18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci#ifndef _ASM_POWERPC_BOOK3S_32_PGTABLE_H
38c2ecf20Sopenharmony_ci#define _ASM_POWERPC_BOOK3S_32_PGTABLE_H
48c2ecf20Sopenharmony_ci
58c2ecf20Sopenharmony_ci#include <asm-generic/pgtable-nopmd.h>
68c2ecf20Sopenharmony_ci
78c2ecf20Sopenharmony_ci#include <asm/book3s/32/hash.h>
88c2ecf20Sopenharmony_ci
98c2ecf20Sopenharmony_ci/* And here we include common definitions */
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#define _PAGE_KERNEL_RO		0
128c2ecf20Sopenharmony_ci#define _PAGE_KERNEL_ROX	(_PAGE_EXEC)
138c2ecf20Sopenharmony_ci#define _PAGE_KERNEL_RW		(_PAGE_DIRTY | _PAGE_RW)
148c2ecf20Sopenharmony_ci#define _PAGE_KERNEL_RWX	(_PAGE_DIRTY | _PAGE_RW | _PAGE_EXEC)
158c2ecf20Sopenharmony_ci
168c2ecf20Sopenharmony_ci#define _PAGE_HPTEFLAGS _PAGE_HASHPTE
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_cistatic inline bool pte_user(pte_t pte)
218c2ecf20Sopenharmony_ci{
228c2ecf20Sopenharmony_ci	return pte_val(pte) & _PAGE_USER;
238c2ecf20Sopenharmony_ci}
248c2ecf20Sopenharmony_ci#endif /* __ASSEMBLY__ */
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci/*
278c2ecf20Sopenharmony_ci * Location of the PFN in the PTE. Most 32-bit platforms use the same
288c2ecf20Sopenharmony_ci * as _PAGE_SHIFT here (ie, naturally aligned).
298c2ecf20Sopenharmony_ci * Platform who don't just pre-define the value so we don't override it here.
308c2ecf20Sopenharmony_ci */
318c2ecf20Sopenharmony_ci#define PTE_RPN_SHIFT	(PAGE_SHIFT)
328c2ecf20Sopenharmony_ci
338c2ecf20Sopenharmony_ci/*
348c2ecf20Sopenharmony_ci * The mask covered by the RPN must be a ULL on 32-bit platforms with
358c2ecf20Sopenharmony_ci * 64-bit PTEs.
368c2ecf20Sopenharmony_ci */
378c2ecf20Sopenharmony_ci#ifdef CONFIG_PTE_64BIT
388c2ecf20Sopenharmony_ci#define PTE_RPN_MASK	(~((1ULL << PTE_RPN_SHIFT) - 1))
398c2ecf20Sopenharmony_ci#define MAX_POSSIBLE_PHYSMEM_BITS 36
408c2ecf20Sopenharmony_ci#else
418c2ecf20Sopenharmony_ci#define PTE_RPN_MASK	(~((1UL << PTE_RPN_SHIFT) - 1))
428c2ecf20Sopenharmony_ci#define MAX_POSSIBLE_PHYSMEM_BITS 32
438c2ecf20Sopenharmony_ci#endif
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_ci/*
468c2ecf20Sopenharmony_ci * _PAGE_CHG_MASK masks of bits that are to be preserved across
478c2ecf20Sopenharmony_ci * pgprot changes.
488c2ecf20Sopenharmony_ci */
498c2ecf20Sopenharmony_ci#define _PAGE_CHG_MASK	(PTE_RPN_MASK | _PAGE_HASHPTE | _PAGE_DIRTY | \
508c2ecf20Sopenharmony_ci			 _PAGE_ACCESSED | _PAGE_SPECIAL)
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci/*
538c2ecf20Sopenharmony_ci * We define 2 sets of base prot bits, one for basic pages (ie,
548c2ecf20Sopenharmony_ci * cacheable kernel and user pages) and one for non cacheable
558c2ecf20Sopenharmony_ci * pages. We always set _PAGE_COHERENT when SMP is enabled or
568c2ecf20Sopenharmony_ci * the processor might need it for DMA coherency.
578c2ecf20Sopenharmony_ci */
588c2ecf20Sopenharmony_ci#define _PAGE_BASE_NC	(_PAGE_PRESENT | _PAGE_ACCESSED)
598c2ecf20Sopenharmony_ci#define _PAGE_BASE	(_PAGE_BASE_NC | _PAGE_COHERENT)
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci/*
628c2ecf20Sopenharmony_ci * Permission masks used to generate the __P and __S table.
638c2ecf20Sopenharmony_ci *
648c2ecf20Sopenharmony_ci * Note:__pgprot is defined in arch/powerpc/include/asm/page.h
658c2ecf20Sopenharmony_ci *
668c2ecf20Sopenharmony_ci * Write permissions imply read permissions for now.
