1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
3#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
4
5#include <asm-generic/pgtable-nopmd.h>
6
7#include <asm/book3s/32/hash.h>
8
9/* And here we include common definitions */
10
11#define _PAGE_KERNEL_RO		0
12#define _PAGE_KERNEL_ROX	(_PAGE_EXEC)
13#define _PAGE_KERNEL_RW		(_PAGE_DIRTY | _PAGE_RW)
14#define _PAGE_KERNEL_RWX	(_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
15
16#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
17
18#ifndef __ASSEMBLY__
19
20static inline bool pte_user(pte_t pte)
21{
22	return pte_val(pte) & _PAGE_USER;
23}
24#endif /* __ASSEMBLY__ */
25
26/*
27 * Location of the PFN in the PTE. Most 32-bit platforms use the same
28 * as _PAGE_SHIFT here (ie, naturally aligned).
29 * Platform who don't just pre-define the value so we don't override it here.
30 */
31#define PTE_RPN_SHIFT	(PAGE_SHIFT)
32
33/*
34 * The mask covered by the RPN must be a ULL on 32-bit platforms with
35 * 64-bit PTEs.
36 */
37#ifdef CONFIG_PTE_64BIT
38#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
39#define MAX_POSSIBLE_PHYSMEM_BITS 36
40#else
41#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
42#define MAX_POSSIBLE_PHYSMEM_BITS 32
43#endif
44
45/*
46 * _PAGE_CHG_MASK masks of bits that are to be preserved across
47 * pgprot changes.
48 */
49#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
50			 _PAGE_ACCESSED | _PAGE_SPECIAL)
51
52/*
53 * We define 2 sets of base prot bits, one for basic pages (ie,
54 * cacheable kernel and user pages) and one for non cacheable
55 * pages. We always set _PAGE_COHERENT when SMP is enabled or
56 * the processor might need it for DMA coherency.
57 */
58#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
59#define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
60
61/*
62 * Permission masks used to generate the __P and __S table.
63 *
64 * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
65 *
66 * Write permissions imply read permissions for now.
67 */
68#define PAGE_NONE	__pgprot(_PAGE_BASE)
69#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
70#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
71#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
72#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
73#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
74#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
75
76/* Permission masks used for kernel mappings */
77#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
78#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
79#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
80				 _PAGE_NO_CACHE | _PAGE_GUARDED)
81#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
82#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
83#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
84
85/*
86 * Protection used for kernel text. We want the debuggers to be able to
87 * set breakpoints anywhere, so don't write protect the kernel text
88 * on platforms where such control is possible.
89 */
90#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
91	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
92#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
93#else
94#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
95#endif
96
97/* Make modules code happy. We don't set RO yet */
98#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
99
100/* Advertise special mapping type for AGP */
101#define PAGE_AGP		(PAGE_KERNEL_NC)
102#define HAVE_PAGE_AGP
103
104#define PTE_INDEX_SIZE	PTE_SHIFT
105#define PMD_INDEX_SIZE	0
106#define PUD_INDEX_SIZE	0
107#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
108
109#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
110#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
111
112#ifndef __ASSEMBLY__
113#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
114#define PMD_TABLE_SIZE	0
115#define PUD_TABLE_SIZE	0
116#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
117
118/* Bits to mask out from a PMD to get to the PTE page */
119#define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
120#endif	/* __ASSEMBLY__ */
121
122#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
123#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
124
125/*
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
128 *
129 * For any >32-bit physical address platform, we can use the following
130 * two level page table layout where the pgdir is 8KB and the MS 13 bits
131 * are an index to the second level table.  The combined pgdir/pmd first
132 * level has 2048 entries and the second level has 512 64-bit PTE entries.
