18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-or-later 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Glue code for SHA-1 implementation for SPE instructions (PPC) 48c2ecf20Sopenharmony_ci * 58c2ecf20Sopenharmony_ci * Based on generic implementation. 68c2ecf20Sopenharmony_ci * 78c2ecf20Sopenharmony_ci * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> 88c2ecf20Sopenharmony_ci */ 98c2ecf20Sopenharmony_ci 108c2ecf20Sopenharmony_ci#include <crypto/internal/hash.h> 118c2ecf20Sopenharmony_ci#include <linux/init.h> 128c2ecf20Sopenharmony_ci#include <linux/module.h> 138c2ecf20Sopenharmony_ci#include <linux/mm.h> 148c2ecf20Sopenharmony_ci#include <linux/types.h> 158c2ecf20Sopenharmony_ci#include <crypto/sha.h> 168c2ecf20Sopenharmony_ci#include <asm/byteorder.h> 178c2ecf20Sopenharmony_ci#include <asm/switch_to.h> 188c2ecf20Sopenharmony_ci#include <linux/hardirq.h> 198c2ecf20Sopenharmony_ci 208c2ecf20Sopenharmony_ci/* 218c2ecf20Sopenharmony_ci * MAX_BYTES defines the number of bytes that are allowed to be processed 228c2ecf20Sopenharmony_ci * between preempt_disable() and preempt_enable(). SHA1 takes ~1000 238c2ecf20Sopenharmony_ci * operations per 64 bytes. e500 cores can issue two arithmetic instructions 248c2ecf20Sopenharmony_ci * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2). 258c2ecf20Sopenharmony_ci * Thus 2KB of input data will need an estimated maximum of 18,000 cycles. 268c2ecf20Sopenharmony_ci * Headroom for cache misses included. Even with the low end model clocked 278c2ecf20Sopenharmony_ci * at 667 MHz this equals to a critical time window of less than 27us. 288c2ecf20Sopenharmony_ci * 298c2ecf20Sopenharmony_ci */ 308c2ecf20Sopenharmony_ci#define MAX_BYTES 2048 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_ciextern void ppc_spe_sha1_transform(u32 *state, const u8 *src, u32 blocks); 338c2ecf20Sopenharmony_ci 348c2ecf20Sopenharmony_cistatic void spe_begin(void) 358c2ecf20Sopenharmony_ci{ 368c2ecf20Sopenharmony_ci /* We just start SPE operations and will save SPE registers later. */ 378c2ecf20Sopenharmony_ci preempt_disable(); 388c2ecf20Sopenharmony_ci enable_kernel_spe(); 398c2ecf20Sopenharmony_ci} 408c2ecf20Sopenharmony_ci 418c2ecf20Sopenharmony_cistatic void spe_end(void) 428c2ecf20Sopenharmony_ci{ 438c2ecf20Sopenharmony_ci disable_kernel_spe(); 448c2ecf20Sopenharmony_ci /* reenable preemption */ 458c2ecf20Sopenharmony_ci preempt_enable(); 468c2ecf20Sopenharmony_ci} 478c2ecf20Sopenharmony_ci 488c2ecf20Sopenharmony_cistatic inline void ppc_sha1_clear_context(struct sha1_state *sctx) 498c2ecf20Sopenharmony_ci{ 508c2ecf20Sopenharmony_ci int count = sizeof(struct sha1_state) >> 2; 518c2ecf20Sopenharmony_ci u32 *ptr = (u32 *)sctx; 528c2ecf20Sopenharmony_ci 538c2ecf20Sopenharmony_ci /* make sure we can clear the fast way */ 548c2ecf20Sopenharmony_ci BUILD_BUG_ON(sizeof(struct sha1_state) % 4); 558c2ecf20Sopenharmony_ci do { *ptr++ = 0; } while (--count); 568c2ecf20Sopenharmony_ci} 578c2ecf20Sopenharmony_ci 588c2ecf20Sopenharmony_cistatic int ppc_spe_sha1_init(struct shash_desc *desc) 598c2ecf20Sopenharmony_ci{ 608c2ecf20Sopenharmony_ci struct sha1_state *sctx = shash_desc_ctx(desc); 618c2ecf20Sopenharmony_ci 628c2ecf20Sopenharmony_ci sctx->state[0] = SHA1_H0; 638c2ecf20Sopenharmony_ci sctx->state[1] = SHA1_H1; 648c2ecf20Sopenharmony_ci