT_DIRTY	0UL
759#endif /* CONFIG_MEM_SOFT_DIRTY */
760
761#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
762static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
763{
764	return __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
765}
766
767static inline bool pte_swp_soft_dirty(pte_t pte)
768{
769	return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY));
770}
771
772static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
773{
774	return __pte_raw(pte_raw(pte) & cpu_to_be64(~_PAGE_SWP_SOFT_DIRTY));
775}
776#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
777
778static inline bool check_pte_access(unsigned long access, unsigned long ptev)
779{
780	/*
781	 * This check for _PAGE_RWX and _PAGE_PRESENT bits
782	 */
783	if (access & ~ptev)
784		return false;
785	/*
786	 * This check for access to privilege space
787	 */
788	if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED))
789		return false;
790
791	return true;
792}
793/*
794 * Generic functions with hash/radix callbacks
795 */
796
797static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
798					   pte_t *ptep, pte_t entry,
799					   unsigned long address,
800					   int psize)
801{
802	if (radix_enabled())
803		return radix__ptep_set_access_flags(vma, ptep, entry,
804						    address, psize);
805	return hash__ptep_set_access_flags(ptep, entry);
806}
807
808#define __HAVE_ARCH_PTE_SAME
809static inline int pte_same(pte_t pte_a, pte_t pte_b)
810{
811	if (radix_enabled())
812		return radix__pte_same(pte_a, pte_b);
813	return hash__pte_same(pte_a, pte_b);
814}
815
816static inline int pte_none(pte_t pte)
817{
818	if (radix_enabled())
819		return radix__pte_none(pte);
820	return hash__pte_none(pte);
821}
822
823static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
824				pte_t *ptep, pte_t pte, int percpu)
825{
826
827	VM_WARN_ON(!(pte_raw(pte) & cpu_to_be64(_PAGE_PTE)));
828	/*
829	 * Keep the _PAGE_PTE added till we are sure we handle _PAGE_PTE
830	 * in all the callers.
831	 */
832	pte = __pte_raw(pte_raw(pte) | cpu_to_be64(_PAGE_PTE));
833
834	if (radix_enabled())
835		return radix__set_pte_at(mm, addr, ptep, pte, percpu);
836	return hash__set_pte_at(mm, addr, ptep, pte, percpu);
837}
838
839#define _PAGE_CACHE_CTL	(_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT)
840
841#define pgprot_noncached pgprot_noncached
842static inline pgprot_t pgprot_noncached(pgprot_t prot)
843{
844	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
845			_PAGE_NON_IDEMPOTENT);
846}
847
848#define pgprot_noncached_wc pgprot_noncached_wc
849static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
850{
851	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
852			_PAGE_TOLERANT);
853}
854
855#define pgprot_cached pgprot_cached
856static inline pgprot_t pgprot_cached(pgprot_t prot)
857{
858	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL));
859}
860
861#define pgprot_writecombine pgprot_writecombine
862static inline pgprot_t pgprot_writecombine(pgprot_t prot)
863{
864	return pgprot_noncached_wc(prot);
865}
866/*
867 * check a pte mapping have cache inhibited property
868 */
869static inline bool pte_ci(pte_t pte)
870{
871	__be64 pte_v = pte_raw(pte);
872
873	if (((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_TOLERANT)) ||
874	    ((pte_v & cpu_to_be64(_PAGE_CACHE_CTL)) == cpu_to_be64(_PAGE_NON_IDEMPOTENT)))
875		return true;
876	return false;
877}
878
879static inline void pmd_clear(pmd_t *pmdp)
880{
881	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
882		/*
883		 * Don't use this if we can possibly have a hash page table
884		 * entry mapping this.
885		 */
886		WARN_ON((pmd_val(*pmdp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
887	}
888	*pmdp = __pmd(0);
889}
890
891static inline int pmd_none(pmd_t pmd)
892{
893	return !pmd_raw(pmd);
894}
895
896static inline int pmd_present(pmd_t pmd)
897{
898	/*
899	 * A pmd is considerent present if _PAGE_PRESENT is set.
900	 * We also need to consider the pmd present which is marked
901	 * invalid during a split. Hence we look for _PAGE_INVALID
902	 * if we find _PAGE_PRESENT cleared.
