18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci#ifndef _ASM_POWERPC_BOOK3S_64_HASH_64K_H 38c2ecf20Sopenharmony_ci#define _ASM_POWERPC_BOOK3S_64_HASH_64K_H 48c2ecf20Sopenharmony_ci 58c2ecf20Sopenharmony_ci#define H_PTE_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 64KB = 16MB 68c2ecf20Sopenharmony_ci#define H_PMD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16MB = 16GB 78c2ecf20Sopenharmony_ci#define H_PUD_INDEX_SIZE 10 // size: 8B << 10 = 8KB, maps 2^10 x 16GB = 16TB 88c2ecf20Sopenharmony_ci#define H_PGD_INDEX_SIZE 8 // size: 8B << 8 = 2KB, maps 2^8 x 16TB = 4PB 98c2ecf20Sopenharmony_ci 108c2ecf20Sopenharmony_ci/* 118c2ecf20Sopenharmony_ci * If we store section details in page->flags we can't increase the MAX_PHYSMEM_BITS 128c2ecf20Sopenharmony_ci * if we increase SECTIONS_WIDTH we will not store node details in page->flags and 138c2ecf20Sopenharmony_ci * page_to_nid does a page->section->node lookup 148c2ecf20Sopenharmony_ci * Hence only increase for VMEMMAP. Further depending on SPARSEMEM_EXTREME reduce 158c2ecf20Sopenharmony_ci * memory requirements with large number of sections. 168c2ecf20Sopenharmony_ci * 51 bits is the max physical real address on POWER9 178c2ecf20Sopenharmony_ci */ 188c2ecf20Sopenharmony_ci#if defined(CONFIG_SPARSEMEM_VMEMMAP) && defined(CONFIG_SPARSEMEM_EXTREME) 198c2ecf20Sopenharmony_ci#define H_MAX_PHYSMEM_BITS 51 208c2ecf20Sopenharmony_ci#else 218c2ecf20Sopenharmony_ci#define H_MAX_PHYSMEM_BITS 46 228c2ecf20Sopenharmony_ci#endif 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci/* 258c2ecf20Sopenharmony_ci * Each context is 512TB size. SLB miss for first context/default context 268c2ecf20Sopenharmony_ci * is handled in the hotpath. 278c2ecf20Sopenharmony_ci */ 288c2ecf20Sopenharmony_ci#define MAX_EA_BITS_PER_CONTEXT 49 298c2ecf20Sopenharmony_ci#define REGION_SHIFT MAX_EA_BITS_PER_CONTEXT 308c2ecf20Sopenharmony_ci 318c2ecf20Sopenharmony_ci/* 328c2ecf20Sopenharmony_ci * We use one context for each MAP area. 338c2ecf20Sopenharmony_ci */ 348c2ecf20Sopenharmony_ci#define H_KERN_MAP_SIZE (1UL << MAX_EA_BITS_PER_CONTEXT) 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci/* 378c2ecf20Sopenharmony_ci * Define the address range of the kernel non-linear virtual area 388c2ecf20Sopenharmony_ci * 2PB 398c2ecf20Sopenharmony_ci */ 408c2ecf20Sopenharmony_ci#define H_KERN_VIRT_START ASM_CONST(0xc008000000000000) 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci/* 438c2ecf20Sopenharmony_ci * 64k aligned address free up few of the lower bits of RPN for us 448c2ecf20Sopenharmony_ci * We steal that here. For more deatils look at pte_pfn/pfn_pte() 458c2ecf20Sopenharmony_ci */ 468c2ecf20Sopenharmony_ci#define H_PAGE_COMBO _RPAGE_RPN0 /* this is a combo 4k page */ 478c2ecf20Sopenharmony_ci#define H_PAGE_4K_PFN _RPAGE_RPN1 /* PFN is for a single 4k page */ 488c2ecf20Sopenharmony_ci#define H_PAGE_BUSY _RPAGE_RSV1 /* software: PTE & hash are busy */ 498c2ecf20Sopenharmony_ci#define