xref: /kernel/linux/linux-5.10/arch/mips/mm/c-r4k.c (revision 8c2ecf20)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996 David S. Miller (davem@davemloft.net)
7 * Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002 Ralf Baechle (ralf@gnu.org)
8 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9 */
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/highmem.h>
14#include <linux/kernel.h>
15#include <linux/linkage.h>
16#include <linux/preempt.h>
17#include <linux/sched.h>
18#include <linux/smp.h>
19#include <linux/mm.h>
20#include <linux/export.h>
21#include <linux/bitops.h>
22
23#include <asm/bcache.h>
24#include <asm/bootinfo.h>
25#include <asm/cache.h>
26#include <asm/cacheops.h>
27#include <asm/cpu.h>
28#include <asm/cpu-features.h>
29#include <asm/cpu-type.h>
30#include <asm/io.h>
31#include <asm/page.h>
32#include <asm/r4kcache.h>
33#include <asm/sections.h>
34#include <asm/mmu_context.h>
35#include <asm/war.h>
36#include <asm/cacheflush.h> /* for run_uncached() */
37#include <asm/traps.h>
38#include <asm/dma-coherence.h>
39#include <asm/mips-cps.h>
40
41/*
42 * Bits describing what cache ops an SMP callback function may perform.
43 *
44 * R4K_HIT   -	Virtual user or kernel address based cache operations. The
45 *		active_mm must be checked before using user addresses, falling
46 *		back to kmap.
47 * R4K_INDEX -	Index based cache operations.
48 */
49
50#define R4K_HIT		BIT(0)
51#define R4K_INDEX	BIT(1)
52
53/**
54 * r4k_op_needs_ipi() - Decide if a cache op needs to be done on every core.
55 * @type:	Type of cache operations (R4K_HIT or R4K_INDEX).
56 *
57 * Decides whether a cache op needs to be performed on every core in the system.
58 * This may change depending on the @type of cache operation, as well as the set
59 * of online CPUs, so preemption should be disabled by the caller to prevent CPU
60 * hotplug from changing the result.
61 *
62 * Returns:	1 if the cache operation @type should be done on every core in
63 *		the system.
64 *		0 if the cache operation @type is globalized and only needs to
65 *		be performed on a simple CPU.
66 */
67static inline bool r4k_op_needs_ipi(unsigned int type)
68{
69	/* The MIPS Coherence Manager (CM) globalizes address-based cache ops */
70	if (type == R4K_HIT && mips_cm_present())
71		return false;
72
73	/*
74	 * Hardware doesn't globalize the required cache ops, so SMP calls may
75	 * be needed, but only if there are foreign CPUs (non-siblings with
76	 * separate caches).
77	 */
78	/* cpu_foreign_map[] undeclared when !CONFIG_SMP */
79#ifdef CONFIG_SMP
80	return !cpumask_empty(&cpu_foreign_map[0]);
81#else
82	return false;
83#endif
84}
85
86/*
87 * Special Variant of smp_call_function for use by cache functions:
88 *
89 *  o No return value
90 *  o collapses to normal function call on UP kernels
91 *  o collapses to normal function call on systems with a single shared
92 *    primary cache.
93 *  o doesn't disable interrupts on the local CPU
94 */
95static inline void r4k_on_each_cpu(unsigned int type,
96				   void (*func)(void *info), void *info)
97{
98	preempt_disable();
99	if (r4k_op_needs_ipi(type))
100		smp_call_function_many(&cpu_foreign_map[smp_processor_id()],
101				       func, info, 1);
102	func(info);
103	preempt_enable();
104}
105
106/*
107 * Must die.
108 */
109static unsigned long icache_size __read_mostly;
110static unsigned long dcache_size __read_mostly;
111static unsigned long vcache_size __read_mostly;
112static unsigned long scache_size __read_mostly;
113
114/*
115 * Dummy cache handling routines for machines without boardcaches
116 */
117static void cache_noop(void) {}
118
119static struct bcache_ops no_sc_ops = {
120	.bc_enable = (void *)cache_noop,
121	.bc_disable = (void *)cache_noop,
122	.bc_wback_inv = (void *)cache_noop,
123	.bc_inv = (void *)cache_noop
124};
125
126struct bcache_ops *bcops = &no_sc_ops;
127
128#define cpu_is_r4600_v1_x()	((read_c0_prid() & 0xfffffff0) == 0x00002010)
129#define cpu_is_r4600_v2_x()	((read_c0_prid() & 0xfffffff0) == 0x00002020)
130
131#define R4600_HIT_CACHEOP_WAR_IMPL					\
132do {									\
133	if (IS_ENABLED(CONFIG_WAR_R4600_V2_HIT_CACHEOP) &&		\
134	    cpu_is_r4600_v2_x())					\
135		*(volatile unsigned long *)CKSEG1;			\
136	if (IS_ENABLED(CONFIG_WAR_R4600_V1_HIT_CACHEOP))					\
137		__asm__ __volatile__("nop;nop;nop;nop");		\
138} while (0)
139
140static void (*r4k_blast_dcache_page)(unsigned long addr);
141
142static inline void r4k_blast_dcache_page_dc32(unsigned long addr)
143{
144	R4600_HIT_CACHEOP_WAR_IMPL;
145	blast_dcache32_page(addr);
146}
147
148static inline void r4k_blast_dcache_page_dc64(unsigned long addr)
149{
150	blast_dcache64_page(addr);
151}
152
153static inline void r4k_blast_dcache_page_dc128(unsigned long addr)
154{
155	blast_dcache128_page(addr);
156}
157
158static void r4k_blast_dcache_page_setup(void)
159{
160	unsigned long  dc_lsize = cpu_dcache_line_size();
161
162	switch (dc_lsize) {
163	case 0:
164		r4k_blast_dcache_page = (void *)cache_noop;
165		break;
166	case 16:
167		r4k_blast_dcache_page = blast_dcache16_page;
168		break;
169	case 32:
170		r4k_blast_dcache_page = r4k_blast_dcache_page_dc32;
171		break;
172	case 64:
173		r4k_blast_dcache_page = r4k_blast_dcache_page_dc64;
174		break;
175	case 128:
176		r4k_blast_dcache_page = r4k_blast_dcache_page_dc128;