903	 */
904	if (pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID))
905		return true;
906
907	return false;
908}
909
910static inline int pmd_is_serializing(pmd_t pmd)
911{
912	/*
913	 * If the pmd is undergoing a split, the _PAGE_PRESENT bit is clear
914	 * and _PAGE_INVALID is set (see pmd_present, pmdp_invalidate).
915	 *
916	 * This condition may also occur when flushing a pmd while flushing
917	 * it (see ptep_modify_prot_start), so callers must ensure this
918	 * case is fine as well.
919	 */
920	if ((pmd_raw(pmd) & cpu_to_be64(_PAGE_PRESENT | _PAGE_INVALID)) ==
921						cpu_to_be64(_PAGE_INVALID))
922		return true;
923
924	return false;
925}
926
927static inline int pmd_bad(pmd_t pmd)
928{
929	if (radix_enabled())
930		return radix__pmd_bad(pmd);
931	return hash__pmd_bad(pmd);
932}
933
934static inline void pud_clear(pud_t *pudp)
935{
936	if (IS_ENABLED(CONFIG_DEBUG_VM) && !radix_enabled()) {
937		/*
938		 * Don't use this if we can possibly have a hash page table
939		 * entry mapping this.
940		 */
941		WARN_ON((pud_val(*pudp) & (H_PAGE_HASHPTE | _PAGE_PTE)) == (H_PAGE_HASHPTE | _PAGE_PTE));
942	}
943	*pudp = __pud(0);
944}
945
946static inline int pud_none(pud_t pud)
947{
948	return !pud_raw(pud);
949}
950
951static inline int pud_present(pud_t pud)
952{
953	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PRESENT));
954}
955
956extern struct page *pud_page(pud_t pud);
957extern struct page *pmd_page(pmd_t pmd);
958static inline pte_t pud_pte(pud_t pud)
959{
960	return __pte_raw(pud_raw(pud));
961}
962
963static inline pud_t pte_pud(pte_t pte)
964{
965	return __pud_raw(pte_raw(pte));
966}
967#define pud_write(pud)		pte_write(pud_pte(pud))
968
969static inline int pud_bad(pud_t pud)
970{
971	if (radix_enabled())
972		return radix__pud_bad(pud);
973	return hash__pud_bad(pud);
974}
975
976#define pud_access_permitted pud_access_permitted
977static inline bool pud_access_permitted(pud_t pud, bool write)
978{
979	return pte_access_permitted(pud_pte(pud), write);
980}
981
982#define __p4d_raw(x)	((p4d_t) { __pgd_raw(x) })
983static inline __be64 p4d_raw(p4d_t x)
984{
985	return pgd_raw(x.pgd);
986}
987
988#define p4d_write(p4d)		pte_write(p4d_pte(p4d))
989
990static inline void p4d_clear(p4d_t *p4dp)
991{
992	*p4dp = __p4d(0);
993}
994
995static inline int p4d_none(p4d_t p4d)
996{
997	return !p4d_raw(p4d);
998}
999
1000static inline int p4d_present(p4d_t p4d)
1001{
1002	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PRESENT));
1003}
1004
1005static inline pte_t p4d_pte(p4d_t p4d)
1006{
1007	return __pte_raw(p4d_raw(p4d));
1008}
1009
1010static inline p4d_t pte_p4d(pte_t pte)
1011{
1012	return __p4d_raw(pte_raw(pte));
1013}
1014
1015static inline int p4d_bad(p4d_t p4d)
1016{
1017	if (radix_enabled())
1018		return radix__p4d_bad(p4d);
1019	return hash__p4d_bad(p4d);
1020}
1021
1022#define p4d_access_permitted p4d_access_permitted
1023static inline bool p4d_access_permitted(p4d_t p4d, bool write)
1024{
1025	return pte_access_permitted(p4d_pte(p4d), write);
1026}
1027
1028extern struct page *p4d_page(p4d_t p4d);
1029
1030/* Pointers in the page table tree are physical addresses */
1031#define __pgtable_ptr_val(ptr)	__pa(ptr)
1032
1033static inline pud_t *p4d_pgtable(p4d_t p4d)
1034{
1035	return (pud_t *)__va(p4d_val(p4d) & ~P4D_MASKED_BITS);
1036}
1037
1038static inline pmd_t *pud_pgtable(pud_t pud)
1039{
1040	return (pmd_t *)__va(pud_val(pud) & ~PUD_MASKED_BITS);
1041}
1042
1043#define pte_ERROR(e) \
1044	pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
1045#define pmd_ERROR(e) \
1046	pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
1047#define pud_ERROR(e) \