sctx->state[2] = SHA1_H2; 658c2ecf20Sopenharmony_ci sctx->state[3] = SHA1_H3; 668c2ecf20Sopenharmony_ci sctx->state[4] = SHA1_H4; 678c2ecf20Sopenharmony_ci sctx->count = 0; 688c2ecf20Sopenharmony_ci 698c2ecf20Sopenharmony_ci return 0; 708c2ecf20Sopenharmony_ci} 718c2ecf20Sopenharmony_ci 728c2ecf20Sopenharmony_cistatic int ppc_spe_sha1_update(struct shash_desc *desc, const u8 *data, 738c2ecf20Sopenharmony_ci unsigned int len) 748c2ecf20Sopenharmony_ci{ 758c2ecf20Sopenharmony_ci struct sha1_state *sctx = shash_desc_ctx(desc); 768c2ecf20Sopenharmony_ci const unsigned int offset = sctx->count & 0x3f; 778c2ecf20Sopenharmony_ci const unsigned int avail = 64 - offset; 788c2ecf20Sopenharmony_ci unsigned int bytes; 798c2ecf20Sopenharmony_ci const u8 *src = data; 808c2ecf20Sopenharmony_ci 818c2ecf20Sopenharmony_ci if (avail > len) { 828c2ecf20Sopenharmony_ci sctx->count += len; 838c2ecf20Sopenharmony_ci memcpy((char *)sctx->buffer + offset, src, len); 848c2ecf20Sopenharmony_ci return 0; 858c2ecf20Sopenharmony_ci } 868c2ecf20Sopenharmony_ci 878c2ecf20Sopenharmony_ci sctx->count += len; 888c2ecf20Sopenharmony_ci 898c2ecf20Sopenharmony_ci if (offset) { 908c2ecf20Sopenharmony_ci memcpy((char *)sctx->buffer + offset, src, avail); 918c2ecf20Sopenharmony_ci 928c2ecf20Sopenharmony_ci spe_begin(); 938c2ecf20Sopenharmony_ci ppc_spe_sha1_transform(sctx->state, (const u8 *)sctx->buffer, 1); 948c2ecf20Sopenharmony_ci spe_end(); 958c2ecf20Sopenharmony_ci 968c2ecf20Sopenharmony_ci len -= avail; 978c2ecf20Sopenharmony_ci src += avail; 988c2ecf20Sopenharmony_ci } 998c2ecf20Sopenharmony_ci 1008c2ecf20Sopenharmony_ci while (len > 63) { 1018c2ecf20Sopenharmony_ci bytes = (len > MAX_BYTES) ? MAX_BYTES : len; 1028c2ecf20Sopenharmony_ci bytes = bytes & ~0x3f; 1038c2ecf20Sopenharmony_ci 1048c2ecf20Sopenharmony_ci spe_begin(); 1058c2ecf20Sopenharmony_ci ppc_spe_sha1_transform(sctx->state, src, bytes >> 6); 1068c2ecf20Sopenharmony_ci spe_end(); 1078c2ecf20Sopenharmony_ci 1088c2ecf20Sopenharmony_ci src += bytes; 1098c2ecf20Sopenharmony_ci len -= bytes; 1108c2ecf20Sopenharmony_ci }; 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_ci memcpy((char *)sctx->buffer, src, len); 1138c2ecf20Sopenharmony_ci return 0; 1148c2ecf20Sopenharmony_ci} 1158c2ecf20Sopenharmony_ci 1168c2ecf20Sopenharmony_cistatic int ppc_spe_sha1_final(struct shash_desc *desc, u8 *out) 1178c2ecf20Sopenharmony_ci{ 1188c2ecf20Sopenharmony_ci struct sha1_state *sctx = shash_desc_ctx(desc); 1198c2ecf20Sopenharmony_ci const unsigned int offset = sctx->count & 0x3f; 1208c2ecf20Sopenharmony_ci char *p = (char *)sctx->buffer + offset; 1218c2ecf20Sopenharmony_ci int padlen; 1228c2ecf20Sopenharmony_ci __be64 *pbits = (__be64 *)(((char *)&sctx->buffer) + 56); 1238c2ecf20Sopenharmony_ci __be32 *dst = (__be32 *)out; 1248c2ecf20Sopenharmony_ci 1258c2ecf20Sopenharmony_ci padlen = 55 - offset; 1268c2ecf20Sopenharmony_ci *p++ = 0x80; 1278c2ecf20Sopenharmony_ci 1288c2ecf20Sopenharmony_ci spe_begin(); 1298c2ecf20Sopenharmony_ci 1308c2ecf20Sopenharmony_ci if (padlen < 0) { 1318c2ecf20Sopenharmony_ci memset(p, 0x00, padlen + sizeof (u64)); 1328c2ecf20Sopenharmony_ci ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); 1338c2ecf20Sopenharmony_ci p = (char *)sctx->buffer; 1348c2ecf20Sopenharmony_ci padlen = 56; 1358c2ecf20Sopenharmony_ci } 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_ci