177		break;
178	default:
179		break;
180	}
181}
182
183#ifndef CONFIG_EVA
184#define r4k_blast_dcache_user_page  r4k_blast_dcache_page
185#else
186
187static void (*r4k_blast_dcache_user_page)(unsigned long addr);
188
189static void r4k_blast_dcache_user_page_setup(void)
190{
191	unsigned long  dc_lsize = cpu_dcache_line_size();
192
193	if (dc_lsize == 0)
194		r4k_blast_dcache_user_page = (void *)cache_noop;
195	else if (dc_lsize == 16)
196		r4k_blast_dcache_user_page = blast_dcache16_user_page;
197	else if (dc_lsize == 32)
198		r4k_blast_dcache_user_page = blast_dcache32_user_page;
199	else if (dc_lsize == 64)
200		r4k_blast_dcache_user_page = blast_dcache64_user_page;
201}
202
203#endif
204
205static void (* r4k_blast_dcache_page_indexed)(unsigned long addr);
206
207static void r4k_blast_dcache_page_indexed_setup(void)
208{
209	unsigned long dc_lsize = cpu_dcache_line_size();
210
211	if (dc_lsize == 0)
212		r4k_blast_dcache_page_indexed = (void *)cache_noop;
213	else if (dc_lsize == 16)
214		r4k_blast_dcache_page_indexed = blast_dcache16_page_indexed;
215	else if (dc_lsize == 32)
216		r4k_blast_dcache_page_indexed = blast_dcache32_page_indexed;
217	else if (dc_lsize == 64)
218		r4k_blast_dcache_page_indexed = blast_dcache64_page_indexed;
219	else if (dc_lsize == 128)
220		r4k_blast_dcache_page_indexed = blast_dcache128_page_indexed;
221}
222
223void (* r4k_blast_dcache)(void);
224EXPORT_SYMBOL(r4k_blast_dcache);
225
226static void r4k_blast_dcache_setup(void)
227{
228	unsigned long dc_lsize = cpu_dcache_line_size();
229
230	if (dc_lsize == 0)
231		r4k_blast_dcache = (void *)cache_noop;
232	else if (dc_lsize == 16)
233		r4k_blast_dcache = blast_dcache16;
234	else if (dc_lsize == 32)
235		r4k_blast_dcache = blast_dcache32;
236	else if (dc_lsize == 64)
237		r4k_blast_dcache = blast_dcache64;
238	else if (dc_lsize == 128)
239		r4k_blast_dcache = blast_dcache128;
240}
241
242/* force code alignment (used for CONFIG_WAR_TX49XX_ICACHE_INDEX_INV) */
243#define JUMP_TO_ALIGN(order) \
244	__asm__ __volatile__( \
245		"b\t1f\n\t" \
246		".align\t" #order "\n\t" \
247		"1:\n\t" \
248		)
249#define CACHE32_UNROLL32_ALIGN	JUMP_TO_ALIGN(10) /* 32 * 32 = 1024 */
250#define CACHE32_UNROLL32_ALIGN2 JUMP_TO_ALIGN(11)
251
252static inline void blast_r4600_v1_icache32(void)
253{
254	unsigned long flags;
255
256	local_irq_save(flags);
257	blast_icache32();
258	local_irq_restore(flags);
259}
260
261static inline void tx49_blast_icache32(void)
262{
263	unsigned long start = INDEX_BASE;
264	unsigned long end = start + current_cpu_data.icache.waysize;
265	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
266	unsigned long ws_end = current_cpu_data.icache.ways <<
267			       current_cpu_data.icache.waybit;
268	unsigned long ws, addr;
269
270	CACHE32_UNROLL32_ALIGN2;
271	/* I'm in even chunk.  blast odd chunks */
272	for (ws = 0; ws < ws_end; ws += ws_inc)
273		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
274			cache_unroll(32, kernel_cache, Index_Invalidate_I,
275				     addr | ws, 32);
276	CACHE32_UNROLL32_ALIGN;
277	/* I'm in odd chunk.  blast even chunks */
278	for (ws = 0; ws < ws_end; ws += ws_inc)
279		for (addr = start; addr < end; addr += 0x400 * 2)
280			cache_unroll(32, kernel_cache, Index_Invalidate_I,
281				     addr | ws, 32);
282}
283
284static inline void blast_icache32_r4600_v1_page_indexed(unsigned long page)
285{
286	unsigned long flags;
287
288	local_irq_save(flags);
289	blast_icache32_page_indexed(page);
290	local_irq_restore(flags);
291}
292
293static inline void tx49_blast_icache32_page_indexed(unsigned long page)
294{
295	unsigned long indexmask = current_cpu_data.icache.waysize - 1;
296	unsigned long start = INDEX_BASE + (page & indexmask);
297	unsigned long end = start + PAGE_SIZE;
298	unsigned long ws_inc = 1UL << current_cpu_data.icache.waybit;
299	unsigned long ws_end = current_cpu_data.icache.ways <<
300			       current_cpu_data.icache.waybit;
301	unsigned long ws, addr;
302
303	CACHE32_UNROLL32_ALIGN2;
304	/* I'm in even chunk.  blast odd chunks */
305	for (ws = 0; ws < ws_end; ws += ws_inc)
306		for (addr = start + 0x400; addr < end; addr += 0x400 * 2)
307			cache_unroll(32, kernel_cache, Index_Invalidate_I,
308				     addr | ws, 32);
309	CACHE32_UNROLL32_ALIGN;
310	/* I'm in odd chunk.  blast even chunks */
311	for (ws = 0; ws < ws_end; ws += ws_inc)
312		for (addr = start; addr < end; addr += 0x400 * 2)
313			cache_unroll(32, kernel_cache, Index_Invalidate_I,
314				     addr | ws, 32);
315}
316
317static void (* r4k_blast_icache_page)(unsigned long addr);
318
319static void r4k_blast_icache_page_setup(void)
320{
321	unsigned long ic_lsize = cpu_icache_line_size();
322
323	if (ic_lsize == 0)
324		r4k_blast_icache_page = (void *)cache_noop;
325	else if (ic_lsize == 16)
326		r4k_blast_icache_page = blast_icache16_page;
327	else if (ic_lsize == 32 && current_cpu_type() == CPU_LOONGSON2EF)
328		r4k_blast_icache_page = loongson2_blast_icache32_page;
329	else if (ic_lsize == 32)
330		r4k_blast_icache_page = blast_icache32_page;
331	else if (ic_lsize == 64)
332		r4k_blast_icache_page = blast_icache64_page;
333	else if (ic_lsize == 128)
334		r4k_blast_icache_page = blast_icache128_page;
335}
336
337#ifndef CONFIG_EVA
338#define r4k_blast_icache_user_page  r4k_blast_icache_page
339#else
340