678c2ecf20Sopenharmony_ci */
688c2ecf20Sopenharmony_ci#define PAGE_NONE	__pgprot(_PAGE_BASE)
698c2ecf20Sopenharmony_ci#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
708c2ecf20Sopenharmony_ci#define PAGE_SHARED_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
718c2ecf20Sopenharmony_ci#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
728c2ecf20Sopenharmony_ci#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
738c2ecf20Sopenharmony_ci#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
748c2ecf20Sopenharmony_ci#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci/* Permission masks used for kernel mappings */
778c2ecf20Sopenharmony_ci#define PAGE_KERNEL	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RW)
788c2ecf20Sopenharmony_ci#define PAGE_KERNEL_NC	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | _PAGE_NO_CACHE)
798c2ecf20Sopenharmony_ci#define PAGE_KERNEL_NCG	__pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \
808c2ecf20Sopenharmony_ci				 _PAGE_NO_CACHE | _PAGE_GUARDED)
818c2ecf20Sopenharmony_ci#define PAGE_KERNEL_X	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX)
828c2ecf20Sopenharmony_ci#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_KERNEL_RO)
838c2ecf20Sopenharmony_ci#define PAGE_KERNEL_ROX	__pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX)
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci/*
868c2ecf20Sopenharmony_ci * Protection used for kernel text. We want the debuggers to be able to
878c2ecf20Sopenharmony_ci * set breakpoints anywhere, so don't write protect the kernel text
888c2ecf20Sopenharmony_ci * on platforms where such control is possible.
898c2ecf20Sopenharmony_ci */
908c2ecf20Sopenharmony_ci#if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) ||\
918c2ecf20Sopenharmony_ci	defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE)
928c2ecf20Sopenharmony_ci#define PAGE_KERNEL_TEXT	PAGE_KERNEL_X
938c2ecf20Sopenharmony_ci#else
948c2ecf20Sopenharmony_ci#define PAGE_KERNEL_TEXT	PAGE_KERNEL_ROX
958c2ecf20Sopenharmony_ci#endif
968c2ecf20Sopenharmony_ci
978c2ecf20Sopenharmony_ci/* Make modules code happy. We don't set RO yet */
988c2ecf20Sopenharmony_ci#define PAGE_KERNEL_EXEC	PAGE_KERNEL_X
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci/* Advertise special mapping type for AGP */
1018c2ecf20Sopenharmony_ci#define PAGE_AGP		(PAGE_KERNEL_NC)
1028c2ecf20Sopenharmony_ci#define HAVE_PAGE_AGP
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci#define PTE_INDEX_SIZE	PTE_SHIFT
1058c2ecf20Sopenharmony_ci#define PMD_INDEX_SIZE	0
1068c2ecf20Sopenharmony_ci#define PUD_INDEX_SIZE	0
1078c2ecf20Sopenharmony_ci#define PGD_INDEX_SIZE	(32 - PGDIR_SHIFT)
1088c2ecf20Sopenharmony_ci
1098c2ecf20Sopenharmony_ci#define PMD_CACHE_INDEX	PMD_INDEX_SIZE
1108c2ecf20Sopenharmony_ci#define PUD_CACHE_INDEX	PUD_INDEX_SIZE
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__
1138c2ecf20Sopenharmony_ci#define PTE_TABLE_SIZE	(sizeof(pte_t) << PTE_INDEX_SIZE)
1148c2ecf20Sopenharmony_ci#define PMD_TABLE_SIZE	0
1158c2ecf20Sopenharmony_ci#define PUD_TABLE_SIZE	0
1168c2ecf20Sopenharmony_ci#define PGD_TABLE_SIZE	(sizeof(pgd_t) << PGD_INDEX_SIZE)
1178c2ecf20Sopenharmony_ci
1188c2ecf20Sopenharmony_ci/* Bits to mask out from a PMD to get to the PTE page */
1198c2ecf20Sopenharmony_ci#define PMD_MASKED_BITS		(PTE_TABLE_SIZE - 1)
1208c2ecf20Sopenharmony_ci#endif	/* __ASSEMBLY__ */
1218c2ecf20Sopenharmony_ci
1228c2ecf20Sopenharmony_ci#define PTRS_PER_PTE	(1 << PTE_INDEX_SIZE)
1238c2ecf20Sopenharmony_ci#define PTRS_PER_PGD	(1 << PGD_INDEX_SIZE)
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci/*
1268c2ecf20Sopenharmony_ci * The normal case is that PTEs are 32-bits and we have a 1-page
1278c2ecf20Sopenharmony_ci * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
1288c2ecf20Sopenharmony_ci *
1298c2ecf20Sopenharmony_ci * For any >32-bit physical address platform, we can use the following
1308c2ecf20Sopenharmony_ci * two level page table layout where the pgdir is 8KB and the MS 13 bits
1318c2ecf20Sopenharmony_ci * are an index to the second level table.  The combined pgdir/pmd first
1328c2ecf20Sopenharmony_ci * level has 2048 entries and the second level has 512 64-bit PTE entries.
