xref: /kernel/linux/linux-5.10/arch/openrisc/mm/fault.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * OpenRISC fault.c
4 *
5 * Linux architectural port borrowing liberally from similar works of
6 * others.  All original copyrights apply as per the original source
7 * declaration.
8 *
9 * Modifications for the OpenRISC architecture:
10 * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
11 * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
12 */
13
14#include <linux/mm.h>
15#include <linux/interrupt.h>
16#include <linux/extable.h>
17#include <linux/sched/signal.h>
18#include <linux/perf_event.h>
19
20#include <linux/uaccess.h>
21#include <asm/siginfo.h>
22#include <asm/signal.h>
23
24#define NUM_TLB_ENTRIES 64
25#define TLB_OFFSET(add) (((add) >> PAGE_SHIFT) & (NUM_TLB_ENTRIES-1))
26
27unsigned long pte_misses;	/* updated by do_page_fault() */
28unsigned long pte_errors;	/* updated by do_page_fault() */
29
30/* __PHX__ :: - check the vmalloc_fault in do_page_fault()
31 *            - also look into include/asm-or32/mmu_context.h
32 */
33volatile pgd_t *current_pgd[NR_CPUS];
34
35extern void die(char *, struct pt_regs *, long);
36
37/*
38 * This routine handles page faults.  It determines the address,
39 * and the problem, and then passes it off to one of the appropriate
40 * routines.
41 *
42 * If this routine detects a bad access, it returns 1, otherwise it
43 * returns 0.
44 */
45
46asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long address,
47			      unsigned long vector, int write_acc)
48{
49	struct task_struct *tsk;
50	struct mm_struct *mm;
51	struct vm_area_struct *vma;
52	int si_code;
53	vm_fault_t fault;
54	unsigned int flags = FAULT_FLAG_DEFAULT;
55
56	tsk = current;
57
58	/*
59	 * We fault-in kernel-space virtual memory on-demand. The
60	 * 'reference' page table is init_mm.pgd.
61	 *
62	 * NOTE! We MUST NOT take any locks for this case. We may
63	 * be in an interrupt or a critical region, and should
64	 * only copy the information from the master page table,
65	 * nothing more.
66	 *
67	 * NOTE2: This is done so that, when updating the vmalloc
68	 * mappings we don't have to walk all processes pgdirs and
69	 * add the high mappings all at once. Instead we do it as they
70	 * are used. However vmalloc'ed page entries have the PAGE_GLOBAL
71	 * bit set so sometimes the TLB can use a lingering entry.
72	 *
73	 * This verifies that the fault happens in kernel space
74	 * and that the fault was not a protection error.
75	 */
76
77	if (address >= VMALLOC_START &&
78	    (vector != 0x300 && vector != 0x400) &&
79	    !user_mode(regs))
80		goto vmalloc_fault;
81
82	/* If exceptions were enabled, we can reenable them here */
83	if (user_mode(regs)) {
84		/* Exception was in userspace: reenable interrupts */
85		local_irq_enable();
86		flags |= FAULT_FLAG_USER;
87	} else {
88		/* If exception was in a syscall, then IRQ's may have
89		 * been enabled or disabled.  If they were enabled,
90		 * reenable them.
91		 */
92		if (regs->sr && (SPR_SR_IEE | SPR_SR_TEE))
93			local_irq_enable();
94	}
95
96	mm = tsk->mm;
97	si_code = SEGV_MAPERR;
98
99	/*
100	 * If we're in an interrupt or have no user
101	 * context, we must not take the fault..
102	 */
103
104	if (in_interrupt() || !mm)
105		goto no_context;
106
107	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
108
109retry:
110	mmap_read_lock(mm);
111	vma = find_vma(mm, address);
112
113	if (!vma)
114		goto bad_area;
115
116	if (vma->vm_start <= address)
117		goto good_area;
118
119	if (!(vma->vm_flags & VM_GROWSDOWN))
120		goto bad_area;
121
122	if (user_mode(regs)) {
123		/*
124		 * accessing the stack below usp is always a bug.
125		 * we get page-aligned addresses so we can only check
126		 * if we're within a page from usp, but that might be
127		 * enough to catch brutal errors at least.
128		 */
129		if (address + PAGE_SIZE < regs->sp)
130			goto bad_area;
131	}
132	if (expand_stack(vma, address))
133		goto bad_area;
134
135	/*
136	 * Ok, we have a good vm_area for this memory access, so
137	 * we can handle it..
138	 */
139
140good_area:
141	si_code = SEGV_ACCERR;
142
143	/* first do some preliminary protection checks */
144
145	if (write_acc) {
146		if (!(vma->vm_flags & VM_WRITE))
147			goto bad_area;
148		flags |= FAULT_FLAG_WRITE;
149	} else {
150		/* not present */
151		if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
152			goto bad_area;
153	}
154
155	/* are we trying to execute nonexecutable area */
156	if ((vector == 0x400) && !(vma->vm_page_prot.pgprot & _PAGE_EXEC))
157		goto bad_area;
158
159	/*
160	 * If for any reason at all we couldn't handle the fault,
161	 * make sure we exit gracefully rather than endlessly redo
162	 * the fault.