1048	pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e))
1049#define pgd_ERROR(e) \
1050	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
1051
1052static inline int map_kernel_page(unsigned long ea, unsigned long pa, pgprot_t prot)
1053{
1054	if (radix_enabled()) {
1055#if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM)
1056		unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift;
1057		WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE");
1058#endif
1059		return radix__map_kernel_page(ea, pa, prot, PAGE_SIZE);
1060	}
1061	return hash__map_kernel_page(ea, pa, prot);
1062}
1063
1064void unmap_kernel_page(unsigned long va);
1065
1066static inline int __meminit vmemmap_create_mapping(unsigned long start,
1067						   unsigned long page_size,
1068						   unsigned long phys)
1069{
1070	if (radix_enabled())
1071		return radix__vmemmap_create_mapping(start, page_size, phys);
1072	return hash__vmemmap_create_mapping(start, page_size, phys);
1073}
1074
1075#ifdef CONFIG_MEMORY_HOTPLUG
1076static inline void vmemmap_remove_mapping(unsigned long start,
1077					  unsigned long page_size)
1078{
1079	if (radix_enabled())
1080		return radix__vmemmap_remove_mapping(start, page_size);
1081	return hash__vmemmap_remove_mapping(start, page_size);
1082}
1083#endif
1084
1085static inline pte_t pmd_pte(pmd_t pmd)
1086{
1087	return __pte_raw(pmd_raw(pmd));
1088}
1089
1090static inline pmd_t pte_pmd(pte_t pte)
1091{
1092	return __pmd_raw(pte_raw(pte));
1093}
1094
1095static inline pte_t *pmdp_ptep(pmd_t *pmd)
1096{
1097	return (pte_t *)pmd;
1098}
1099#define pmd_pfn(pmd)		pte_pfn(pmd_pte(pmd))
1100#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
1101#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
1102#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
1103#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
1104#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
1105#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
1106#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
1107#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
1108#define pmd_mk_savedwrite(pmd)	pte_pmd(pte_mk_savedwrite(pmd_pte(pmd)))
1109#define pmd_clear_savedwrite(pmd)	pte_pmd(pte_clear_savedwrite(pmd_pte(pmd)))
1110
1111#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1112#define pmd_soft_dirty(pmd)    pte_soft_dirty(pmd_pte(pmd))
1113#define pmd_mksoft_dirty(pmd)  pte_pmd(pte_mksoft_dirty(pmd_pte(pmd)))
1114#define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd)))
1115
1116#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1117#define pmd_swp_mksoft_dirty(pmd)	pte_pmd(pte_swp_mksoft_dirty(pmd_pte(pmd)))
1118#define pmd_swp_soft_dirty(pmd)		pte_swp_soft_dirty(pmd_pte(pmd))
1119#define pmd_swp_clear_soft_dirty(pmd)	pte_pmd(pte_swp_clear_soft_dirty(pmd_pte(pmd)))
1120#endif
1121#endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */
1122
1123#ifdef CONFIG_NUMA_BALANCING
1124static inline int pmd_protnone(pmd_t pmd)
1125{
1126	return pte_protnone(pmd_pte(pmd));
1127}
1128#endif /* CONFIG_NUMA_BALANCING */
1129
1130#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
1131#define __pmd_write(pmd)	__pte_write(pmd_pte(pmd))
1132#define pmd_savedwrite(pmd)	pte_savedwrite(pmd_pte(pmd))
1133
1134#define pmd_access_permitted pmd_access_permitted
1135static inline bool pmd_access_permitted(pmd_t pmd, bool write)
1136{
1137	/*
1138	 * pmdp_invalidate sets this combination (which is not caught by
1139	 * !pte_present() check in pte_access_permitted), to prevent
1140	 * lock-free lookups, as part of the serialize_against_pte_lookup()
1141	 * synchronisation.