1338c2ecf20Sopenharmony_ci * -Matt
1348c2ecf20Sopenharmony_ci */
1358c2ecf20Sopenharmony_ci/* PGDIR_SHIFT determines what a top-level page table entry can map */
1368c2ecf20Sopenharmony_ci#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_INDEX_SIZE)
1378c2ecf20Sopenharmony_ci#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
1388c2ecf20Sopenharmony_ci#define PGDIR_MASK	(~(PGDIR_SIZE-1))
1398c2ecf20Sopenharmony_ci
1408c2ecf20Sopenharmony_ci#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ciint map_kernel_page(unsigned long va, phys_addr_t pa, pgprot_t prot);
1458c2ecf20Sopenharmony_civoid unmap_kernel_page(unsigned long va);
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci#endif /* !__ASSEMBLY__ */
1488c2ecf20Sopenharmony_ci
1498c2ecf20Sopenharmony_ci/*
1508c2ecf20Sopenharmony_ci * This is the bottom of the PKMAP area with HIGHMEM or an arbitrary
1518c2ecf20Sopenharmony_ci * value (for now) on others, from where we can start layout kernel
1528c2ecf20Sopenharmony_ci * virtual space that goes below PKMAP and FIXMAP
1538c2ecf20Sopenharmony_ci */
1548c2ecf20Sopenharmony_ci#include <asm/fixmap.h>
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci/*
1578c2ecf20Sopenharmony_ci * ioremap_bot starts at that address. Early ioremaps move down from there,
1588c2ecf20Sopenharmony_ci * until mem_init() at which point this becomes the top of the vmalloc
1598c2ecf20Sopenharmony_ci * and ioremap space
1608c2ecf20Sopenharmony_ci */
1618c2ecf20Sopenharmony_ci#ifdef CONFIG_HIGHMEM
1628c2ecf20Sopenharmony_ci#define IOREMAP_TOP	PKMAP_BASE
1638c2ecf20Sopenharmony_ci#else
1648c2ecf20Sopenharmony_ci#define IOREMAP_TOP	FIXADDR_START
1658c2ecf20Sopenharmony_ci#endif
1668c2ecf20Sopenharmony_ci
1678c2ecf20Sopenharmony_ci/* PPC32 shares vmalloc area with ioremap */
1688c2ecf20Sopenharmony_ci#define IOREMAP_START	VMALLOC_START
1698c2ecf20Sopenharmony_ci#define IOREMAP_END	VMALLOC_END
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci/*
1728c2ecf20Sopenharmony_ci * Just any arbitrary offset to the start of the vmalloc VM area: the
1738c2ecf20Sopenharmony_ci * current 16MB value just means that there will be a 64MB "hole" after the
1748c2ecf20Sopenharmony_ci * physical memory until the kernel virtual memory starts.  That means that
1758c2ecf20Sopenharmony_ci * any out-of-bounds memory accesses will hopefully be caught.
1768c2ecf20Sopenharmony_ci * The vmalloc() routines leaves a hole of 4kB between each vmalloced
1778c2ecf20Sopenharmony_ci * area for the same reason. ;)
1788c2ecf20Sopenharmony_ci *
1798c2ecf20Sopenharmony_ci * We no longer map larger than phys RAM with the BATs so we don't have
1808c2ecf20Sopenharmony_ci * to worry about the VMALLOC_OFFSET causing problems.  We do have to worry
1818c2ecf20Sopenharmony_ci * about clashes between our early calls to ioremap() that start growing down
1828c2ecf20Sopenharmony_ci * from ioremap_base being run into the VM area allocations (growing upwards
1838c2ecf20Sopenharmony_ci * from VMALLOC_START).  For this reason we have ioremap_bot to check when
1848c2ecf20Sopenharmony_ci * we actually run into our mappings setup in the early boot with the VM
1858c2ecf20Sopenharmony_ci * system.  This really does become a problem for machines with good amounts
1868c2ecf20Sopenharmony_ci * of RAM.  -- Cort
1878c2ecf20Sopenharmony_ci */
1888c2ecf20Sopenharmony_ci#define VMALLOC_OFFSET (0x1000000) /* 16M */
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_ci#define VMALLOC_START ((((long)high_memory + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1)))
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci#ifdef CONFIG_KASAN_VMALLOC
1938c2ecf20Sopenharmony_ci#define VMALLOC_END	ALIGN_DOWN(ioremap_bot, PAGE_SIZE << KASAN_SHADOW_SCALE_SHIFT)
1948c2ecf20Sopenharmony_ci#else
1958c2ecf20Sopenharmony_ci#define VMALLOC_END	ioremap_bot
1968c2ecf20Sopenharmony_ci#endif
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci#ifdef CONFIG_STRICT_KERNEL_RWX
1998c2ecf20Sopenharmony_ci#define MODULES_END	ALIGN_DOWN(PAGE_OFFSET, SZ_256M)
2008c2ecf20Sopenharmony_ci#define MODULES_VADDR	(MODULES_END - SZ_256M)
2018c2ecf20Sopenharmony_ci#endif
2028c2ecf20Sopenharmony_ci
2038c2ecf20Sopenharmony_ci#ifndef __ASSEMBLY__
2048c2ecf20Sopenharmony_ci#include <linux/sched.h>
2058c2ecf20Sopenharmony_ci#include <linux/threads.h>
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci/* Bits to mask out from a PGD to get to the PUD page */
2088c2ecf20Sopenharmony_ci#define PGD_MASKED_BITS		0
2098c2ecf20Sopenharmony_ci
2108c2ecf20Sopenharmony_ci#define pte_ERROR(e) \
2118c2ecf20Sopenharmony_ci	pr_err("%s:%d: bad pte %llx.\n", __FILE__, __LINE__, \
2128c2ecf20Sopenharmony_ci		(unsigned long long)pte_val(e))
2138c2ecf20Sopenharmony_ci#define pgd_ERROR(e) \
2148c2ecf20Sopenharmony_ci	pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
2158c2ecf20Sopenharmony_ci/*
2168c2ecf20Sopenharmony_ci * Bits in a linux-style PTE.  These match the bits in the
2178c2ecf20Sopenharmony_ci * (hardware-defined) PowerPC PTE as closely as possible.