341static void (*r4k_blast_icache_user_page)(unsigned long addr);
342
343static void r4k_blast_icache_user_page_setup(void)
344{
345	unsigned long ic_lsize = cpu_icache_line_size();
346
347	if (ic_lsize == 0)
348		r4k_blast_icache_user_page = (void *)cache_noop;
349	else if (ic_lsize == 16)
350		r4k_blast_icache_user_page = blast_icache16_user_page;
351	else if (ic_lsize == 32)
352		r4k_blast_icache_user_page = blast_icache32_user_page;
353	else if (ic_lsize == 64)
354		r4k_blast_icache_user_page = blast_icache64_user_page;
355}
356
357#endif
358
359static void (* r4k_blast_icache_page_indexed)(unsigned long addr);
360
361static void r4k_blast_icache_page_indexed_setup(void)
362{
363	unsigned long ic_lsize = cpu_icache_line_size();
364
365	if (ic_lsize == 0)
366		r4k_blast_icache_page_indexed = (void *)cache_noop;
367	else if (ic_lsize == 16)
368		r4k_blast_icache_page_indexed = blast_icache16_page_indexed;
369	else if (ic_lsize == 32) {
370		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
371		    cpu_is_r4600_v1_x())
372			r4k_blast_icache_page_indexed =
373				blast_icache32_r4600_v1_page_indexed;
374		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
375			r4k_blast_icache_page_indexed =
376				tx49_blast_icache32_page_indexed;
377		else if (current_cpu_type() == CPU_LOONGSON2EF)
378			r4k_blast_icache_page_indexed =
379				loongson2_blast_icache32_page_indexed;
380		else
381			r4k_blast_icache_page_indexed =
382				blast_icache32_page_indexed;
383	} else if (ic_lsize == 64)
384		r4k_blast_icache_page_indexed = blast_icache64_page_indexed;
385}
386
387void (* r4k_blast_icache)(void);
388EXPORT_SYMBOL(r4k_blast_icache);
389
390static void r4k_blast_icache_setup(void)
391{
392	unsigned long ic_lsize = cpu_icache_line_size();
393
394	if (ic_lsize == 0)
395		r4k_blast_icache = (void *)cache_noop;
396	else if (ic_lsize == 16)
397		r4k_blast_icache = blast_icache16;
398	else if (ic_lsize == 32) {
399		if (IS_ENABLED(CONFIG_WAR_R4600_V1_INDEX_ICACHEOP) &&
400		    cpu_is_r4600_v1_x())
401			r4k_blast_icache = blast_r4600_v1_icache32;
402		else if (IS_ENABLED(CONFIG_WAR_TX49XX_ICACHE_INDEX_INV))
403			r4k_blast_icache = tx49_blast_icache32;
404		else if (current_cpu_type() == CPU_LOONGSON2EF)
405			r4k_blast_icache = loongson2_blast_icache32;
406		else
407			r4k_blast_icache = blast_icache32;
408	} else if (ic_lsize == 64)
409		r4k_blast_icache = blast_icache64;
410	else if (ic_lsize == 128)
411		r4k_blast_icache = blast_icache128;
412}
413
414static void (* r4k_blast_scache_page)(unsigned long addr);
415
416static void r4k_blast_scache_page_setup(void)
417{
418	unsigned long sc_lsize = cpu_scache_line_size();
419
420	if (scache_size == 0)
421		r4k_blast_scache_page = (void *)cache_noop;
422	else if (sc_lsize == 16)
423		r4k_blast_scache_page = blast_scache16_page;
424	else if (sc_lsize == 32)
425		r4k_blast_scache_page = blast_scache32_page;
426	else if (sc_lsize == 64)
427		r4k_blast_scache_page = blast_scache64_page;
428	else if (sc_lsize == 128)
429		r4k_blast_scache_page = blast_scache128_page;
430}
431
432static void (* r4k_blast_scache_page_indexed)(unsigned long addr);
433
434static void r4k_blast_scache_page_indexed_setup(void)
435{
436	unsigned long sc_lsize = cpu_scache_line_size();
437
438	if (scache_size == 0)
439		r4k_blast_scache_page_indexed = (void *)cache_noop;
440	else if (sc_lsize == 16)
441		r4k_blast_scache_page_indexed = blast_scache16_page_indexed;
442	else if (sc_lsize == 32)
443		r4k_blast_scache_page_indexed = blast_scache32_page_indexed;
444	else if (sc_lsize == 64)
445		r4k_blast_scache_page_indexed = blast_scache64_page_indexed;
446	else if (sc_lsize == 128)
447		r4k_blast_scache_page_indexed = blast_scache128_page_indexed;
448}
449
450static void (* r4k_blast_scache)(void);
451
452static void r4k_blast_scache_setup(void)
453{
454	unsigned long sc_lsize = cpu_scache_line_size();
455
456	if (scache_size == 0)
457		r4k_blast_scache = (void *)cache_noop;
458	else if (sc_lsize == 16)
459		r4k_blast_scache = blast_scache16;
460	else if (sc_lsize == 32)
461		r4k_blast_scache = blast_scache32;
462	else if (sc_lsize == 64)
463		r4k_blast_scache = blast_scache64;
464	else if (sc_lsize == 128)
465		r4k_blast_scache = blast_scache128;
466}
467
468static void (*r4k_blast_scache_node)(long node);
469
470static void r4k_blast_scache_node_setup(void)
471{
472	unsigned long sc_lsize = cpu_scache_line_size();
473
474	if (current_cpu_type() != CPU_LOONGSON64)
475		r4k_blast_scache_node = (void *)cache_noop;
476	else if (sc_lsize == 16)
477		r4k_blast_scache_node = blast_scache16_node;
478	else if (sc_lsize == 32)
479		r4k_blast_scache_node = blast_scache32_node;
480	else if (sc_lsize == 64)
481		r4k_blast_scache_node = blast_scache64_node;
482	else if (sc_lsize == 128)
483		r4k_blast_scache_node = blast_scache128_node;
484}
485
486static inline void local_r4k___flush_cache_all(void * args)
487{
488	switch (current_cpu_type()) {
489	case CPU_LOONGSON2EF:
490	case CPU_R4000SC:
491	case CPU_R4000MC:
492	case CPU_R4400SC:
493	case CPU_R4400MC:
494	case CPU_R10000:
495	case CPU_R12000:
496	case CPU_R14000:
497	case CPU_R16000:
498		/*
499		 * These caches are inclusive caches, that is, if something
500		 * is not cached in the S-cache, we know it also won't be
501		 * in one of the primary caches.
