xref: /kernel/linux/linux-5.10/arch/parisc/mm/fault.c (revision 8c2ecf20)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 *
7 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
8 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
9 * Copyright 1999 Hewlett Packard Co.
10 *
11 */
12
13#include <linux/mm.h>
14#include <linux/ptrace.h>
15#include <linux/sched.h>
16#include <linux/sched/debug.h>
17#include <linux/interrupt.h>
18#include <linux/extable.h>
19#include <linux/uaccess.h>
20#include <linux/hugetlb.h>
21#include <linux/perf_event.h>
22
23#include <asm/traps.h>
24
25/* Various important other fields */
26#define bit22set(x)		(x & 0x00000200)
27#define bits23_25set(x)		(x & 0x000001c0)
28#define isGraphicsFlushRead(x)	((x & 0xfc003fdf) == 0x04001a80)
29				/* extended opcode is 0x6a */
30
31#define BITSSET		0x1c0	/* for identifying LDCW */
32
33
34int show_unhandled_signals = 1;
35
36/*
37 * parisc_acctyp(unsigned int inst) --
38 *    Given a PA-RISC memory access instruction, determine if the
39 *    the instruction would perform a memory read or memory write
40 *    operation.
41 *
42 *    This function assumes that the given instruction is a memory access
43 *    instruction (i.e. you should really only call it if you know that
44 *    the instruction has generated some sort of a memory access fault).
45 *
46 * Returns:
47 *   VM_READ  if read operation
48 *   VM_WRITE if write operation
49 *   VM_EXEC  if execute operation
50 */
51static unsigned long
52parisc_acctyp(unsigned long code, unsigned int inst)
53{
54	if (code == 6 || code == 16)
55	    return VM_EXEC;
56
57	switch (inst & 0xf0000000) {
58	case 0x40000000: /* load */
59	case 0x50000000: /* new load */
60		return VM_READ;
61
62	case 0x60000000: /* store */
63	case 0x70000000: /* new store */
64		return VM_WRITE;
65
66	case 0x20000000: /* coproc */
67	case 0x30000000: /* coproc2 */
68		if (bit22set(inst))
69			return VM_WRITE;
70		fallthrough;
71
72	case 0x0: /* indexed/memory management */
73		if (bit22set(inst)) {
74			/*
75			 * Check for the 'Graphics Flush Read' instruction.
76			 * It resembles an FDC instruction, except for bits
77			 * 20 and 21. Any combination other than zero will
78			 * utilize the block mover functionality on some
79			 * older PA-RISC platforms.  The case where a block
80			 * move is performed from VM to graphics IO space
81			 * should be treated as a READ.
82			 *
83			 * The significance of bits 20,21 in the FDC
84			 * instruction is:
85			 *
86			 *   00  Flush data cache (normal instruction behavior)
87			 *   01  Graphics flush write  (IO space -> VM)
88			 *   10  Graphics flush read   (VM -> IO space)
89			 *   11  Graphics flush read/write (VM <-> IO space)
90			 */
91			if (isGraphicsFlushRead(inst))
92				return VM_READ;
93			return VM_WRITE;
94		} else {
95			/*
96			 * Check for LDCWX and LDCWS (semaphore instructions).
97			 * If bits 23 through 25 are all 1's it is one of
98			 * the above two instructions and is a write.
99			 *
100			 * Note: With the limited bits we are looking at,
101			 * this will also catch PROBEW and PROBEWI. However,
102			 * these should never get in here because they don't
103			 * generate exceptions of the type:
104			 *   Data TLB miss fault/data page fault
105			 *   Data memory protection trap
106			 */
107			if (bits23_25set(inst) == BITSSET)
108				return VM_WRITE;
109		}
110		return VM_READ; /* Default */
111	}
112	return VM_READ; /* Default */
113}
114
115#undef bit22set
116#undef bits23_25set
117#undef isGraphicsFlushRead
118#undef BITSSET
119
120
121#if 0
122/* This is the treewalk to find a vma which is the highest that has
123 * a start < addr.  We're using find_vma_prev instead right now, but
124 * we might want to use this at some point in the future.  Probably
125 * not, but I want it committed to CVS so I don't lose it :-)
126 */
127			while (tree != vm_avl_empty) {
128				if (tree->vm_start > addr) {
129					tree = tree->vm_avl_left;
130				} else {
131					prev = tree;
132					if (prev->vm_next == NULL)
133						break;
134					if (prev->vm_next->vm_start > addr)
135						break;
136					tree = tree->vm_avl_right;
137				}
138			}
139#endif
140
141int fixup_exception(struct pt_regs *regs)
142{
143	const struct exception_table_entry *fix;
144
145	fix = search_exception_tables(regs->iaoq[0]);
146	if (fix) {
147		/*
148		 * Fix up get_user() and put_user().