1142	 *
1143	 * This also catches the case where the PTE's hardware PRESENT bit is
1144	 * cleared while TLB is flushed, which is suboptimal but should not
1145	 * be frequent.
1146	 */
1147	if (pmd_is_serializing(pmd))
1148		return false;
1149
1150	return pte_access_permitted(pmd_pte(pmd), write);
1151}
1152
1153#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1154extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot);
1155extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot);
1156extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot);
1157extern void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1158		       pmd_t *pmdp, pmd_t pmd);
1159static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
1160					unsigned long addr, pmd_t *pmd)
1161{
1162}
1163
1164extern int hash__has_transparent_hugepage(void);
1165static inline int has_transparent_hugepage(void)
1166{
1167	if (radix_enabled())
1168		return radix__has_transparent_hugepage();
1169	return hash__has_transparent_hugepage();
1170}
1171#define has_transparent_hugepage has_transparent_hugepage
1172
1173static inline unsigned long
1174pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp,
1175		    unsigned long clr, unsigned long set)
1176{
1177	if (radix_enabled())
1178		return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1179	return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set);
1180}
1181
1182/*
1183 * returns true for pmd migration entries, THP, devmap, hugetlb
1184 * But compile time dependent on THP config
1185 */
1186static inline int pmd_large(pmd_t pmd)
1187{
1188	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1189}
1190
1191/*
1192 * For radix we should always find H_PAGE_HASHPTE zero. Hence
1193 * the below will work for radix too
1194 */
1195static inline int __pmdp_test_and_clear_young(struct mm_struct *mm,
1196					      unsigned long addr, pmd_t *pmdp)
1197{
1198	unsigned long old;
1199
1200	if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0)
1201		return 0;
1202	old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0);
1203	return ((old & _PAGE_ACCESSED) != 0);
1204}
1205
1206#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1207static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr,
1208				      pmd_t *pmdp)
1209{
1210	if (__pmd_write((*pmdp)))
1211		pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0);
1212	else if (unlikely(pmd_savedwrite(*pmdp)))
1213		pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED);
1214}
1215
1216/*
1217 * Only returns true for a THP. False for pmd migration entry.
1218 * We also need to return true when we come across a pte that
1219 * in between a thp split. While splitting THP, we mark the pmd
1220 * invalid (pmdp_invalidate()) before we set it with pte page
1221 * address. A pmd_trans_huge() check against a pmd entry during that time
1222 * should return true.
1223 * We should not call this on a hugetlb entry. We should check for HugeTLB
1224 * entry using vma->vm_flags
1225 * The page table walk rule is explained in Documentation/vm/transhuge.rst
1226 */
1227static inline int pmd_trans_huge(pmd_t pmd)
1228{
1229	if (!pmd_present(pmd))
1230		return false;
1231
1232	if (radix_enabled())
1233		return radix__pmd_trans_huge(pmd);
1234	return hash__pmd_trans_huge(pmd);
1235}
1236
1237#define __HAVE_ARCH_PMD_SAME
1238static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1239{
1240	if (radix_enabled())
1241		return radix__pmd_same(pmd_a, pmd_b);
1242	return hash__pmd_same(pmd_a, pmd_b);
1243}
1244
1245static inline pmd_t pmd_mkhuge(pmd_t pmd)
1246{
1247	if (radix_enabled())
1248		return radix__pmd_mkhuge(pmd);
1249	return hash__pmd_mkhuge(pmd);
1250}
1251
1252#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1253extern int pmdp_set_access_flags(struct vm_area_struct *vma,
1254				 unsigned long address, pmd_t *pmdp,
1255				 pmd_t entry, int dirty);
1256
1257#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1258extern int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1259				     unsigned long address, pmd_t *pmdp);
1260
1261#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1262static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1263					    unsigned long addr, pmd_t *pmdp)