502		 */
503		r4k_blast_scache();
504		break;
505
506	case CPU_LOONGSON64:
507		/* Use get_ebase_cpunum() for both NUMA=y/n */
508		r4k_blast_scache_node(get_ebase_cpunum() >> 2);
509		break;
510
511	case CPU_BMIPS5000:
512		r4k_blast_scache();
513		__sync();
514		break;
515
516	default:
517		r4k_blast_dcache();
518		r4k_blast_icache();
519		break;
520	}
521}
522
523static void r4k___flush_cache_all(void)
524{
525	r4k_on_each_cpu(R4K_INDEX, local_r4k___flush_cache_all, NULL);
526}
527
528/**
529 * has_valid_asid() - Determine if an mm already has an ASID.
530 * @mm:		Memory map.
531 * @type:	R4K_HIT or R4K_INDEX, type of cache op.
532 *
533 * Determines whether @mm already has an ASID on any of the CPUs which cache ops
534 * of type @type within an r4k_on_each_cpu() call will affect. If
535 * r4k_on_each_cpu() does an SMP call to a single VPE in each core, then the
536 * scope of the operation is confined to sibling CPUs, otherwise all online CPUs
537 * will need to be checked.
538 *
539 * Must be called in non-preemptive context.
540 *
541 * Returns:	1 if the CPUs affected by @type cache ops have an ASID for @mm.
542 *		0 otherwise.
543 */
544static inline int has_valid_asid(const struct mm_struct *mm, unsigned int type)
545{
546	unsigned int i;
547	const cpumask_t *mask = cpu_present_mask;
548
549	if (cpu_has_mmid)
550		return cpu_context(0, mm) != 0;
551
552	/* cpu_sibling_map[] undeclared when !CONFIG_SMP */
553#ifdef CONFIG_SMP
554	/*
555	 * If r4k_on_each_cpu does SMP calls, it does them to a single VPE in
556	 * each foreign core, so we only need to worry about siblings.
557	 * Otherwise we need to worry about all present CPUs.
558	 */
559	if (r4k_op_needs_ipi(type))
560		mask = &cpu_sibling_map[smp_processor_id()];
561#endif
562	for_each_cpu(i, mask)
563		if (cpu_context(i, mm))
564			return 1;
565	return 0;
566}
567
568static void r4k__flush_cache_vmap(void)
569{
570	r4k_blast_dcache();
571}
572
573static void r4k__flush_cache_vunmap(void)
574{
575	r4k_blast_dcache();
576}
577
578/*
579 * Note: flush_tlb_range() assumes flush_cache_range() sufficiently flushes
580 * whole caches when vma is executable.
581 */
582static inline void local_r4k_flush_cache_range(void * args)
583{
584	struct vm_area_struct *vma = args;
585	int exec = vma->vm_flags & VM_EXEC;
586
587	if (!has_valid_asid(vma->vm_mm, R4K_INDEX))
588		return;
589
590	/*
591	 * If dcache can alias, we must blast it since mapping is changing.
592	 * If executable, we must ensure any dirty lines are written back far
593	 * enough to be visible to icache.
594	 */
595	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc))
596		r4k_blast_dcache();
597	/* If executable, blast stale lines from icache */
598	if (exec)
599		r4k_blast_icache();
600}
601
602static void r4k_flush_cache_range(struct vm_area_struct *vma,
603	unsigned long start, unsigned long end)
604{
605	int exec = vma->vm_flags & VM_EXEC;
606
607	if (cpu_has_dc_aliases || exec)
608		r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_range, vma);
609}
610
611static inline void local_r4k_flush_cache_mm(void * args)
612{
613	struct mm_struct *mm = args;
614
615	if (!has_valid_asid(mm, R4K_INDEX))
616		return;
617
618	/*
619	 * Kludge alert.  For obscure reasons R4000SC and R4400SC go nuts if we
620	 * only flush the primary caches but R1x000 behave sane ...
621	 * R4000SC and R4400SC indexed S-cache ops also invalidate primary
622	 * caches, so we can bail out early.
623	 */
624	if (current_cpu_type() == CPU_R4000SC ||
625	    current_cpu_type() == CPU_R4000MC ||
626	    current_cpu_type() == CPU_R4400SC ||
627	    current_cpu_type() == CPU_R4400MC) {
628		r4k_blast_scache();
629		return;
630	}
631
632	r4k_blast_dcache();
633}
634
635static void r4k_flush_cache_mm(struct mm_struct *mm)
636{
637	if (!cpu_has_dc_aliases)
638		return;
639
640	r4k_on_each_cpu(R4K_INDEX, local_r4k_flush_cache_mm, mm);
641}
642
643struct flush_cache_page_args {
644	struct vm_area_struct *vma;
645	unsigned long addr;
646	unsigned long pfn;
647};
648
649static inline void local_r4k_flush_cache_page(void *args)
650{
651	struct flush_cache_page_args *fcp_args = args;
652	struct vm_area_struct *vma = fcp_args->vma;
653	unsigned long addr = fcp_args->addr;
654	struct page *page = pfn_to_page(fcp_args->pfn);
655	int exec = vma->vm_flags & VM_EXEC;
656	struct mm_struct *mm = vma->vm_mm;
657	int map_coherent = 0;
658	pmd_t *pmdp;
659	pte_t *ptep;
660	void *vaddr;
661
662	/*
663	 * If owns no valid ASID yet, cannot possibly have gotten
664	 * this page into the cache.
665	 */
666	if (!has_valid_asid(mm, R4K_HIT))
667		return;
668
669	addr &= PAGE_MASK;
670	pmdp = pmd_off(mm, addr);
671	ptep = pte_offset_kernel(pmdp, addr);
672
673	/*
674	 * If the page isn't marked valid, the page cannot possibly be
675	 * in the cache.
676	 */
677	if (!(pte_present(*ptep)))
678		return;
679
680	if ((mm == current->active_mm) && (pte_val(*ptep) & _PAGE_VALID))
681		vaddr = NULL;
682	else {
683		/*
684		 * Use kmap_coherent or kmap_atomic to do flushes for
685		 * another ASID than the current one.