149		 * ASM_EXCEPTIONTABLE_ENTRY_EFAULT() sets the least-significant
150		 * bit in the relative address of the fixup routine to indicate
151		 * that %r8 should be loaded with -EFAULT to report a userspace
152		 * access error.
153		 */
154		if (fix->fixup & 1) {
155			regs->gr[8] = -EFAULT;
156
157			/* zero target register for get_user() */
158			if (parisc_acctyp(0, regs->iir) == VM_READ) {
159				int treg = regs->iir & 0x1f;
160				BUG_ON(treg == 0);
161				regs->gr[treg] = 0;
162			}
163		}
164
165		regs->iaoq[0] = (unsigned long)&fix->fixup + fix->fixup;
166		regs->iaoq[0] &= ~3;
167		/*
168		 * NOTE: In some cases the faulting instruction
169		 * may be in the delay slot of a branch. We
170		 * don't want to take the branch, so we don't
171		 * increment iaoq[1], instead we set it to be
172		 * iaoq[0]+4, and clear the B bit in the PSW
173		 */
174		regs->iaoq[1] = regs->iaoq[0] + 4;
175		regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
176
177		return 1;
178	}
179
180	return 0;
181}
182
183/*
184 * parisc hardware trap list
185 *
186 * Documented in section 3 "Addressing and Access Control" of the
187 * "PA-RISC 1.1 Architecture and Instruction Set Reference Manual"
188 * https://parisc.wiki.kernel.org/index.php/File:Pa11_acd.pdf
189 *
190 * For implementation see handle_interruption() in traps.c
191 */
192static const char * const trap_description[] = {
193	[1] "High-priority machine check (HPMC)",
194	[2] "Power failure interrupt",
195	[3] "Recovery counter trap",
196	[5] "Low-priority machine check",
197	[6] "Instruction TLB miss fault",
198	[7] "Instruction access rights / protection trap",
199	[8] "Illegal instruction trap",
200	[9] "Break instruction trap",
201	[10] "Privileged operation trap",
202	[11] "Privileged register trap",
203	[12] "Overflow trap",
204	[13] "Conditional trap",
205	[14] "FP Assist Exception trap",
206	[15] "Data TLB miss fault",
207	[16] "Non-access ITLB miss fault",
208	[17] "Non-access DTLB miss fault",
209	[18] "Data memory protection/unaligned access trap",
210	[19] "Data memory break trap",
211	[20] "TLB dirty bit trap",
212	[21] "Page reference trap",
213	[22] "Assist emulation trap",
214	[25] "Taken branch trap",
215	[26] "Data memory access rights trap",
216	[27] "Data memory protection ID trap",
217	[28] "Unaligned data reference trap",
218};
219
220const char *trap_name(unsigned long code)
221{
222	const char *t = NULL;
223
224	if (code < ARRAY_SIZE(trap_description))
225		t = trap_description[code];
226
227	return t ? t : "Unknown trap";
228}
229
230/*
231 * Print out info about fatal segfaults, if the show_unhandled_signals
232 * sysctl is set:
233 */
234static inline void
235show_signal_msg(struct pt_regs *regs, unsigned long code,
236		unsigned long address, struct task_struct *tsk,
237		struct vm_area_struct *vma)
238{
239	if (!unhandled_signal(tsk, SIGSEGV))
240		return;
241
242	if (!printk_ratelimit())
243		return;
244
245	pr_warn("\n");
246	pr_warn("do_page_fault() command='%s' type=%lu address=0x%08lx",
247	    tsk->comm, code, address);
248	print_vma_addr(KERN_CONT " in ", regs->iaoq[0]);
249
250	pr_cont("\ntrap #%lu: %s%c", code, trap_name(code),
251		vma ? ',':'\n');
252
253	if (vma)
254		pr_cont(" vm_start = 0x%08lx, vm_end = 0x%08lx\n",
255			vma->vm_start, vma->vm_end);
256
257	show_regs(regs);
258}
259
260void do_page_fault(struct pt_regs *regs, unsigned long code,
261			      unsigned long address)
262{
263	struct vm_area_struct *vma, *prev_vma;
264	struct task_struct *tsk;
265	struct mm_struct *mm;