H_PAGE_HASHPTE _RPAGE_RPN43 /* PTE has associated HPTE */ 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci/* memory key bits. */ 528c2ecf20Sopenharmony_ci#define H_PTE_PKEY_BIT4 _RPAGE_PKEY_BIT4 538c2ecf20Sopenharmony_ci#define H_PTE_PKEY_BIT3 _RPAGE_PKEY_BIT3 548c2ecf20Sopenharmony_ci#define H_PTE_PKEY_BIT2 _RPAGE_PKEY_BIT2 558c2ecf20Sopenharmony_ci#define H_PTE_PKEY_BIT1 _RPAGE_PKEY_BIT1 568c2ecf20Sopenharmony_ci#define H_PTE_PKEY_BIT0 _RPAGE_PKEY_BIT0 578c2ecf20Sopenharmony_ci 588c2ecf20Sopenharmony_ci/* 598c2ecf20Sopenharmony_ci * We need to differentiate between explicit huge page and THP huge 608c2ecf20Sopenharmony_ci * page, since THP huge page also need to track real subpage details 618c2ecf20Sopenharmony_ci */ 628c2ecf20Sopenharmony_ci#define H_PAGE_THP_HUGE H_PAGE_4K_PFN 638c2ecf20Sopenharmony_ci 648c2ecf20Sopenharmony_ci/* PTE flags to conserve for HPTE identification */ 658c2ecf20Sopenharmony_ci#define _PAGE_HPTEFLAGS (H_PAGE_BUSY | H_PAGE_HASHPTE | H_PAGE_COMBO) 668c2ecf20Sopenharmony_ci/* 678c2ecf20Sopenharmony_ci * We use a 2K PTE page fragment and another 2K for storing 688c2ecf20Sopenharmony_ci * real_pte_t hash index 698c2ecf20Sopenharmony_ci * 8 bytes per each pte entry and another 8 bytes for storing 708c2ecf20Sopenharmony_ci * slot details. 718c2ecf20Sopenharmony_ci */ 728c2ecf20Sopenharmony_ci#define H_PTE_FRAG_SIZE_SHIFT (H_PTE_INDEX_SIZE + 3 + 1) 738c2ecf20Sopenharmony_ci#define H_PTE_FRAG_NR (PAGE_SIZE >> H_PTE_FRAG_SIZE_SHIFT) 748c2ecf20Sopenharmony_ci 758c2ecf20Sopenharmony_ci#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 768c2ecf20Sopenharmony_ci#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3 + 1) 778c2ecf20Sopenharmony_ci#else 788c2ecf20Sopenharmony_ci#define H_PMD_FRAG_SIZE_SHIFT (H_PMD_INDEX_SIZE + 3) 798c2ecf20Sopenharmony_ci#endif 808c2ecf20Sopenharmony_ci#define H_PMD_FRAG_NR (PAGE_SIZE >> H_PMD_FRAG_SIZE_SHIFT) 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__ 838c2ecf20Sopenharmony_ci#include <asm/errno.h> 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ci/* 868c2ecf20Sopenharmony_ci * With 64K pages on hash table, we have a special PTE format that 878c2ecf20Sopenharmony_ci * uses a second "half" of the page table to encode sub-page information 888c2ecf20Sopenharmony_ci * in order to deal with 64K made of 4K HW pages. Thus we override the 898c2ecf20Sopenharmony_ci * generic accessors and iterators here 908c2ecf20Sopenharmony_ci */ 918c2ecf20Sopenharmony_ci#define __real_pte __real_pte 928c2ecf20Sopenharmony_cistatic inline real_pte_t __real_pte(pte_t pte, pte_t *ptep, int offset) 938c2ecf20Sopenharmony_ci{ 948c2ecf20Sopenharmony_ci real_pte_t rpte; 958c2ecf20Sopenharmony_ci unsigned long *hidxp; 968c2ecf20Sopenharmony_ci 978c2ecf20Sopenharmony_ci rpte.pte = pte; 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci /* 1008c2ecf20Sopenharmony_ci * Ensure that we do not read the hidx before we read the PTE. Because 1018c2ecf20Sopenharmony_ci * the writer side is expected to finish writing the hidx first followed 1028c2ecf20Sopenharmony_ci * by the PTE, by using smp_wmb(). pte_set_hash_slot() ensures that. 1038c2ecf20Sopenharmony_ci */ 1048c2ecf20Sopenharmony_ci smp_rmb(); 1058c2ecf20Sopenharmony_ci 1068c2ecf20Sopenharmony_ci hidxp = (unsigned long *)(ptep + offset); 1078c2ecf20Sopenharmony_ci rpte.hidx = *hidxp; 1088c2ecf20Sopenharmony_ci return rpte; 1098c2ecf20Sopenharmony_ci} 1108c2ecf20Sopenharmony_ci 1118c2ecf20Sopenharmony_ci/* 1128c2ecf20Sopenharmony_ci * shift the hidx representation by one-modulo-0xf; i.e hidx 0 is respresented 1138c2ecf20Sopenharmony_ci * as 1, 1 as 2,... , and 0xf as 0. This convention lets us represent a 1148c2ecf20Sopenharmony_ci * invalid hidx 0xf with a 0x0 bit value. PTEs are anyway zero'd when 1158c2ecf20Sopenharmony_ci * allocated. We dont have to zero them gain; thus save on the initialization. 1168c2ecf20Sopenharmony_ci */ 1178c2ecf20Sopenharmony_ci#define HIDX_UNSHIFT_BY_ONE(x) ((x + 0xfUL) & 0xfUL) /* shift backward by one */ 1188c2ecf20Sopenharmony_ci#define HIDX_SHIFT_BY_ONE(x) ((x + 0x1UL) & 0xfUL) /* shift forward by one */ 1198c2ecf20Sopenharmony_ci#define HIDX_BITS(x, index) (x << (index << 2)) 1208c2ecf20Sopenharmony_ci#define BITS_TO_HIDX(x, index) ((x >> (index << 2)) & 0xfUL) 1218c2ecf20Sopenharmony_ci#define INVALID_RPTE_HIDX 0x0UL 1228c2ecf20Sopenharmony_ci 1238c2ecf20Sopenharmony_cistatic inline unsigned long __rpte_to_hidx(real_pte_t rpte, unsigned long index) 1248c2ecf20Sopenharmony_ci{ 1258c2ecf20Sopenharmony_ci return HIDX_UNSHIFT_BY_ONE(BITS_TO_HIDX(rpte.hidx, index)); 1268c2ecf20Sopenharmony_ci} 1278c2ecf20Sopenharmony_ci 1288c2ecf20Sopenharmony_ci/* 1298c2ecf20Sopenharmony_ci * Commit the hidx and return PTE bits that needs to be modified. The caller is 1308c2ecf20Sopenharmony_ci * expected to modify the PTE bits accordingly and commit the PTE to memory. 1318c2ecf20Sopenharmony_ci */ 1328c2ecf20Sopenharmony_cistatic inline unsigned long pte_set_hidx(pte_t *ptep, real_pte_t rpte, 1338c2ecf20Sopenharmony_ci unsigned int subpg_index, 1348c2ecf20Sopenharmony_ci unsigned long hidx, int offset) 1358c2ecf20Sopenharmony_ci{ 1368c2ecf20Sopenharmony_ci unsigned long *hidxp = (unsigned long *)(ptep + offset); 1378c2ecf20Sopenharmony_ci 1388c2ecf20Sopenharmony_ci rpte.hidx &= ~HIDX_BITS(0xfUL, subpg_index); 1398c2ecf20Sopenharmony_ci *hidxp = rpte.hidx | HIDX_BITS(HIDX_SHIFT_BY_ONE(hidx), subpg_index); 1408c2ecf20Sopenharmony_ci 1418c2ecf20Sopenharmony_ci /* 1428c2ecf20Sopenharmony_ci * Anyone reading PTE must ensure hidx bits are read after reading the 1438c2ecf20Sopenharmony_ci * PTE by using the read-side barrier smp_rmb(). __real_pte() can be 1448c2ecf20Sopenharmony_ci * used for that. 1458c2ecf20Sopenharmony_ci */ 1468c2ecf20Sopenharmony_ci smp_wmb(); 1478c2ecf20Sopenharmony_ci 1488c2ecf20Sopenharmony_ci /* No PTE bits to be modified, return 0x0UL */ 1498c2ecf20Sopenharmony_ci return 0x0UL; 