686		 */
687		map_coherent = (cpu_has_dc_aliases &&
688				page_mapcount(page) &&
689				!Page_dcache_dirty(page));
690		if (map_coherent)
691			vaddr = kmap_coherent(page, addr);
692		else
693			vaddr = kmap_atomic(page);
694		addr = (unsigned long)vaddr;
695	}
696
697	if (cpu_has_dc_aliases || (exec && !cpu_has_ic_fills_f_dc)) {
698		vaddr ? r4k_blast_dcache_page(addr) :
699			r4k_blast_dcache_user_page(addr);
700		if (exec && !cpu_icache_snoops_remote_store)
701			r4k_blast_scache_page(addr);
702	}
703	if (exec) {
704		if (vaddr && cpu_has_vtag_icache && mm == current->active_mm) {
705			drop_mmu_context(mm);
706		} else
707			vaddr ? r4k_blast_icache_page(addr) :
708				r4k_blast_icache_user_page(addr);
709	}
710
711	if (vaddr) {
712		if (map_coherent)
713			kunmap_coherent();
714		else
715			kunmap_atomic(vaddr);
716	}
717}
718
719static void r4k_flush_cache_page(struct vm_area_struct *vma,
720	unsigned long addr, unsigned long pfn)
721{
722	struct flush_cache_page_args args;
723
724	args.vma = vma;
725	args.addr = addr;
726	args.pfn = pfn;
727
728	r4k_on_each_cpu(R4K_HIT, local_r4k_flush_cache_page, &args);
729}
730
731static inline void local_r4k_flush_data_cache_page(void * addr)
732{
733	r4k_blast_dcache_page((unsigned long) addr);
734}
735
736static void r4k_flush_data_cache_page(unsigned long addr)
737{
738	if (in_atomic())
739		local_r4k_flush_data_cache_page((void *)addr);
740	else
741		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_data_cache_page,
742				(void *) addr);
743}
744
745struct flush_icache_range_args {
746	unsigned long start;
747	unsigned long end;
748	unsigned int type;
749	bool user;
750};
751
752static inline void __local_r4k_flush_icache_range(unsigned long start,
753						  unsigned long end,
754						  unsigned int type,
755						  bool user)
756{
757	if (!cpu_has_ic_fills_f_dc) {
758		if (type == R4K_INDEX ||
759		    (type & R4K_INDEX && end - start >= dcache_size)) {
760			r4k_blast_dcache();
761		} else {
762			R4600_HIT_CACHEOP_WAR_IMPL;
763			if (user)
764				protected_blast_dcache_range(start, end);
765			else
766				blast_dcache_range(start, end);
767		}
768	}
769
770	if (type == R4K_INDEX ||
771	    (type & R4K_INDEX && end - start > icache_size))
772		r4k_blast_icache();
773	else {
774		switch (boot_cpu_type()) {
775		case CPU_LOONGSON2EF:
776			protected_loongson2_blast_icache_range(start, end);
777			break;
778
779		default:
780			if (user)
781				protected_blast_icache_range(start, end);
782			else
783				blast_icache_range(start, end);
784			break;
785		}
786	}
787}
788
789static inline void local_r4k_flush_icache_range(unsigned long start,
790						unsigned long end)
791{
792	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, false);
793}
794
795static inline void local_r4k_flush_icache_user_range(unsigned long start,
796						     unsigned long end)
797{
798	__local_r4k_flush_icache_range(start, end, R4K_HIT | R4K_INDEX, true);
799}
800
801static inline void local_r4k_flush_icache_range_ipi(void *args)
802{
803	struct flush_icache_range_args *fir_args = args;
804	unsigned long start = fir_args->start;
805	unsigned long end = fir_args->end;
806	unsigned int type = fir_args->type;
807	bool user = fir_args->user;
808
809	__local_r4k_flush_icache_range(start, end, type, user);
810}
811
812static void __r4k_flush_icache_range(unsigned long start, unsigned long end,
813				     bool user)
814{
815	struct flush_icache_range_args args;
816	unsigned long size, cache_size;
817
818	args.start = start;
819	args.end = end;
820	args.type = R4K_HIT | R4K_INDEX;
821	args.user = user;
822
823	/*
824	 * Indexed cache ops require an SMP call.
825	 * Consider if that can or should be avoided.
826	 */
827	preempt_disable();
828	if (r4k_op_needs_ipi(R4K_INDEX) && !r4k_op_needs_ipi(R4K_HIT)) {
829		/*
830		 * If address-based cache ops don't require an SMP call, then
831		 * use them exclusively for small flushes.
832		 */
833		size = end - start;
834		cache_size = icache_size;
835		if (!cpu_has_ic_fills_f_dc) {
836			size *= 2;
837			cache_size += dcache_size;
838		}
839		if (size <= cache_size)
840			args.type &= ~R4K_INDEX;
841	}
842	r4k_on_each_cpu(args.type, local_r4k_flush_icache_range_ipi, &args);
843	preempt_enable();
844	instruction_hazard();
845}
846
847static void r4k_flush_icache_range(unsigned long start, unsigned long end)
848{
849	return __r4k_flush_icache_range(start, end, false);
850}
851
852static void r4k_flush_icache_user_range(unsigned long start, unsigned long end)
853{
854	return __r4k_flush_icache_range(start, end, true);
855}
856
857#ifdef CONFIG_DMA_NONCOHERENT
858
859static void r4k_dma_cache_wback_inv(unsigned long addr, unsigned long size)
860{
861	/* Catch bad driver code */
862	if (WARN_ON(size == 0))
863		return;
864
865	preempt_disable();
866	if (cpu_has_inclusive_pcaches) {
867		if (size >= scache_size) {
868			if (current_cpu_type() != CPU_LOONGSON64)
869				r4k_blast_scache();
870			else
871				r4k_blast_scache_node(pa_to_nid(addr));
872		} else {
873			blast_scache_range(addr, addr + size);
874		}
875		preempt_enable();
876		__sync();
877		return;
878	}
879
880	/*
881	 * Either no secondary cache or the available caches don't have the
882	 * subset property so we have to flush the primary caches
883	 * explicitly.
884	 * If we would need IPI to perform an INDEX-type operation, then
885	 * we have to use the HIT-type alternative as IPI cannot be used
886	 * here due to interrupts possibly being disabled.