2188c2ecf20Sopenharmony_ci */
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci#define pte_clear(mm, addr, ptep) \
2218c2ecf20Sopenharmony_ci	do { pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0); } while (0)
2228c2ecf20Sopenharmony_ci
2238c2ecf20Sopenharmony_ci#define pmd_none(pmd)		(!pmd_val(pmd))
2248c2ecf20Sopenharmony_ci#define	pmd_bad(pmd)		(pmd_val(pmd) & _PMD_BAD)
2258c2ecf20Sopenharmony_ci#define	pmd_present(pmd)	(pmd_val(pmd) & _PMD_PRESENT_MASK)
2268c2ecf20Sopenharmony_cistatic inline void pmd_clear(pmd_t *pmdp)
2278c2ecf20Sopenharmony_ci{
2288c2ecf20Sopenharmony_ci	*pmdp = __pmd(0);
2298c2ecf20Sopenharmony_ci}
2308c2ecf20Sopenharmony_ci
2318c2ecf20Sopenharmony_ci
2328c2ecf20Sopenharmony_ci/*
2338c2ecf20Sopenharmony_ci * When flushing the tlb entry for a page, we also need to flush the hash
2348c2ecf20Sopenharmony_ci * table entry.  flush_hash_pages is assembler (for speed) in hashtable.S.
2358c2ecf20Sopenharmony_ci */
2368c2ecf20Sopenharmony_ciextern int flush_hash_pages(unsigned context, unsigned long va,
2378c2ecf20Sopenharmony_ci			    unsigned long pmdval, int count);
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci/* Add an HPTE to the hash table */
2408c2ecf20Sopenharmony_ciextern void add_hash_page(unsigned context, unsigned long va,
2418c2ecf20Sopenharmony_ci			  unsigned long pmdval);
2428c2ecf20Sopenharmony_ci
2438c2ecf20Sopenharmony_ci/* Flush an entry from the TLB/hash table */
2448c2ecf20Sopenharmony_ciextern void flush_hash_entry(struct mm_struct *mm, pte_t *ptep,
2458c2ecf20Sopenharmony_ci			     unsigned long address);
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci/*
2488c2ecf20Sopenharmony_ci * PTE updates. This function is called whenever an existing
2498c2ecf20Sopenharmony_ci * valid PTE is updated. This does -not- include set_pte_at()
2508c2ecf20Sopenharmony_ci * which nowadays only sets a new PTE.
2518c2ecf20Sopenharmony_ci *
2528c2ecf20Sopenharmony_ci * Depending on the type of MMU, we may need to use atomic updates
2538c2ecf20Sopenharmony_ci * and the PTE may be either 32 or 64 bit wide. In the later case,
2548c2ecf20Sopenharmony_ci * when using atomic updates, only the low part of the PTE is
2558c2ecf20Sopenharmony_ci * accessed atomically.
2568c2ecf20Sopenharmony_ci */
2578c2ecf20Sopenharmony_cistatic inline pte_basic_t pte_update(struct mm_struct *mm, unsigned long addr, pte_t *p,
2588c2ecf20Sopenharmony_ci				     unsigned long clr, unsigned long set, int huge)
2598c2ecf20Sopenharmony_ci{
2608c2ecf20Sopenharmony_ci	pte_basic_t old;
2618c2ecf20Sopenharmony_ci	unsigned long tmp;
2628c2ecf20Sopenharmony_ci
2638c2ecf20Sopenharmony_ci	__asm__ __volatile__(
2648c2ecf20Sopenharmony_ci#ifndef CONFIG_PTE_64BIT
2658c2ecf20Sopenharmony_ci"1:	lwarx	%0, 0, %3\n"
2668c2ecf20Sopenharmony_ci"	andc	%1, %0, %4\n"
2678c2ecf20Sopenharmony_ci#else
2688c2ecf20Sopenharmony_ci"1:	lwarx	%L0, 0, %3\n"
2698c2ecf20Sopenharmony_ci"	lwz	%0, -4(%3)\n"
2708c2ecf20Sopenharmony_ci"	andc	%1, %L0, %4\n"
2718c2ecf20Sopenharmony_ci#endif
2728c2ecf20Sopenharmony_ci"	or	%1, %1, %5\n"
2738c2ecf20Sopenharmony_ci"	stwcx.	%1, 0, %3\n"
2748c2ecf20Sopenharmony_ci"	bne-	1b"
2758c2ecf20Sopenharmony_ci	: "=&r" (old), "=&r" (tmp), "=m" (*p)
2768c2ecf20Sopenharmony_ci#ifndef CONFIG_PTE_64BIT
2778c2ecf20Sopenharmony_ci	: "r" (p),
2788c2ecf20Sopenharmony_ci#else
2798c2ecf20Sopenharmony_ci	: "b" ((unsigned long)(p) + 4),
2808c2ecf20Sopenharmony_ci#endif
2818c2ecf20Sopenharmony_ci	  "r" (clr), "r" (set), "m" (*p)
2828c2ecf20Sopenharmony_ci	: "cc" );
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_ci	return old;
2858c2ecf20Sopenharmony_ci}
2868c2ecf20Sopenharmony_ci
2878c2ecf20Sopenharmony_ci/*
2888c2ecf20Sopenharmony_ci * 2.6 calls this without flushing the TLB entry; this is wrong
2898c2ecf20Sopenharmony_ci * for our hash-based implementation, we fix that up here.