1508c2ecf20Sopenharmony_ci} 1518c2ecf20Sopenharmony_ci 1528c2ecf20Sopenharmony_ci#define __rpte_to_pte(r) ((r).pte) 1538c2ecf20Sopenharmony_ciextern bool __rpte_sub_valid(real_pte_t rpte, unsigned long index); 1548c2ecf20Sopenharmony_ci/* 1558c2ecf20Sopenharmony_ci * Trick: we set __end to va + 64k, which happens works for 1568c2ecf20Sopenharmony_ci * a 16M page as well as we want only one iteration 1578c2ecf20Sopenharmony_ci */ 1588c2ecf20Sopenharmony_ci#define pte_iterate_hashed_subpages(rpte, psize, vpn, index, shift) \ 1598c2ecf20Sopenharmony_ci do { \ 1608c2ecf20Sopenharmony_ci unsigned long __end = vpn + (1UL << (PAGE_SHIFT - VPN_SHIFT)); \ 1618c2ecf20Sopenharmony_ci unsigned __split = (psize == MMU_PAGE_4K || \ 1628c2ecf20Sopenharmony_ci psize == MMU_PAGE_64K_AP); \ 1638c2ecf20Sopenharmony_ci shift = mmu_psize_defs[psize].shift; \ 1648c2ecf20Sopenharmony_ci for (index = 0; vpn < __end; index++, \ 1658c2ecf20Sopenharmony_ci vpn += (1L << (shift - VPN_SHIFT))) { \ 1668c2ecf20Sopenharmony_ci if (!__split || __rpte_sub_valid(rpte, index)) 1678c2ecf20Sopenharmony_ci 1688c2ecf20Sopenharmony_ci#define pte_iterate_hashed_end() } } while(0) 1698c2ecf20Sopenharmony_ci 1708c2ecf20Sopenharmony_ci#define pte_pagesize_index(mm, addr, pte) \ 1718c2ecf20Sopenharmony_ci (((pte) & H_PAGE_COMBO)? MMU_PAGE_4K: MMU_PAGE_64K) 1728c2ecf20Sopenharmony_ci 1738c2ecf20Sopenharmony_ciextern int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1748c2ecf20Sopenharmony_ci unsigned long pfn, unsigned long size, pgprot_t); 1758c2ecf20Sopenharmony_cistatic inline int hash__remap_4k_pfn(struct vm_area_struct *vma, unsigned long addr, 1768c2ecf20Sopenharmony_ci unsigned long pfn, pgprot_t prot) 1778c2ecf20Sopenharmony_ci{ 1788c2ecf20Sopenharmony_ci if (pfn > (PTE_RPN_MASK >> PAGE_SHIFT)) { 1798c2ecf20Sopenharmony_ci WARN(1, "remap_4k_pfn called with wrong pfn value\n"); 1808c2ecf20Sopenharmony_ci return -EINVAL; 1818c2ecf20Sopenharmony_ci } 1828c2ecf20Sopenharmony_ci return remap_pfn_range(vma, addr, pfn, PAGE_SIZE, 1838c2ecf20Sopenharmony_ci __pgprot(pgprot_val(prot) | H_PAGE_4K_PFN)); 1848c2ecf20Sopenharmony_ci} 1858c2ecf20Sopenharmony_ci 1868c2ecf20Sopenharmony_ci#define H_PTE_TABLE_SIZE PTE_FRAG_SIZE 1878c2ecf20Sopenharmony_ci#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined (CONFIG_HUGETLB_PAGE) 1888c2ecf20Sopenharmony_ci#define H_PMD_TABLE_SIZE ((sizeof(pmd_t) << PMD_INDEX_SIZE) + \ 1898c2ecf20Sopenharmony_ci (sizeof(unsigned long) << PMD_INDEX_SIZE)) 1908c2ecf20Sopenharmony_ci#else 1918c2ecf20Sopenharmony_ci#define H_PMD_TABLE_SIZE (sizeof(pmd_t) << PMD_INDEX_SIZE) 1928c2ecf20Sopenharmony_ci#endif 1938c2ecf20Sopenharmony_ci#ifdef CONFIG_HUGETLB_PAGE 1948c2ecf20Sopenharmony_ci#define H_PUD_TABLE_SIZE ((sizeof(pud_t) << PUD_INDEX_SIZE) + \ 1958c2ecf20Sopenharmony_ci (sizeof(unsigned long) << PUD_INDEX_SIZE)) 1968c2ecf20Sopenharmony_ci#else 1978c2ecf20Sopenharmony_ci#define H_PUD_TABLE_SIZE (sizeof(pud_t) << PUD_INDEX_SIZE) 1988c2ecf20Sopenharmony_ci#endif 