1264{
1265	if (radix_enabled())
1266		return radix__pmdp_huge_get_and_clear(mm, addr, pmdp);
1267	return hash__pmdp_huge_get_and_clear(mm, addr, pmdp);
1268}
1269
1270static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1271					unsigned long address, pmd_t *pmdp)
1272{
1273	if (radix_enabled())
1274		return radix__pmdp_collapse_flush(vma, address, pmdp);
1275	return hash__pmdp_collapse_flush(vma, address, pmdp);
1276}
1277#define pmdp_collapse_flush pmdp_collapse_flush
1278
1279#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1280pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1281				   unsigned long addr,
1282				   pmd_t *pmdp, int full);
1283
1284#define __HAVE_ARCH_PGTABLE_DEPOSIT
1285static inline void pgtable_trans_huge_deposit(struct mm_struct *mm,
1286					      pmd_t *pmdp, pgtable_t pgtable)
1287{
1288	if (radix_enabled())
1289		return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1290	return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable);
1291}
1292
1293#define __HAVE_ARCH_PGTABLE_WITHDRAW
1294static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm,
1295						    pmd_t *pmdp)
1296{
1297	if (radix_enabled())
1298		return radix__pgtable_trans_huge_withdraw(mm, pmdp);
1299	return hash__pgtable_trans_huge_withdraw(mm, pmdp);
1300}
1301
1302#define __HAVE_ARCH_PMDP_INVALIDATE
1303extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
1304			     pmd_t *pmdp);
1305
1306#define pmd_move_must_withdraw pmd_move_must_withdraw
1307struct spinlock;
1308extern int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl,
1309				  struct spinlock *old_pmd_ptl,
1310				  struct vm_area_struct *vma);
1311/*
1312 * Hash translation mode use the deposited table to store hash pte
1313 * slot information.
1314 */
1315#define arch_needs_pgtable_deposit arch_needs_pgtable_deposit
1316static inline bool arch_needs_pgtable_deposit(void)
1317{
1318	if (radix_enabled())
1319		return false;
1320	return true;
1321}
1322extern void serialize_against_pte_lookup(struct mm_struct *mm);
1323
1324
1325static inline pmd_t pmd_mkdevmap(pmd_t pmd)
1326{
1327	if (radix_enabled())
1328		return radix__pmd_mkdevmap(pmd);
1329	return hash__pmd_mkdevmap(pmd);
1330}
1331
1332static inline int pmd_devmap(pmd_t pmd)
1333{
1334	return pte_devmap(pmd_pte(pmd));
1335}
1336
1337static inline int pud_devmap(pud_t pud)
1338{
1339	return 0;
1340}
1341
1342static inline int pgd_devmap(pgd_t pgd)
1343{
1344	return 0;
1345}
1346#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1347
1348static inline int pud_pfn(pud_t pud)
1349{
1350	/*
1351	 * Currently all calls to pud_pfn() are gated around a pud_devmap()
1352	 * check so this should never be used. If it grows another user we
1353	 * want to know about it.
1354	 */
1355	BUILD_BUG();
1356	return 0;
1357}
1358#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1359pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1360void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1361			     pte_t *, pte_t, pte_t);
1362
1363/*
1364 * Returns true for a R -> RW upgrade of pte
1365 */
1366static inline bool is_pte_rw_upgrade(unsigned long old_val, unsigned long new_val)
1367{
1368	if (!(old_val & _PAGE_READ))
1369		return false;
1370
1371	if ((!(old_val & _PAGE_WRITE)) && (new_val & _PAGE_WRITE))
1372		return true;
1373
1374	return false;
1375}
1376
1377/*
1378 * Like pmd_huge() and pmd_large(), but works regardless of config options
1379 */
1380#define pmd_is_leaf pmd_is_leaf
1381#define pmd_leaf pmd_is_leaf
1382static inline bool pmd_is_leaf(pmd_t pmd)
1383{
1384	return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE));
1385}
1386
1387#define pud_is_leaf pud_is_leaf
1388#define pud_leaf pud_is_leaf
1389static inline bool pud_is_leaf(pud_t pud)
1390{
1391	return !!(pud_raw(pud) & cpu_to_be64(_PAGE_PTE));
1392}
1393
1394#define p4d_is_leaf p4d_is_leaf
1395#define p4d_leaf p4d_is_leaf
1396static inline bool p4d_is_leaf(p4d_t p4d)
1397{
1398	return !!(p4d_raw(p4d) & cpu_to_be64(_PAGE_PTE));
1399}
1400
1401#endif /* __ASSEMBLY__ */
1402#endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */
1403