2908c2ecf20Sopenharmony_ci */
2918c2ecf20Sopenharmony_ci#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
2928c2ecf20Sopenharmony_cistatic inline int __ptep_test_and_clear_young(struct mm_struct *mm,
2938c2ecf20Sopenharmony_ci					      unsigned long addr, pte_t *ptep)
2948c2ecf20Sopenharmony_ci{
2958c2ecf20Sopenharmony_ci	unsigned long old;
2968c2ecf20Sopenharmony_ci	old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0);
2978c2ecf20Sopenharmony_ci	if (old & _PAGE_HASHPTE) {
2988c2ecf20Sopenharmony_ci		unsigned long ptephys = __pa(ptep) & PAGE_MASK;
2998c2ecf20Sopenharmony_ci		flush_hash_pages(mm->context.id, addr, ptephys, 1);
3008c2ecf20Sopenharmony_ci	}
3018c2ecf20Sopenharmony_ci	return (old & _PAGE_ACCESSED) != 0;
3028c2ecf20Sopenharmony_ci}
3038c2ecf20Sopenharmony_ci#define ptep_test_and_clear_young(__vma, __addr, __ptep) \
3048c2ecf20Sopenharmony_ci	__ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep)
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
3078c2ecf20Sopenharmony_cistatic inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
3088c2ecf20Sopenharmony_ci				       pte_t *ptep)
3098c2ecf20Sopenharmony_ci{
3108c2ecf20Sopenharmony_ci	return __pte(pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, 0, 0));
3118c2ecf20Sopenharmony_ci}
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci#define __HAVE_ARCH_PTEP_SET_WRPROTECT
3148c2ecf20Sopenharmony_cistatic inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr,
3158c2ecf20Sopenharmony_ci				      pte_t *ptep)
3168c2ecf20Sopenharmony_ci{
3178c2ecf20Sopenharmony_ci	pte_update(mm, addr, ptep, _PAGE_RW, 0, 0);
3188c2ecf20Sopenharmony_ci}
3198c2ecf20Sopenharmony_ci
3208c2ecf20Sopenharmony_cistatic inline void __ptep_set_access_flags(struct vm_area_struct *vma,
3218c2ecf20Sopenharmony_ci					   pte_t *ptep, pte_t entry,
3228c2ecf20Sopenharmony_ci					   unsigned long address,
3238c2ecf20Sopenharmony_ci					   int psize)
3248c2ecf20Sopenharmony_ci{
3258c2ecf20Sopenharmony_ci	unsigned long set = pte_val(entry) &
3268c2ecf20Sopenharmony_ci		(_PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_RW | _PAGE_EXEC);
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci	pte_update(vma->vm_mm, address, ptep, 0, set, 0);
3298c2ecf20Sopenharmony_ci
3308c2ecf20Sopenharmony_ci	flush_tlb_page(vma, address);
3318c2ecf20Sopenharmony_ci}
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_ci#define __HAVE_ARCH_PTE_SAME
3348c2ecf20Sopenharmony_ci#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)
3358c2ecf20Sopenharmony_ci
3368c2ecf20Sopenharmony_ci#define pmd_page(pmd)		\
3378c2ecf20Sopenharmony_ci	pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
3388c2ecf20Sopenharmony_ci
3398c2ecf20Sopenharmony_ci/*
3408c2ecf20Sopenharmony_ci * Encode and decode a swap entry.
3418c2ecf20Sopenharmony_ci * Note that the bits we use in a PTE for representing a swap entry
3428c2ecf20Sopenharmony_ci * must not include the _PAGE_PRESENT bit or the _PAGE_HASHPTE bit (if used).
3438c2ecf20Sopenharmony_ci *   -- paulus
3448c2ecf20Sopenharmony_ci */
3458c2ecf20Sopenharmony_ci#define __swp_type(entry)		((entry).val & 0x1f)
3468c2ecf20Sopenharmony_ci#define __swp_offset(entry)		((entry).val >> 5)
3478c2ecf20Sopenharmony_ci#define __swp_entry(type, offset)	((swp_entry_t) { (type) | ((offset) << 5) })
3488c2ecf20Sopenharmony_ci#define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) >> 3 })
3498c2ecf20Sopenharmony_ci#define __swp_entry_to_pte(x)		((pte_t) { (x).val << 3 })
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci/* Generic accessors to PTE bits */
3528c2ecf20Sopenharmony_cistatic inline int pte_write(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_RW);}
3538c2ecf20Sopenharmony_cistatic inline int pte_read(pte_t pte)		{ return 1; }
3548c2ecf20Sopenharmony_cistatic inline int pte_dirty(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_DIRTY); }
3558c2ecf20Sopenharmony_cistatic inline int pte_young(pte_t pte)		{ return !!(pte_val(pte) & _PAGE_ACCESSED); }
3568c2ecf20Sopenharmony_cistatic inline int pte_special(pte_t pte)	{ return !!(pte_val(pte) & _PAGE_SPECIAL); }