133 * -Matt
134 */
135/* PGDIR_SHIFT determines what a top-level page table entry can map */
136#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
137#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
138#define PGDIR_MASK	(~(PGDIR_SIZE-1))
139
140#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
141
142#ifndef __ASSEMBLY__
143
144int map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
145void unmap_kernel_page(unsigned long va);
146
147#endif /* !__ASSEMBLY__ */
148
149/*
150 * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
151 * value (for now) on others, from where we can start layout kernel
152 * virtual space that goes below PKMAP and FIXMAP
153 */
154#include <asm/fixmap.h>
155
156/*
157 * ioremap_bot starts at that address. Early ioremaps move down from there,
158 * until mem_init() at which point this becomes the top of the vmalloc
159 * and ioremap space
160 */
161#ifdef CONFIG_HIGHMEM
162#define IOREMAP_TOP	PKMAP_BASE
163#else
164#define IOREMAP_TOP	FIXADDR_START
165#endif
166
167/* PPC32 shares vmalloc area with ioremap */
168#define IOREMAP_START	VMALLOC_START
169#define IOREMAP_END	VMALLOC_END
170
171/*
172 * Just any arbitrary offset to the start of the vmalloc VM area: the
173 * current 16MB value just means that there will be a 64MB "hole" after the
174 * physical memory until the kernel virtual memory starts.  That means that
175 * any out-of-bounds memory accesses will hopefully be caught.
176 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
177 * area for the same reason. ;)
178 *
179 * We no longer map larger than phys RAM with the BATs so we don't have
180 * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
181 * about clashes between our early calls to ioremap() that start growing down
182 * from ioremap_base being run into the VM area allocations (growing upwards
183 * from VMALLOC_START).  For this reason we have ioremap_bot to check when
184 * we actually run into our mappings setup in the early boot with the VM
185 * system.  This really does become a problem for machines with good amounts
186 * of RAM.  -- Cort
187 */
188#define VMALLOC_OFFSET (0x1000000) /* 16M */
189
190#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
191
192#ifdef CONFIG_KASAN_VMALLOC
193#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
194#else
195#define VMALLOC_END	ioremap_bot
196#endif
197
198#ifdef CONFIG_STRICT_KERNEL_RWX
199#define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
200#define MODULES_VADDR	(MODULES_END - SZ_256M)
201#endif
202
203#ifndef __ASSEMBLY__
204#include <linux/sched.h>
205#include <linux/threads.h>
206
207/* Bits to mask out from a PGD to get to the PUD page */
208#define PGD_MASKED_BITS		0
209
210#define pte_ERROR(e) \
211	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
212		(unsigned long long)pte_val(e))
213#define pgd_ERROR(e) \
214	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
215/*
216 * Bits in a linux-style PTE.  These match the bits in the
217 * (hardware-defined) PowerPC PTE as closely as possible.
218 */
219
220#define pte_clear(mm, addr, ptep) \
221	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
222
223#define pmd_none(pmd)		(!pmd_val(pmd))
224#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
225#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
226static inline void pmd_clear(pmd_t *pmdp)
227{
228	*pmdp = __pmd(0);
229}
230
231
232/*
233 * When flushing the tlb entry for a page, we also need to flush the hash
234 * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
235 */
236extern int flush_hash_pages(unsigned context, unsigned long va,
237			    unsigned long pmdval, int count);
238
239/* Add an HPTE to the hash table */
240extern void add_hash_page(unsigned context, unsigned long va,
241			  unsigned long pmdval);
242
243/* Flush an entry from the TLB/hash table */
244extern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
245			     unsigned long address);
246
247/*
248 * PTE updates. This function is called whenever an existing
249 * valid PTE is updated. This does -not- include set_pte_at()
250 * which nowadays only sets a new PTE.
251 *
252 * Depending on the type of MMU, we may need to use atomic updates
253 * and the PTE may be either 32 or 64 bit wide. In the later case,
254 * when using atomic updates, only the low part of the PTE is
255 * accessed atomically.
256 */
257static inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
258				     unsigned long clr, unsigned long set, int huge)
259{
260	pte_basic_t old;
261	unsigned long tmp;
262
263	__asm__ __volatile__(
264#ifndef CONFIG_PTE_64BIT
265"1:	lwarx	%0, 0, %3\n"
266"	andc	%1, %0, %4\n"
267#else
268"1:	lwarx	%L0, 0, %3\n"
269"	lwz	%0, -4(%3)\n"
270"	andc	%1, %L0, %4\n"
271#endif
272"	or	%1, %1, %5\n"
273"	stwcx.	%1, 0, %3\n"
274"	bne-	1b"
275	: "=&r" (old), "=&r" (tmp), "=m" (*p)
276#ifndef CONFIG_PTE_64BIT
277	: "r" (p),
278#else
279	: "b" ((unsigned long)(p) + 4),
280#endif
281	  "r" (clr), "r" (set), "m" (*p)
282	: "cc" );
283
284	return old;
285}
286
287/*
288 * 2.6 calls this without flushing the TLB entry; this is wrong
289 * for our hash-based implementation, we fix that up here.