266	unsigned long acc_type;
267	vm_fault_t fault = 0;
268	unsigned int flags;
269
270	if (faulthandler_disabled())
271		goto no_context;
272
273	tsk = current;
274	mm = tsk->mm;
275	if (!mm)
276		goto no_context;
277
278	flags = FAULT_FLAG_DEFAULT;
279	if (user_mode(regs))
280		flags |= FAULT_FLAG_USER;
281
282	acc_type = parisc_acctyp(code, regs->iir);
283	if (acc_type & VM_WRITE)
284		flags |= FAULT_FLAG_WRITE;
285	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
286retry:
287	mmap_read_lock(mm);
288	vma = find_vma_prev(mm, address, &prev_vma);
289	if (!vma || address < vma->vm_start)
290		goto check_expansion;
291/*
292 * Ok, we have a good vm_area for this memory access. We still need to
293 * check the access permissions.
294 */
295
296good_area:
297
298	if ((vma->vm_flags & acc_type) != acc_type)
299		goto bad_area;
300
301	/*
302	 * If for any reason at all we couldn't handle the fault, make
303	 * sure we exit gracefully rather than endlessly redo the
304	 * fault.
305	 */
306
307	fault = handle_mm_fault(vma, address, flags, regs);
308
309	if (fault_signal_pending(fault, regs))
310		return;
311
312	if (unlikely(fault & VM_FAULT_ERROR)) {
313		/*
314		 * We hit a shared mapping outside of the file, or some
315		 * other thing happened to us that made us unable to
316		 * handle the page fault gracefully.
317		 */
318		if (fault & VM_FAULT_OOM)
319			goto out_of_memory;
320		else if (fault & VM_FAULT_SIGSEGV)
321			goto bad_area;
322		else if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
323				  VM_FAULT_HWPOISON_LARGE))
324			goto bad_area;
325		BUG();
326	}
327	if (flags & FAULT_FLAG_ALLOW_RETRY) {
328		if (fault & VM_FAULT_RETRY) {
329			/*
330			 * No need to mmap_read_unlock(mm) as we would
331			 * have already released it in __lock_page_or_retry
332			 * in mm/filemap.c.
333			 */
334			flags |= FAULT_FLAG_TRIED;
335			goto retry;
336		}
337	}
338	mmap_read_unlock(mm);
339	return;
340
341check_expansion:
342	vma = prev_vma;
343	if (vma && (expand_stack(vma, address) == 0))
344		goto good_area;
345
346/*
347 * Something tried to access memory that isn't in our memory map..
348 */
349bad_area:
350	mmap_read_unlock(mm);
351
352	if (user_mode(regs)) {
353		int signo, si_code;
354
355		switch (code) {
356		case 15:	/* Data TLB miss fault/Data page fault */
357			/* send SIGSEGV when outside of vma */
358			if (!vma ||
359			    address < vma->vm_start || address >= vma->vm_end) {
360				signo = SIGSEGV;
361				si_code = SEGV_MAPERR;
362				break;
363			}
364
365			/* send SIGSEGV for wrong permissions */
366			if ((vma->vm_flags & acc_type) != acc_type) {
367				signo = SIGSEGV;
368				si_code = SEGV_ACCERR;
369				break;
370			}
371
372			/* probably address is outside of mapped file */
373			fallthrough;
374		case 17:	/* NA data TLB miss / page fault */
375		case 18:	/* Unaligned access - PCXS only */
376			signo = SIGBUS;
377			si_code = (code == 18) ? BUS_ADRALN : BUS_ADRERR;
378			break;
379		case 16:	/* Non-access instruction TLB miss fault */
380		case 26:	/* PCXL: Data memory access rights trap */
381		default:
382			signo = SIGSEGV;
383			si_code = (code == 26) ? SEGV_ACCERR : SEGV_MAPERR;
384			break;
385		}
386#ifdef CONFIG_MEMORY_FAILURE
387		if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
388			unsigned int lsb = 0;
389			printk(KERN_ERR
390	"MCE: Killing %s:%d due to hardware memory corruption fault at %08lx\n",
391			tsk->comm, tsk->pid, address);
392			/*
393			 * Either small page or large page may be poisoned.