3578c2ecf20Sopenharmony_cistatic inline int pte_none(pte_t pte)		{ return (pte_val(pte) & ~_PTE_NONE_MASK) == 0; }
3588c2ecf20Sopenharmony_cistatic inline bool pte_exec(pte_t pte)		{ return pte_val(pte) & _PAGE_EXEC; }
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_cistatic inline int pte_present(pte_t pte)
3618c2ecf20Sopenharmony_ci{
3628c2ecf20Sopenharmony_ci	return pte_val(pte) & _PAGE_PRESENT;
3638c2ecf20Sopenharmony_ci}
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_cistatic inline bool pte_hw_valid(pte_t pte)
3668c2ecf20Sopenharmony_ci{
3678c2ecf20Sopenharmony_ci	return pte_val(pte) & _PAGE_PRESENT;
3688c2ecf20Sopenharmony_ci}
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_cistatic inline bool pte_hashpte(pte_t pte)
3718c2ecf20Sopenharmony_ci{
3728c2ecf20Sopenharmony_ci	return !!(pte_val(pte) & _PAGE_HASHPTE);
3738c2ecf20Sopenharmony_ci}
3748c2ecf20Sopenharmony_ci
3758c2ecf20Sopenharmony_cistatic inline bool pte_ci(pte_t pte)
3768c2ecf20Sopenharmony_ci{
3778c2ecf20Sopenharmony_ci	return !!(pte_val(pte) & _PAGE_NO_CACHE);
3788c2ecf20Sopenharmony_ci}
3798c2ecf20Sopenharmony_ci
3808c2ecf20Sopenharmony_ci/*
3818c2ecf20Sopenharmony_ci * We only find page table entry in the last level
3828c2ecf20Sopenharmony_ci * Hence no need for other accessors
3838c2ecf20Sopenharmony_ci */
3848c2ecf20Sopenharmony_ci#define pte_access_permitted pte_access_permitted
3858c2ecf20Sopenharmony_cistatic inline bool pte_access_permitted(pte_t pte, bool write)
3868c2ecf20Sopenharmony_ci{
3878c2ecf20Sopenharmony_ci	/*
3888c2ecf20Sopenharmony_ci	 * A read-only access is controlled by _PAGE_USER bit.
3898c2ecf20Sopenharmony_ci	 * We have _PAGE_READ set for WRITE and EXECUTE
3908c2ecf20Sopenharmony_ci	 */
3918c2ecf20Sopenharmony_ci	if (!pte_present(pte) || !pte_user(pte) || !pte_read(pte))
3928c2ecf20Sopenharmony_ci		return false;
3938c2ecf20Sopenharmony_ci
3948c2ecf20Sopenharmony_ci	if (write && !pte_write(pte))
3958c2ecf20Sopenharmony_ci		return false;
3968c2ecf20Sopenharmony_ci
3978c2ecf20Sopenharmony_ci	return true;
3988c2ecf20Sopenharmony_ci}
3998c2ecf20Sopenharmony_ci
4008c2ecf20Sopenharmony_ci/* Conversion functions: convert a page and protection to a page entry,
4018c2ecf20Sopenharmony_ci * and a page entry and page directory to the page they refer to.
4028c2ecf20Sopenharmony_ci *
4038c2ecf20Sopenharmony_ci * Even if PTEs can be unsigned long long, a PFN is always an unsigned
4048c2ecf20Sopenharmony_ci * long for now.
4058c2ecf20Sopenharmony_ci */
4068c2ecf20Sopenharmony_cistatic inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot)
4078c2ecf20Sopenharmony_ci{
4088c2ecf20Sopenharmony_ci	return __pte(((pte_basic_t)(pfn) << PTE_RPN_SHIFT) |
4098c2ecf20Sopenharmony_ci		     pgprot_val(pgprot));
4108c2ecf20Sopenharmony_ci}
4118c2ecf20Sopenharmony_ci
4128c2ecf20Sopenharmony_cistatic inline unsigned long pte_pfn(pte_t pte)
4138c2ecf20Sopenharmony_ci{
4148c2ecf20Sopenharmony_ci	return pte_val(pte) >> PTE_RPN_SHIFT;
4158c2ecf20Sopenharmony_ci}
4168c2ecf20Sopenharmony_ci
4178c2ecf20Sopenharmony_ci/* Generic modifiers for PTE bits */
4188c2ecf20Sopenharmony_cistatic inline pte_t pte_wrprotect(pte_t pte)
4198c2ecf20Sopenharmony_ci{
4208c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) & ~_PAGE_RW);
4218c2ecf20Sopenharmony_ci}
4228c2ecf20Sopenharmony_ci
4238c2ecf20Sopenharmony_cistatic inline pte_t pte_exprotect(pte_t pte)
4248c2ecf20Sopenharmony_ci{
4258c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) & ~_PAGE_EXEC);
4268c2ecf20Sopenharmony_ci}
4278c2ecf20Sopenharmony_ci
4288c2ecf20Sopenharmony_cistatic inline pte_t pte_mkclean(pte_t pte)
4298c2ecf20Sopenharmony_ci{
4308c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) & ~_PAGE_DIRTY);
4318c2ecf20Sopenharmony_ci}
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_cistatic inline pte_t pte_mkold(pte_t pte)
4348c2ecf20Sopenharmony_ci{
4358c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
4368c2ecf20Sopenharmony_ci}
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_cistatic inline pte_t pte_mkexec(pte_t pte)
4398c2ecf20Sopenharmony_ci{
4408c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_EXEC);