290 */
291#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
292static inline int __ptep_test_and_clear_young(struct mm_struct *mm,
293					      unsigned long addr, pte_t *ptep)
294{
295	unsigned long old;
296	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
297	if (old & _PAGE_HASHPTE) {
298		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
299		flush_hash_pages(mm->context.id, addr, ptephys, 1);
300	}
301	return (old & _PAGE_ACCESSED) != 0;
302}
303#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
304	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
305
306#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
307static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
308				       pte_t *ptep)
309{
310	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
311}
312
313#define __HAVE_ARCH_PTEP_SET_WRPROTECT
314static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
315				      pte_t *ptep)
316{
317	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
318}
319
320static inline void __ptep_set_access_flags(struct vm_area_struct *vma,
321					   pte_t *ptep, pte_t entry,
322					   unsigned long address,
323					   int psize)
324{
325	unsigned long set = pte_val(entry) &
326		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
327
328	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
329
330	flush_tlb_page(vma, address);
331}
332
333#define __HAVE_ARCH_PTE_SAME
334#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
335
336#define pmd_page(pmd)		\
337	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
338
339/*
340 * Encode and decode a swap entry.
341 * Note that the bits we use in a PTE for representing a swap entry
342 * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
343 *   -- paulus
344 */
345#define __swp_type(entry)		((entry).val & 0x1f)
346#define __swp_offset(entry)		((entry).val >> 5)
347#define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
348#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
349#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
350
351/* Generic accessors to PTE bits */
352static inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
353static inline int pte_read(pte_t pte)		{ return 1; }
354static inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
355static inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
356static inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
357static inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
358static inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
359
360static inline int pte_present(pte_t pte)
361{
362	return pte_val(pte) & _PAGE_PRESENT;
363}
364
365static inline bool pte_hw_valid(pte_t pte)
366{
367	return pte_val(pte) & _PAGE_PRESENT;
368}
369
370static inline bool pte_hashpte(pte_t pte)
371{
372	return !!(pte_val(pte) & _PAGE_HASHPTE);
373}
374
375static inline bool pte_ci(pte_t pte)
376{
377	return !!(pte_val(pte) & _PAGE_NO_CACHE);
378}
379
380/*
381 * We only find page table entry in the last level
382 * Hence no need for other accessors
383 */
384#define pte_access_permitted pte_access_permitted
385static inline bool pte_access_permitted(pte_t pte, bool write)
386{
387	/*
388	 * A read-only access is controlled by _PAGE_USER bit.
389	 * We have _PAGE_READ set for WRITE and EXECUTE
390	 */
391	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
392		return false;
393
394	if (write && !pte_write(pte))
395		return false;
396
397	return true;
398}
399
400/* Conversion functions: convert a page and protection to a page entry,
401 * and a page entry and page directory to the page they refer to.
402 *
403 * Even if PTEs can be unsigned long long, a PFN is always an unsigned
404 * long for now.