1998c2ecf20Sopenharmony_ci#define H_PGD_TABLE_SIZE (sizeof(pgd_t) << PGD_INDEX_SIZE) 2008c2ecf20Sopenharmony_ci 2018c2ecf20Sopenharmony_ci#ifdef CONFIG_TRANSPARENT_HUGEPAGE 2028c2ecf20Sopenharmony_cistatic inline char *get_hpte_slot_array(pmd_t *pmdp) 2038c2ecf20Sopenharmony_ci{ 2048c2ecf20Sopenharmony_ci /* 2058c2ecf20Sopenharmony_ci * The hpte hindex is stored in the pgtable whose address is in the 2068c2ecf20Sopenharmony_ci * second half of the PMD 2078c2ecf20Sopenharmony_ci * 2088c2ecf20Sopenharmony_ci * Order this load with the test for pmd_trans_huge in the caller 2098c2ecf20Sopenharmony_ci */ 2108c2ecf20Sopenharmony_ci smp_rmb(); 2118c2ecf20Sopenharmony_ci return *(char **)(pmdp + PTRS_PER_PMD); 2128c2ecf20Sopenharmony_ci 2138c2ecf20Sopenharmony_ci 2148c2ecf20Sopenharmony_ci} 2158c2ecf20Sopenharmony_ci/* 2168c2ecf20Sopenharmony_ci * The linux hugepage PMD now include the pmd entries followed by the address 2178c2ecf20Sopenharmony_ci * to the stashed pgtable_t. The stashed pgtable_t contains the hpte bits. 2188c2ecf20Sopenharmony_ci * [ 000 | 1 bit secondary | 3 bit hidx | 1 bit valid]. We use one byte per 2198c2ecf20Sopenharmony_ci * each HPTE entry. With 16MB hugepage and 64K HPTE we need 256 entries and 2208c2ecf20Sopenharmony_ci * with 4K HPTE we need 4096 entries. Both will fit in a 4K pgtable_t. 2218c2ecf20Sopenharmony_ci * 2228c2ecf20Sopenharmony_ci * The top three bits are intentionally left as zero. This memory location 2238c2ecf20Sopenharmony_ci * are also used as normal page PTE pointers. So if we have any pointers 2248c2ecf20Sopenharmony_ci * left around while we collapse a hugepage, we need to make sure 2258c2ecf20Sopenharmony_ci * _PAGE_PRESENT bit of that is zero when we look at them 2268c2ecf20Sopenharmony_ci */ 2278c2ecf20Sopenharmony_cistatic inline unsigned int hpte_valid(unsigned char *hpte_slot_array, int index) 2288c2ecf20Sopenharmony_ci{ 2298c2ecf20Sopenharmony_ci return hpte_slot_array[index] & 0x1; 2308c2ecf20Sopenharmony_ci} 2318c2ecf20Sopenharmony_ci 2328c2ecf20Sopenharmony_cistatic inline unsigned int hpte_hash_index(unsigned char *hpte_slot_array, 2338c2ecf20Sopenharmony_ci int index) 2348c2ecf20Sopenharmony_ci{ 2358c2ecf20Sopenharmony_ci return hpte_slot_array[index] >> 1; 2368c2ecf20Sopenharmony_ci} 2378c2ecf20Sopenharmony_ci 2388c2ecf20Sopenharmony_cistatic inline void mark_hpte_slot_valid(unsigned char *hpte_slot_array, 2398c2ecf20Sopenharmony_ci unsigned int index, unsigned int hidx) 2408c2ecf20Sopenharmony_ci{ 2418c2ecf20Sopenharmony_ci hpte_slot_array[index] = (hidx << 1) | 0x1; 2428c2ecf20Sopenharmony_ci} 2438c2ecf20Sopenharmony_ci 2448c2ecf20Sopenharmony_ci/* 2458c2ecf20Sopenharmony_ci * 2468c2ecf20Sopenharmony_ci * For core kernel code by design pmd_trans_huge is never run on any hugetlbfs 2478c2ecf20Sopenharmony_ci * page. The hugetlbfs page table walking and mangling paths are totally 2488c2ecf20Sopenharmony_ci * separated form the core VM paths and they're