4418c2ecf20Sopenharmony_ci}
4428c2ecf20Sopenharmony_ci
4438c2ecf20Sopenharmony_cistatic inline pte_t pte_mkpte(pte_t pte)
4448c2ecf20Sopenharmony_ci{
4458c2ecf20Sopenharmony_ci	return pte;
4468c2ecf20Sopenharmony_ci}
4478c2ecf20Sopenharmony_ci
4488c2ecf20Sopenharmony_cistatic inline pte_t pte_mkwrite(pte_t pte)
4498c2ecf20Sopenharmony_ci{
4508c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_RW);
4518c2ecf20Sopenharmony_ci}
4528c2ecf20Sopenharmony_ci
4538c2ecf20Sopenharmony_cistatic inline pte_t pte_mkdirty(pte_t pte)
4548c2ecf20Sopenharmony_ci{
4558c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_DIRTY);
4568c2ecf20Sopenharmony_ci}
4578c2ecf20Sopenharmony_ci
4588c2ecf20Sopenharmony_cistatic inline pte_t pte_mkyoung(pte_t pte)
4598c2ecf20Sopenharmony_ci{
4608c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_ACCESSED);
4618c2ecf20Sopenharmony_ci}
4628c2ecf20Sopenharmony_ci
4638c2ecf20Sopenharmony_cistatic inline pte_t pte_mkspecial(pte_t pte)
4648c2ecf20Sopenharmony_ci{
4658c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_SPECIAL);
4668c2ecf20Sopenharmony_ci}
4678c2ecf20Sopenharmony_ci
4688c2ecf20Sopenharmony_cistatic inline pte_t pte_mkhuge(pte_t pte)
4698c2ecf20Sopenharmony_ci{
4708c2ecf20Sopenharmony_ci	return pte;
4718c2ecf20Sopenharmony_ci}
4728c2ecf20Sopenharmony_ci
4738c2ecf20Sopenharmony_cistatic inline pte_t pte_mkprivileged(pte_t pte)
4748c2ecf20Sopenharmony_ci{
4758c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) & ~_PAGE_USER);
4768c2ecf20Sopenharmony_ci}
4778c2ecf20Sopenharmony_ci
4788c2ecf20Sopenharmony_cistatic inline pte_t pte_mkuser(pte_t pte)
4798c2ecf20Sopenharmony_ci{
4808c2ecf20Sopenharmony_ci	return __pte(pte_val(pte) | _PAGE_USER);
4818c2ecf20Sopenharmony_ci}
4828c2ecf20Sopenharmony_ci
4838c2ecf20Sopenharmony_cistatic inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
4848c2ecf20Sopenharmony_ci{
4858c2ecf20Sopenharmony_ci	return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
4868c2ecf20Sopenharmony_ci}
4878c2ecf20Sopenharmony_ci
4888c2ecf20Sopenharmony_ci
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_ci/* This low level function performs the actual PTE insertion
4918c2ecf20Sopenharmony_ci * Setting the PTE depends on the MMU type and other factors. It's
4928c2ecf20Sopenharmony_ci * an horrible mess that I'm not going to try to clean up now but
4938c2ecf20Sopenharmony_ci * I'm keeping it in one place rather than spread around
4948c2ecf20Sopenharmony_ci */
4958c2ecf20Sopenharmony_cistatic inline void __set_pte_at(struct mm_struct *mm, unsigned long addr,
4968c2ecf20Sopenharmony_ci				pte_t *ptep, pte_t pte, int percpu)
4978c2ecf20Sopenharmony_ci{
4988c2ecf20Sopenharmony_ci#if defined(CONFIG_SMP) && !defined(CONFIG_PTE_64BIT)
4998c2ecf20Sopenharmony_ci	/* First case is 32-bit Hash MMU in SMP mode with 32-bit PTEs. We use the
5008c2ecf20Sopenharmony_ci	 * helper pte_update() which does an atomic update. We need to do that
5018c2ecf20Sopenharmony_ci	 * because a concurrent invalidation can clear _PAGE_HASHPTE. If it's a
5028c2ecf20Sopenharmony_ci	 * per-CPU PTE such as a kmap_atomic, we do a simple update preserving
5038c2ecf20Sopenharmony_ci	 * the hash bits instead (ie, same as the non-SMP case)
5048c2ecf20Sopenharmony_ci	 */
5058c2ecf20Sopenharmony_ci	if (percpu)
5068c2ecf20Sopenharmony_ci		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
5078c2ecf20Sopenharmony_ci			      | (pte_val(pte) & ~_PAGE_HASHPTE));
5088c2ecf20Sopenharmony_ci	else
5098c2ecf20Sopenharmony_ci		pte_update(mm, addr, ptep, ~_PAGE_HASHPTE, pte_val(pte), 0);
5108c2ecf20Sopenharmony_ci
5118c2ecf20Sopenharmony_ci#elif defined(CONFIG_PTE_64BIT)
5128c2ecf20Sopenharmony_ci	/* Second case is 32-bit with 64-bit PTE.  In this case, we
5138c2ecf20Sopenharmony_ci	 * can just store as long as we do the two halves in the right order
5148c2ecf20Sopenharmony_ci	 * with a barrier in between. This is possible because we take care,
5158c2ecf20Sopenharmony_ci	 * in the hash code, to pre-invalidate if the PTE was already hashed,
5168c2ecf20Sopenharmony_ci	 * which synchronizes us with any concurrent invalidation.