405 */
406static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
407{
408	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
409		     pgprot_val(pgprot));
410}
411
412static inline unsigned long pte_pfn(pte_t pte)
413{
414	return pte_val(pte) >> PTE_RPN_SHIFT;
415}
416
417/* Generic modifiers for PTE bits */
418static inline pte_t pte_wrprotect(pte_t pte)
419{
420	return __pte(pte_val(pte) & ~_PAGE_RW);
421}
422
423static inline pte_t pte_exprotect(pte_t pte)
424{
425	return __pte(pte_val(pte) & ~_PAGE_EXEC);
426}
427
428static inline pte_t pte_mkclean(pte_t pte)
429{
430	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
431}
432
433static inline pte_t pte_mkold(pte_t pte)
434{
435	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
436}
437
438static inline pte_t pte_mkexec(pte_t pte)
439{
440	return __pte(pte_val(pte) | _PAGE_EXEC);
441}
442
443static inline pte_t pte_mkpte(pte_t pte)
444{
445	return pte;
446}
447
448static inline pte_t pte_mkwrite(pte_t pte)
449{
450	return __pte(pte_val(pte) | _PAGE_RW);
451}
452
453static inline pte_t pte_mkdirty(pte_t pte)
454{
455	return __pte(pte_val(pte) | _PAGE_DIRTY);
456}
457
458static inline pte_t pte_mkyoung(pte_t pte)
459{
460	return __pte(pte_val(pte) | _PAGE_ACCESSED);
461}
462
463static inline pte_t pte_mkspecial(pte_t pte)
464{
465	return __pte(pte_val(pte) | _PAGE_SPECIAL);
466}
467
468static inline pte_t pte_mkhuge(pte_t pte)
469{
470	return pte;
471}
472
473static inline pte_t pte_mkprivileged(pte_t pte)
474{
475	return __pte(pte_val(pte) & ~_PAGE_USER);
476}
477
478static inline pte_t pte_mkuser(pte_t pte)
479{
480	return __pte(pte_val(pte) | _PAGE_USER);
481}
482
483static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
484{
485	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
486}
487
488
489
490/* This low level function performs the actual PTE insertion
491 * Setting the PTE depends on the MMU type and other factors. It's
492 * an horrible mess that I'm not going to try to clean up now but
493 * I'm keeping it in one place rather than spread around
494 */
495static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
496				pte_t *ptep, pte_t pte, int percpu)
497{
498#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
499	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
500	 * helper pte_update() which does an atomic update. We need to do that
501	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
502	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
503	 * the hash bits instead (ie, same as the non-SMP case)
504	 */
505	if (percpu)
506		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
507			      | (pte_val(pte) & ~_PAGE_HASHPTE));
508	else
509		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
510
511#elif defined(CONFIG_PTE_64BIT)
512	/* Second case is 32-bit with 64-bit PTE.  In this case, we
513	 * can just store as long as we do the two halves in the right order
514	 * with a barrier in between. This is possible because we take care,
515	 * in the hash code, to pre-invalidate if the PTE was already hashed,
516	 * which synchronizes us with any concurrent invalidation.
517	 * In the percpu case, we also fallback to the simple update preserving
518	 * the hash bits
519	 */
520	if (percpu) {
521		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
522			      | (pte_val(pte) & ~_PAGE_HASHPTE));
523		return;
524	}
525	if (pte_val(*ptep) & _PAGE_HASHPTE)
526		flush_hash_entry(mm, ptep, addr);
527	__asm__ __volatile__("\
528		stw%X0 %2,%0\n\
529		eieio\n\
530		stw%X1 %L2,%1"
531	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
532	: "r" (pte) : "memory");
533
534#else
535	/* Third case is 32-bit hash table in UP mode, we need to preserve
536	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
537	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
538	 * and see we need to keep track that this PTE needs invalidating
539	 */
540	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
541		      | (pte_val(pte) & ~_PAGE_HASHPTE));
542#endif
543}
544
545/*
546 * Macro to mark a page protection value as "uncacheable".
547 */
548
549#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
550			 _PAGE_WRITETHRU)
551
552#define pgprot_noncached pgprot_noncached
553static inline pgprot_t pgprot_noncached(pgprot_t prot)
554{
555	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
556			_PAGE_NO_CACHE | _PAGE_GUARDED);
557}
558
559#define pgprot_noncached_wc pgprot_noncached_wc
560static inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
561{
562	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
563			_PAGE_NO_CACHE);
564}
565
566#define pgprot_cached pgprot_cached
567static inline pgprot_t pgprot_cached(pgprot_t prot)
568{
569	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
570			_PAGE_COHERENT);
571}
572
573#define pgprot_cached_wthru pgprot_cached_wthru
574static inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
575{
576	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
577			_PAGE_COHERENT | _PAGE_WRITETHRU);
578}
579
580#define pgprot_cached_noncoherent pgprot_cached_noncoherent
581static inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
582{
583	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
584}
585
586#define pgprot_writecombine pgprot_writecombine
587static inline pgprot_t pgprot_writecombine(pgprot_t prot)
588{
589	return pgprot_noncached_wc(prot);
590}
591
592#endif /* !__ASSEMBLY__ */
593
594#endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
595