394			 * In other words, VM_FAULT_HWPOISON_LARGE and
395			 * VM_FAULT_HWPOISON are mutually exclusive.
396			 */
397			if (fault & VM_FAULT_HWPOISON_LARGE)
398				lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
399			else if (fault & VM_FAULT_HWPOISON)
400				lsb = PAGE_SHIFT;
401
402			force_sig_mceerr(BUS_MCEERR_AR, (void __user *) address,
403					 lsb);
404			return;
405		}
406#endif
407		show_signal_msg(regs, code, address, tsk, vma);
408
409		force_sig_fault(signo, si_code, (void __user *) address);
410		return;
411	}
412
413no_context:
414
415	if (!user_mode(regs) && fixup_exception(regs)) {
416		return;
417	}
418
419	parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
420
421  out_of_memory:
422	mmap_read_unlock(mm);
423	if (!user_mode(regs))
424		goto no_context;
425	pagefault_out_of_memory();
426}
427
428/* Handle non-access data TLB miss faults.
429 *
430 * For probe instructions, accesses to userspace are considered allowed
431 * if they lie in a valid VMA and the access type matches. We are not
432 * allowed to handle MM faults here so there may be situations where an
433 * actual access would fail even though a probe was successful.
434 */
435int
436handle_nadtlb_fault(struct pt_regs *regs)
437{
438	unsigned long insn = regs->iir;
439	int breg, treg, xreg, val = 0;
440	struct vm_area_struct *vma, *prev_vma;
441	struct task_struct *tsk;
442	struct mm_struct *mm;
443	unsigned long address;
444	unsigned long acc_type;
445
446	switch (insn & 0x380) {
447	case 0x280:
448		/* FDC instruction */
449		fallthrough;
450	case 0x380:
451		/* PDC and FIC instructions */
452		if (printk_ratelimit()) {
453			pr_warn("BUG: nullifying cache flush/purge instruction\n");
454			show_regs(regs);
455		}
456		if (insn & 0x20) {
457			/* Base modification */
458			breg = (insn >> 21) & 0x1f;
459			xreg = (insn >> 16) & 0x1f;
460			if (breg && xreg)
461				regs->gr[breg] += regs->gr[xreg];
462		}
463		regs->gr[0] |= PSW_N;
464		return 1;
465
466	case 0x180:
467		/* PROBE instruction */
468		treg = insn & 0x1f;
469		if (regs->isr) {
470			tsk = current;
471			mm = tsk->mm;
472			if (mm) {
473				/* Search for VMA */
474				address = regs->ior;
475				mmap_read_lock(mm);
476				vma = find_vma_prev(mm, address, &prev_vma);
477				mmap_read_unlock(mm);
478
479				/*
480				 * Check if access to the VMA is okay.
481				 * We don't allow for stack expansion.
482				 */
483				acc_type = (insn & 0x40) ? VM_WRITE : VM_READ;
484				if (vma
485				    && address >= vma->vm_start
486				    && (vma->vm_flags & acc_type) == acc_type)
487					val = 1;
488			}
489		}
490		if (treg)
491			regs->gr[treg] = val;
492		regs->gr[0] |= PSW_N;
493		return 1;
494
495	case 0x300:
496		/* LPA instruction */
497		if (insn & 0x20) {
498			/* Base modification */
499			breg = (insn >> 21) & 0x1f;
500			xreg = (insn >> 16) & 0x1f;
501			if (breg && xreg)
502				regs->gr[breg] += regs->gr[xreg];
503		}
504		treg = insn & 0x1f;
505		if (treg)
506			regs->gr[treg] = 0;
507		regs->gr[0] |= PSW_N;
508		return 1;
509
510	default:
511		break;
512	}
513
514	return 0;
515}
516