5178c2ecf20Sopenharmony_ci	 * In the percpu case, we also fallback to the simple update preserving
5188c2ecf20Sopenharmony_ci	 * the hash bits
5198c2ecf20Sopenharmony_ci	 */
5208c2ecf20Sopenharmony_ci	if (percpu) {
5218c2ecf20Sopenharmony_ci		*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
5228c2ecf20Sopenharmony_ci			      | (pte_val(pte) & ~_PAGE_HASHPTE));
5238c2ecf20Sopenharmony_ci		return;
5248c2ecf20Sopenharmony_ci	}
5258c2ecf20Sopenharmony_ci	if (pte_val(*ptep) & _PAGE_HASHPTE)
5268c2ecf20Sopenharmony_ci		flush_hash_entry(mm, ptep, addr);
5278c2ecf20Sopenharmony_ci	__asm__ __volatile__("\
5288c2ecf20Sopenharmony_ci		stw%X0 %2,%0\n\
5298c2ecf20Sopenharmony_ci		eieio\n\
5308c2ecf20Sopenharmony_ci		stw%X1 %L2,%1"
5318c2ecf20Sopenharmony_ci	: "=m" (*ptep), "=m" (*((unsigned char *)ptep+4))
5328c2ecf20Sopenharmony_ci	: "r" (pte) : "memory");
5338c2ecf20Sopenharmony_ci
5348c2ecf20Sopenharmony_ci#else
5358c2ecf20Sopenharmony_ci	/* Third case is 32-bit hash table in UP mode, we need to preserve
5368c2ecf20Sopenharmony_ci	 * the _PAGE_HASHPTE bit since we may not have invalidated the previous
5378c2ecf20Sopenharmony_ci	 * translation in the hash yet (done in a subsequent flush_tlb_xxx())
5388c2ecf20Sopenharmony_ci	 * and see we need to keep track that this PTE needs invalidating
5398c2ecf20Sopenharmony_ci	 */
5408c2ecf20Sopenharmony_ci	*ptep = __pte((pte_val(*ptep) & _PAGE_HASHPTE)
5418c2ecf20Sopenharmony_ci		      | (pte_val(pte) & ~_PAGE_HASHPTE));
5428c2ecf20Sopenharmony_ci#endif
5438c2ecf20Sopenharmony_ci}
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci/*
5468c2ecf20Sopenharmony_ci * Macro to mark a page protection value as "uncacheable".
5478c2ecf20Sopenharmony_ci */
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_ci#define _PAGE_CACHE_CTL	(_PAGE_COHERENT | _PAGE_GUARDED | _PAGE_NO_CACHE | \
5508c2ecf20Sopenharmony_ci			 _PAGE_WRITETHRU)
5518c2ecf20Sopenharmony_ci
5528c2ecf20Sopenharmony_ci#define pgprot_noncached pgprot_noncached
5538c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_noncached(pgprot_t prot)
5548c2ecf20Sopenharmony_ci{
5558c2ecf20Sopenharmony_ci	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
5568c2ecf20Sopenharmony_ci			_PAGE_NO_CACHE | _PAGE_GUARDED);
5578c2ecf20Sopenharmony_ci}
5588c2ecf20Sopenharmony_ci
5598c2ecf20Sopenharmony_ci#define pgprot_noncached_wc pgprot_noncached_wc
5608c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_noncached_wc(pgprot_t prot)
5618c2ecf20Sopenharmony_ci{
5628c2ecf20Sopenharmony_ci	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
5638c2ecf20Sopenharmony_ci			_PAGE_NO_CACHE);
5648c2ecf20Sopenharmony_ci}
5658c2ecf20Sopenharmony_ci
5668c2ecf20Sopenharmony_ci#define pgprot_cached pgprot_cached
5678c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_cached(pgprot_t prot)
5688c2ecf20Sopenharmony_ci{
5698c2ecf20Sopenharmony_ci	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
5708c2ecf20Sopenharmony_ci			_PAGE_COHERENT);
5718c2ecf20Sopenharmony_ci}
5728c2ecf20Sopenharmony_ci
5738c2ecf20Sopenharmony_ci#define pgprot_cached_wthru pgprot_cached_wthru
5748c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_cached_wthru(pgprot_t prot)
5758c2ecf20Sopenharmony_ci{
5768c2ecf20Sopenharmony_ci	return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) |
5778c2ecf20Sopenharmony_ci			_PAGE_COHERENT | _PAGE_WRITETHRU);
5788c2ecf20Sopenharmony_ci}
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci#define pgprot_cached_noncoherent pgprot_cached_noncoherent
5818c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_cached_noncoherent(pgprot_t prot)
5828c2ecf20Sopenharmony_ci{
5838c2ecf20Sopenharmony_ci	return __pgprot(pgprot_val(prot) & ~_PAGE_CACHE_CTL);
5848c2ecf20Sopenharmony_ci}
5858c2ecf20Sopenharmony_ci
5868c2ecf20Sopenharmony_ci#define pgprot_writecombine pgprot_writecombine
5878c2ecf20Sopenharmony_cistatic inline pgprot_t pgprot_writecombine(pgprot_t prot)
5888c2ecf20Sopenharmony_ci{
5898c2ecf20Sopenharmony_ci	return pgprot_noncached_wc(prot);
5908c2ecf20Sopenharmony_ci}
5918c2ecf20Sopenharmony_ci
5928c2ecf20Sopenharmony_ci#endif /* !__ASSEMBLY__ */
5938c2ecf20Sopenharmony_ci
5948c2ecf20Sopenharmony_ci#endif /*  _ASM_POWERPC_BOOK3S_32_PGTABLE_H */
595