887	 */
888	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
889		r4k_blast_dcache();
890	} else {
891		R4600_HIT_CACHEOP_WAR_IMPL;
892		blast_dcache_range(addr, addr + size);
893	}
894	preempt_enable();
895
896	bc_wback_inv(addr, size);
897	__sync();
898}
899
900static void prefetch_cache_inv(unsigned long addr, unsigned long size)
901{
902	unsigned int linesz = cpu_scache_line_size();
903	unsigned long addr0 = addr, addr1;
904
905	addr0 &= ~(linesz - 1);
906	addr1 = (addr0 + size - 1) & ~(linesz - 1);
907
908	protected_writeback_scache_line(addr0);
909	if (likely(addr1 != addr0))
910		protected_writeback_scache_line(addr1);
911	else
912		return;
913
914	addr0 += linesz;
915	if (likely(addr1 != addr0))
916		protected_writeback_scache_line(addr0);
917	else
918		return;
919
920	addr1 -= linesz;
921	if (likely(addr1 > addr0))
922		protected_writeback_scache_line(addr0);
923}
924
925static void r4k_dma_cache_inv(unsigned long addr, unsigned long size)
926{
927	/* Catch bad driver code */
928	if (WARN_ON(size == 0))
929		return;
930
931	preempt_disable();
932
933	if (current_cpu_type() == CPU_BMIPS5000)
934		prefetch_cache_inv(addr, size);
935
936	if (cpu_has_inclusive_pcaches) {
937		if (size >= scache_size) {
938			if (current_cpu_type() != CPU_LOONGSON64)
939				r4k_blast_scache();
940			else
941				r4k_blast_scache_node(pa_to_nid(addr));
942		} else {
943			/*
944			 * There is no clearly documented alignment requirement
945			 * for the cache instruction on MIPS processors and
946			 * some processors, among them the RM5200 and RM7000
947			 * QED processors will throw an address error for cache
948			 * hit ops with insufficient alignment.	 Solved by
949			 * aligning the address to cache line size.
950			 */
951			blast_inv_scache_range(addr, addr + size);
952		}
953		preempt_enable();
954		__sync();
955		return;
956	}
957
958	if (!r4k_op_needs_ipi(R4K_INDEX) && size >= dcache_size) {
959		r4k_blast_dcache();
960	} else {
961		R4600_HIT_CACHEOP_WAR_IMPL;
962		blast_inv_dcache_range(addr, addr + size);
963	}
964	preempt_enable();
965
966	bc_inv(addr, size);
967	__sync();
968}
969#endif /* CONFIG_DMA_NONCOHERENT */
970
971static void r4k_flush_icache_all(void)
972{
973	if (cpu_has_vtag_icache)
974		r4k_blast_icache();
975}
976
977struct flush_kernel_vmap_range_args {
978	unsigned long	vaddr;
979	int		size;
980};
981
982static inline void local_r4k_flush_kernel_vmap_range_index(void *args)
983{
984	/*
985	 * Aliases only affect the primary caches so don't bother with
986	 * S-caches or T-caches.
987	 */
988	r4k_blast_dcache();
989}
990
991static inline void local_r4k_flush_kernel_vmap_range(void *args)
992{
993	struct flush_kernel_vmap_range_args *vmra = args;
994	unsigned long vaddr = vmra->vaddr;
995	int size = vmra->size;
996
997	/*
998	 * Aliases only affect the primary caches so don't bother with
999	 * S-caches or T-caches.
1000	 */
1001	R4600_HIT_CACHEOP_WAR_IMPL;
1002	blast_dcache_range(vaddr, vaddr + size);
1003}
1004
1005static void r4k_flush_kernel_vmap_range(unsigned long vaddr, int size)
1006{
1007	struct flush_kernel_vmap_range_args args;
1008
1009	args.vaddr = (unsigned long) vaddr;
1010	args.size = size;
1011
1012	if (size >= dcache_size)
1013		r4k_on_each_cpu(R4K_INDEX,
1014				local_r4k_flush_kernel_vmap_range_index, NULL);
1015	else
1016		r4k_on_each_cpu(R4K_HIT, local_r4k_flush_kernel_vmap_range,
1017				&args);
1018}
1019
1020static inline void rm7k_erratum31(void)
1021{
1022	const unsigned long ic_lsize = 32;
1023	unsigned long addr;
1024
1025	/* RM7000 erratum #31. The icache is screwed at startup. */
1026	write_c0_taglo(0);
1027	write_c0_taghi(0);
1028
1029	for (addr = INDEX_BASE; addr <= INDEX_BASE + 4096; addr += ic_lsize) {
1030		__asm__ __volatile__ (
1031			".set push\n\t"
1032			".set noreorder\n\t"
1033			".set mips3\n\t"
1034			"cache\t%1, 0(%0)\n\t"
1035			"cache\t%1, 0x1000(%0)\n\t"
1036			"cache\t%1, 0x2000(%0)\n\t"
1037			"cache\t%1, 0x3000(%0)\n\t"
1038			"cache\t%2, 0(%0)\n\t"
1039			"cache\t%2, 0x1000(%0)\n\t"
1040			"cache\t%2, 0x2000(%0)\n\t"
1041			"cache\t%2, 0x3000(%0)\n\t"
1042			"cache\t%1, 0(%0)\n\t"
1043			"cache\t%1, 0x1000(%0)\n\t"
1044			"cache\t%1, 0x2000(%0)\n\t"
1045			"cache\t%1, 0x3000(%0)\n\t"
1046			".set pop\n"
1047			:
1048			: "r" (addr), "i" (Index_Store_Tag_I), "i" (Fill_I));
1049	}
1050}
1051
1052static inline int alias_74k_erratum(struct cpuinfo_mips *c)
1053{
1054	unsigned int imp = c->processor_id & PRID_IMP_MASK;
1055	unsigned int rev = c->processor_id & PRID_REV_MASK;
1056	int present = 0;
1057
1058	/*
1059	 * Early versions of the 74K do not update the cache tags on a
1060	 * vtag miss/ptag hit which can occur in the case of KSEG0/KUSEG
1061	 * aliases.  In this case it is better to treat the cache as always
1062	 * having aliases.  Also disable the synonym tag update feature
1063	 * where available.  In this case no opportunistic tag update will
1064	 * happen where a load causes a virtual address miss but a physical
1065	 * address hit during a D-cache look-up.