163	 */
164
165	fault = handle_mm_fault(vma, address, flags, regs);
166
167	if (fault_signal_pending(fault, regs))
168		return;
169
170	if (unlikely(fault & VM_FAULT_ERROR)) {
171		if (fault & VM_FAULT_OOM)
172			goto out_of_memory;
173		else if (fault & VM_FAULT_SIGSEGV)
174			goto bad_area;
175		else if (fault & VM_FAULT_SIGBUS)
176			goto do_sigbus;
177		BUG();
178	}
179
180	if (flags & FAULT_FLAG_ALLOW_RETRY) {
181		/*RGD modeled on Cris */
182		if (fault & VM_FAULT_RETRY) {
183			flags |= FAULT_FLAG_TRIED;
184
185			 /* No need to mmap_read_unlock(mm) as we would
186			 * have already released it in __lock_page_or_retry
187			 * in mm/filemap.c.
188			 */
189
190			goto retry;
191		}
192	}
193
194	mmap_read_unlock(mm);
195	return;
196
197	/*
198	 * Something tried to access memory that isn't in our memory map..
199	 * Fix it, but check if it's kernel or user first..
200	 */
201
202bad_area:
203	mmap_read_unlock(mm);
204
205bad_area_nosemaphore:
206
207	/* User mode accesses just cause a SIGSEGV */
208
209	if (user_mode(regs)) {
210		force_sig_fault(SIGSEGV, si_code, (void __user *)address);
211		return;
212	}
213
214no_context:
215
216	/* Are we prepared to handle this kernel fault?
217	 *
218	 * (The kernel has valid exception-points in the source
219	 *  when it acesses user-memory. When it fails in one
220	 *  of those points, we find it in a table and do a jump
221	 *  to some fixup code that loads an appropriate error
222	 *  code)
223	 */
224
225	{
226		const struct exception_table_entry *entry;
227
228		__asm__ __volatile__("l.nop 42");
229
230		if ((entry = search_exception_tables(regs->pc)) != NULL) {
231			/* Adjust the instruction pointer in the stackframe */
232			regs->pc = entry->fixup;
233			return;
234		}
235	}
236
237	/*
238	 * Oops. The kernel tried to access some bad page. We'll have to
239	 * terminate things with extreme prejudice.
240	 */
241
242	if ((unsigned long)(address) < PAGE_SIZE)
243		printk(KERN_ALERT
244		       "Unable to handle kernel NULL pointer dereference");
245	else
246		printk(KERN_ALERT "Unable to handle kernel access");
247	printk(" at virtual address 0x%08lx\n", address);
248
249	die("Oops", regs, write_acc);
250
251	do_exit(SIGKILL);
252
253	/*
254	 * We ran out of memory, or some other thing happened to us that made
255	 * us unable to handle the page fault gracefully.
256	 */
257
258out_of_memory:
259	__asm__ __volatile__("l.nop 42");
260	__asm__ __volatile__("l.nop 1");
261
262	mmap_read_unlock(mm);
263	if (!user_mode(regs))
264		goto no_context;
265	pagefault_out_of_memory();
266	return;
267
268do_sigbus:
269	mmap_read_unlock(mm);
270
271	/*
272	 * Send a sigbus, regardless of whether we were in kernel
273	 * or user mode.
274	 */
275	force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)address);
276
277	/* Kernel mode? Handle exceptions or die */
278	if (!user_mode(regs))
279		goto no_context;
280	return;
281
282vmalloc_fault:
283	{
284		/*
285		 * Synchronize this task's top level page-table
286		 * with the 'reference' page table.
287		 *
288		 * Use current_pgd instead of tsk->active_mm->pgd
289		 * since the latter might be unavailable if this
290		 * code is executed in a misfortunately run irq
291		 * (like inside schedule() between switch_mm and
292		 *  switch_to...).
293		 */
294
295		int offset = pgd_index(address);
296		pgd_t *pgd, *pgd_k;
297		p4d_t *p4d, *p4d_k;
298		pud_t *pud, *pud_k;
299		pmd_t *pmd, *pmd_k;
300		pte_t *pte_k;
301
302/*
303		phx_warn("do_page_fault(): vmalloc_fault will not work, "
304			 "since current_pgd assign a proper value somewhere\n"
305			 "anyhow we don't need this at the moment\n");
306
307		phx_mmu("vmalloc_fault");
308*/
309		pgd = (pgd_t *)current_pgd[smp_processor_id()] + offset;
310		pgd_k = init_mm.pgd + offset;
311
312		/* Since we're two-level, we don't need to do both
313		 * set_pgd and set_pmd (they do the same thing). If
314		 * we go three-level at some point, do the right thing
315		 * with pgd_present and set_pgd here.
316		 *
317		 * Also, since the vmalloc area is global, we don't
318		 * need to copy individual PTE's, it is enough to
319		 * copy the pgd pointer into the pte page of the
320		 * root task. If that is there, we'll find our pte if
321		 * it exists.
322		 */
323
324		p4d = p4d_offset(pgd, address);
325		p4d_k = p4d_offset(pgd_k, address);
326		if (!p4d_present(*p4d_k))
327			goto no_context;
328
329		pud = pud_offset(p4d, address);
330		pud_k = pud_offset(p4d_k, address);
331		if (!pud_present(*pud_k))
332			goto no_context;
333
334		pmd = pmd_offset(pud, address);
335		pmd_k = pmd_offset(pud_k, address);
336
337		if (!pmd_present(*pmd_k))
338			goto bad_area_nosemaphore;
339
340		set_pmd(pmd, *pmd_k);
341
342		/* Make sure the actual PTE exists as well to
343		 * catch kernel vmalloc-area accesses to non-mapped
344		 * addresses. If we don't do this, this will just
345		 * silently loop forever.
346		 */
347
348		pte_k = pte_offset_kernel(pmd_k, address);
349		if (!pte_present(*pte_k))
350			goto no_context;
351
352		return;
353	}
354}
355