differentiated by 2498c2ecf20Sopenharmony_ci * VM_HUGETLB being set on vm_flags well before any pmd_trans_huge could run. 2508c2ecf20Sopenharmony_ci * 2518c2ecf20Sopenharmony_ci * pmd_trans_huge() is defined as false at build time if 2528c2ecf20Sopenharmony_ci * CONFIG_TRANSPARENT_HUGEPAGE=n to optimize away code blocks at build 2538c2ecf20Sopenharmony_ci * time in such case. 2548c2ecf20Sopenharmony_ci * 2558c2ecf20Sopenharmony_ci * For ppc64 we need to differntiate from explicit hugepages from THP, because 2568c2ecf20Sopenharmony_ci * for THP we also track the subpage details at the pmd level. We don't do 2578c2ecf20Sopenharmony_ci * that for explicit huge pages. 2588c2ecf20Sopenharmony_ci * 2598c2ecf20Sopenharmony_ci */ 2608c2ecf20Sopenharmony_cistatic inline int hash__pmd_trans_huge(pmd_t pmd) 2618c2ecf20Sopenharmony_ci{ 2628c2ecf20Sopenharmony_ci return !!((pmd_val(pmd) & (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)) == 2638c2ecf20Sopenharmony_ci (_PAGE_PTE | H_PAGE_THP_HUGE)); 2648c2ecf20Sopenharmony_ci} 2658c2ecf20Sopenharmony_ci 2668c2ecf20Sopenharmony_cistatic inline int hash__pmd_same(pmd_t pmd_a, pmd_t pmd_b) 2678c2ecf20Sopenharmony_ci{ 2688c2ecf20Sopenharmony_ci return (((pmd_raw(pmd_a) ^ pmd_raw(pmd_b)) & ~cpu_to_be64(_PAGE_HPTEFLAGS)) == 0); 2698c2ecf20Sopenharmony_ci} 2708c2ecf20Sopenharmony_ci 2718c2ecf20Sopenharmony_cistatic inline pmd_t hash__pmd_mkhuge(pmd_t pmd) 2728c2ecf20Sopenharmony_ci{ 2738c2ecf20Sopenharmony_ci return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE)); 2748c2ecf20Sopenharmony_ci} 2758c2ecf20Sopenharmony_ci 2768c2ecf20Sopenharmony_ciextern unsigned long hash__pmd_hugepage_update(struct mm_struct *mm, 2778c2ecf20Sopenharmony_ci unsigned long addr, pmd_t *pmdp, 2788c2ecf20Sopenharmony_ci unsigned long clr, unsigned long set); 2798c2ecf20Sopenharmony_ciextern pmd_t hash__pmdp_collapse_flush(struct vm_area_struct *vma, 2808c2ecf20Sopenharmony_ci unsigned long address, pmd_t *pmdp); 2818c2ecf20Sopenharmony_ciextern void hash__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 2828c2ecf20Sopenharmony_ci pgtable_t pgtable); 2838c2ecf20Sopenharmony_ciextern pgtable_t hash__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 2848c2ecf20Sopenharmony_ciextern pmd_t hash__pmdp_huge_get_and_clear(struct mm_struct *mm, 2858c2ecf20Sopenharmony_ci unsigned long addr, pmd_t *pmdp); 2868c2ecf20Sopenharmony_ciextern int hash__has_transparent_hugepage(void); 2878c2ecf20Sopenharmony_ci#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 2888c2ecf20Sopenharmony_ci 2898c2ecf20Sopenharmony_cistatic inline pmd_t hash__pmd_mkdevmap(pmd_t pmd) 2908c2ecf20Sopenharmony_ci{ 2918c2ecf20Sopenharmony_ci return __pmd(pmd_val(pmd) | (_PAGE_PTE | H_PAGE_THP_HUGE | _PAGE_DEVMAP)); 2928c2ecf20Sopenharmony_ci} 2938c2ecf20Sopenharmony_ci 2948c2ecf20Sopenharmony_ci#endif /* __ASSEMBLY__ */ 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci#endif /* _ASM_POWERPC_BOOK3S_64_HASH_64K_H */ 297