1066	 */
1067	switch (imp) {
1068	case PRID_IMP_74K:
1069		if (rev <= PRID_REV_ENCODE_332(2, 4, 0))
1070			present = 1;
1071		if (rev == PRID_REV_ENCODE_332(2, 4, 0))
1072			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1073		break;
1074	case PRID_IMP_1074K:
1075		if (rev <= PRID_REV_ENCODE_332(1, 1, 0)) {
1076			present = 1;
1077			write_c0_config6(read_c0_config6() | MTI_CONF6_SYND);
1078		}
1079		break;
1080	default:
1081		BUG();
1082	}
1083
1084	return present;
1085}
1086
1087static void b5k_instruction_hazard(void)
1088{
1089	__sync();
1090	__sync();
1091	__asm__ __volatile__(
1092	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1093	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1094	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1095	"       nop; nop; nop; nop; nop; nop; nop; nop\n"
1096	: : : "memory");
1097}
1098
1099static char *way_string[] = { NULL, "direct mapped", "2-way",
1100	"3-way", "4-way", "5-way", "6-way", "7-way", "8-way",
1101	"9-way", "10-way", "11-way", "12-way",
1102	"13-way", "14-way", "15-way", "16-way",
1103};
1104
1105static void probe_pcache(void)
1106{
1107	struct cpuinfo_mips *c = &current_cpu_data;
1108	unsigned int config = read_c0_config();
1109	unsigned int prid = read_c0_prid();
1110	int has_74k_erratum = 0;
1111	unsigned long config1;
1112	unsigned int lsize;
1113
1114	switch (current_cpu_type()) {
1115	case CPU_R4600:			/* QED style two way caches? */
1116	case CPU_R4700:
1117	case CPU_R5000:
1118	case CPU_NEVADA:
1119		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1120		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1121		c->icache.ways = 2;
1122		c->icache.waybit = __ffs(icache_size/2);
1123
1124		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1125		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1126		c->dcache.ways = 2;
1127		c->dcache.waybit= __ffs(dcache_size/2);
1128
1129		c->options |= MIPS_CPU_CACHE_CDEX_P;
1130		break;
1131
1132	case CPU_R5500:
1133		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1134		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1135		c->icache.ways = 2;
1136		c->icache.waybit= 0;
1137
1138		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1139		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1140		c->dcache.ways = 2;
1141		c->dcache.waybit = 0;
1142
1143		c->options |= MIPS_CPU_CACHE_CDEX_P | MIPS_CPU_PREFETCH;
1144		break;
1145
1146	case CPU_TX49XX:
1147		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1148		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1149		c->icache.ways = 4;
1150		c->icache.waybit= 0;
1151
1152		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1153		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1154		c->dcache.ways = 4;
1155		c->dcache.waybit = 0;
1156
1157		c->options |= MIPS_CPU_CACHE_CDEX_P;
1158		c->options |= MIPS_CPU_PREFETCH;
1159		break;
1160
1161	case CPU_R4000PC:
1162	case CPU_R4000SC:
1163	case CPU_R4000MC:
1164	case CPU_R4400PC:
1165	case CPU_R4400SC:
1166	case CPU_R4400MC:
1167		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1168		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1169		c->icache.ways = 1;
1170		c->icache.waybit = 0;	/* doesn't matter */
1171
1172		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1173		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1174		c->dcache.ways = 1;
1175		c->dcache.waybit = 0;	/* does not matter */
1176
1177		c->options |= MIPS_CPU_CACHE_CDEX_P;
1178		break;
1179
1180	case CPU_R10000:
1181	case CPU_R12000:
1182	case CPU_R14000:
1183	case CPU_R16000:
1184		icache_size = 1 << (12 + ((config & R10K_CONF_IC) >> 29));
1185		c->icache.linesz = 64;
1186		c->icache.ways = 2;
1187		c->icache.waybit = 0;
1188
1189		dcache_size = 1 << (12 + ((config & R10K_CONF_DC) >> 26));
1190		c->dcache.linesz = 32;
1191		c->dcache.ways = 2;
1192		c->dcache.waybit = 0;
1193
1194		c->options |= MIPS_CPU_PREFETCH;
1195		break;
1196
1197	case CPU_VR4133:
1198		write_c0_config(config & ~VR41_CONF_P4K);
1199		fallthrough;
1200	case CPU_VR4131:
1201		/* Workaround for cache instruction bug of VR4131 */
1202		if (c->processor_id == 0x0c80U || c->processor_id == 0x0c81U ||
1203		    c->processor_id == 0x0c82U) {
1204			config |= 0x00400000U;
1205			if (c->processor_id == 0x0c80U)
1206				config |= VR41_CONF_BP;
1207			write_c0_config(config);
1208		} else
1209			c->options |= MIPS_CPU_CACHE_CDEX_P;
1210
1211		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1212		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1213		c->icache.ways = 2;
1214		c->icache.waybit = __ffs(icache_size/2);
1215
1216		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1217		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1218		c->dcache.ways = 2;
1219		c->dcache.waybit = __ffs(dcache_size/2);
1220		break;
1221
1222	case CPU_VR41XX:
1223	case CPU_VR4111:
1224	case CPU_VR4121:
1225	case CPU_VR4122:
1226	case CPU_VR4181:
1227	case CPU_VR4181A:
1228		icache_size = 1 << (10 + ((config & CONF_IC) >> 9));
1229		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1230		c->icache.ways = 1;
1231		c->icache.waybit = 0;	/* doesn't matter */
1232
1233		dcache_size = 1 << (10 + ((config & CONF_DC) >> 6));
1234		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1235		c->dcache.ways = 1;
1236		c->dcache.waybit = 0;	/* does not matter */
1237
1238		c->options |= MIPS_CPU_CACHE_CDEX_P;
1239		break;
1240
1241	case CPU_RM7000:
1242		rm7k_erratum31();
1243
1244		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1245		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1246		c->icache.ways = 4;
1247		c->icache.waybit = __ffs(icache_size / c->icache.ways);
1248
1249		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1250		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1251		c->dcache.ways = 4;
1252		c->dcache.waybit = __ffs(dcache_size / c->dcache.ways);
1253
1254		c->options |= MIPS_CPU_CACHE_CDEX_P;
1255		c->options |= MIPS_CPU_PREFETCH;
1256		break;
1257
1258	case CPU_LOONGSON2EF:
1259		icache_size = 1 << (12 + ((config & CONF_IC) >> 9));
1260		c->icache.linesz = 16 << ((config & CONF_IB) >> 5);
1261		if (prid & 0x3)
1262			c->icache.ways = 4;
1263		else
1264			c->icache.ways = 2;
1265		c->icache.waybit = 0;
1266
1267		dcache_size = 1 << (12 + ((config & CONF_DC) >> 6));
1268		c->dcache.linesz = 16 << ((config & CONF_DB) >> 4);
1269		if (prid & 0x3)
1270			c->dcache.ways = 4;
1271		else
1272			c->dcache.ways = 2;
1273		c->dcache.waybit = 0;
1274		break;
1275
1276	case CPU_LOONGSON64:
1277		config1 = read_c0_config1();
1278		lsize = (config1 >> 19) & 7;
1279		if (lsize)
1280			c->icache.linesz = 2 << lsize;
1281		else
1282			c->icache.linesz = 0;
1283		c->icache.sets = 64 << ((config1 >> 22) & 7);
1284		c->icache.ways = 1 + ((config1 >> 16) & 7);
1285		icache_size = c->icache.sets *
1286					  c->icache.ways *
1287					  c->icache.linesz;
1288		c->icache.waybit = 0;
1289
1290		lsize = (config1 >> 10) & 7;
1291		if (lsize)
1292			c->dcache.linesz = 2 << lsize;
1293		else
1294			c->dcache.linesz = 0;
1295		c->dcache.sets = 64 << ((config1 >> 13) & 7);
1296		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1297		dcache_size = c->dcache.sets *
1298					  c->dcache.ways *
1299					  c->dcache.linesz;
1300		c->dcache.waybit = 0;
1301		if ((c->processor_id & (PRID_IMP_MASK | PRID_REV_MASK)) >=
1302				(PRID_IMP_LOONGSON_64C | PRID_REV_LOONGSON3A_R2_0) ||
1303				(c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1304			c->options |= MIPS_CPU_PREFETCH;
1305		break;
1306
1307	case CPU_CAVIUM_OCTEON3:
1308		/* For now lie about the number of ways. */
1309		c->icache.linesz = 128;
1310		c->icache.sets = 16;
1311		c->icache.ways = 8;
1312		c->icache.flags |= MIPS_CACHE_VTAG;
1313		icache_size = c->icache.sets * c->icache.ways * c->icache.linesz;
1314
1315		c->dcache.linesz = 128;
1316		c->dcache.ways = 8;
1317		c->dcache.sets = 8;
1318		dcache_size = c->dcache.sets * c->dcache.ways * c->dcache.linesz;
1319		c->options |= MIPS_CPU_PREFETCH;
1320		break;
1321
1322	default:
1323		if (!(config & MIPS_CONF_M))
1324			panic("Don't know how to probe P-caches on this cpu.");
1325
1326		/*
1327		 * So we seem to be a MIPS32 or MIPS64 CPU
1328		 * So let's probe the I-cache ...