memset(p, 0, padlen); 1388c2ecf20Sopenharmony_ci *pbits = cpu_to_be64(sctx->count << 3); 1398c2ecf20Sopenharmony_ci ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); 1408c2ecf20Sopenharmony_ci 1418c2ecf20Sopenharmony_ci spe_end(); 1428c2ecf20Sopenharmony_ci 1438c2ecf20Sopenharmony_ci dst[0] = cpu_to_be32(sctx->state[0]); 1448c2ecf20Sopenharmony_ci dst[1] = cpu_to_be32(sctx->state[1]); 1458c2ecf20Sopenharmony_ci dst[2] = cpu_to_be32(sctx->state[2]); 1468c2ecf20Sopenharmony_ci dst[3] = cpu_to_be32(sctx->state[3]); 1478c2ecf20Sopenharmony_ci dst[4] = cpu_to_be32(sctx->state[4]); 1488c2ecf20Sopenharmony_ci 1498c2ecf20Sopenharmony_ci ppc_sha1_clear_context(sctx); 1508c2ecf20Sopenharmony_ci return 0; 1518c2ecf20Sopenharmony_ci} 1528c2ecf20Sopenharmony_ci 1538c2ecf20Sopenharmony_cistatic int ppc_spe_sha1_export(struct shash_desc *desc, void *out) 1548c2ecf20Sopenharmony_ci{ 1558c2ecf20Sopenharmony_ci struct sha1_state *sctx = shash_desc_ctx(desc); 1568c2ecf20Sopenharmony_ci 1578c2ecf20Sopenharmony_ci memcpy(out, sctx, sizeof(*sctx)); 1588c2ecf20Sopenharmony_ci return 0; 1598c2ecf20Sopenharmony_ci} 1608c2ecf20Sopenharmony_ci 1618c2ecf20Sopenharmony_cistatic int ppc_spe_sha1_import(struct shash_desc *desc, const void *in) 1628c2ecf20Sopenharmony_ci{ 1638c2ecf20Sopenharmony_ci struct sha1_state *sctx = shash_desc_ctx(desc); 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci memcpy(sctx, in, sizeof(*sctx)); 1668c2ecf20Sopenharmony_ci return 0; 1678c2ecf20Sopenharmony_ci} 1688c2ecf20Sopenharmony_ci 1698c2ecf20Sopenharmony_cistatic struct shash_alg alg = { 1708c2ecf20Sopenharmony_ci .digestsize = SHA1_DIGEST_SIZE, 1718c2ecf20Sopenharmony_ci .init = ppc_spe_sha1_init, 1728c2ecf20Sopenharmony_ci .update = ppc_spe_sha1_update, 1738c2ecf20Sopenharmony_ci .final = ppc_spe_sha1_final, 1748c2ecf20Sopenharmony_ci .export = ppc_spe_sha1_export, 1758c2ecf20Sopenharmony_ci .import = ppc_spe_sha1_import, 1768c2ecf20Sopenharmony_ci .descsize = sizeof(struct sha1_state), 1778c2ecf20Sopenharmony_ci .statesize = sizeof(struct sha1_state), 1788c2ecf20Sopenharmony_ci .base = { 1798c2ecf20Sopenharmony_ci .cra_name = "sha1", 1808c2ecf20Sopenharmony_ci .cra_driver_name= "sha1-ppc-spe", 1818c2ecf20Sopenharmony_ci .cra_priority = 300, 1828c2ecf20Sopenharmony_ci .cra_blocksize = SHA1_BLOCK_SIZE, 1838c2ecf20Sopenharmony_ci .cra_module = THIS_MODULE, 1848c2ecf20Sopenharmony_ci } 1858c2ecf20Sopenharmony_ci}; 1868c2ecf20Sopenharmony_ci 1878c2ecf20Sopenharmony_cistatic int __init ppc_spe_sha1_mod_init(void) 1888c2ecf20Sopenharmony_ci{ 1898c2ecf20Sopenharmony_ci return crypto_register_shash(&alg); 1908c2ecf20Sopenharmony_ci} 1918c2ecf20Sopenharmony_ci 1928c2ecf20Sopenharmony_cistatic void __exit ppc_spe_sha1_mod_fini(void) 1938c2ecf20Sopenharmony_ci{ 1948c2ecf20Sopenharmony_ci crypto_unregister_shash(&alg); 1958c2ecf20Sopenharmony_ci} 1968c2ecf20Sopenharmony_ci 1978c2ecf20Sopenharmony_cimodule_init(ppc_spe_sha1_mod_init); 1988c2ecf20Sopenharmony_cimodule_exit(ppc_spe_sha1_mod_fini); 1998c2ecf20Sopenharmony_ci 2008c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 2018c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, SPE optimized"); 2028c2ecf20Sopenharmony_ci 2038c2ecf20Sopenharmony_ciMODULE_ALIAS_CRYPTO("sha1"); 2048c2ecf20Sopenharmony_ciMODULE_ALIAS_CRYPTO("sha1-ppc-spe"); 205