1329		 */
1330		config1 = read_c0_config1();
1331
1332		lsize = (config1 >> 19) & 7;
1333
1334		/* IL == 7 is reserved */
1335		if (lsize == 7)
1336			panic("Invalid icache line size");
1337
1338		c->icache.linesz = lsize ? 2 << lsize : 0;
1339
1340		c->icache.sets = 32 << (((config1 >> 22) + 1) & 7);
1341		c->icache.ways = 1 + ((config1 >> 16) & 7);
1342
1343		icache_size = c->icache.sets *
1344			      c->icache.ways *
1345			      c->icache.linesz;
1346		c->icache.waybit = __ffs(icache_size/c->icache.ways);
1347
1348		if (config & MIPS_CONF_VI)
1349			c->icache.flags |= MIPS_CACHE_VTAG;
1350
1351		/*
1352		 * Now probe the MIPS32 / MIPS64 data cache.
1353		 */
1354		c->dcache.flags = 0;
1355
1356		lsize = (config1 >> 10) & 7;
1357
1358		/* DL == 7 is reserved */
1359		if (lsize == 7)
1360			panic("Invalid dcache line size");
1361
1362		c->dcache.linesz = lsize ? 2 << lsize : 0;
1363
1364		c->dcache.sets = 32 << (((config1 >> 13) + 1) & 7);
1365		c->dcache.ways = 1 + ((config1 >> 7) & 7);
1366
1367		dcache_size = c->dcache.sets *
1368			      c->dcache.ways *
1369			      c->dcache.linesz;
1370		c->dcache.waybit = __ffs(dcache_size/c->dcache.ways);
1371
1372		c->options |= MIPS_CPU_PREFETCH;
1373		break;
1374	}
1375
1376	/*
1377	 * Processor configuration sanity check for the R4000SC erratum
1378	 * #5.	With page sizes larger than 32kB there is no possibility
1379	 * to get a VCE exception anymore so we don't care about this
1380	 * misconfiguration.  The case is rather theoretical anyway;
1381	 * presumably no vendor is shipping his hardware in the "bad"
1382	 * configuration.
1383	 */
1384	if ((prid & PRID_IMP_MASK) == PRID_IMP_R4000 &&
1385	    (prid & PRID_REV_MASK) < PRID_REV_R4400 &&
1386	    !(config & CONF_SC) && c->icache.linesz != 16 &&
1387	    PAGE_SIZE <= 0x8000)
1388		panic("Improper R4000SC processor configuration detected");
1389
1390	/* compute a couple of other cache variables */
1391	c->icache.waysize = icache_size / c->icache.ways;
1392	c->dcache.waysize = dcache_size / c->dcache.ways;
1393
1394	c->icache.sets = c->icache.linesz ?
1395		icache_size / (c->icache.linesz * c->icache.ways) : 0;
1396	c->dcache.sets = c->dcache.linesz ?
1397		dcache_size / (c->dcache.linesz * c->dcache.ways) : 0;
1398
1399	/*
1400	 * R1x000 P-caches are odd in a positive way.  They're 32kB 2-way
1401	 * virtually indexed so normally would suffer from aliases.  So
1402	 * normally they'd suffer from aliases but magic in the hardware deals
1403	 * with that for us so we don't need to take care ourselves.
1404	 */
1405	switch (current_cpu_type()) {
1406	case CPU_20KC:
1407	case CPU_25KF:
1408	case CPU_I6400:
1409	case CPU_I6500:
1410	case CPU_SB1:
1411	case CPU_SB1A:
1412	case CPU_XLR:
1413		c->dcache.flags |= MIPS_CACHE_PINDEX;
1414		break;
1415
1416	case CPU_R10000:
1417	case CPU_R12000:
1418	case CPU_R14000:
1419	case CPU_R16000:
1420		break;
1421
1422	case CPU_74K:
1423	case CPU_1074K:
1424		has_74k_erratum = alias_74k_erratum(c);
1425		fallthrough;
1426	case CPU_M14KC:
1427	case CPU_M14KEC:
1428	case CPU_24K:
1429	case CPU_34K:
1430	case CPU_1004K:
1431	case CPU_INTERAPTIV:
1432	case CPU_P5600:
1433	case CPU_PROAPTIV:
1434	case CPU_M5150:
1435	case CPU_QEMU_GENERIC:
1436	case CPU_P6600:
1437	case CPU_M6250:
1438		if (!(read_c0_config7() & MIPS_CONF7_IAR) &&
1439		    (c->icache.waysize > PAGE_SIZE))
1440			c->icache.flags |= MIPS_CACHE_ALIASES;
1441		if (!has_74k_erratum && (read_c0_config7() & MIPS_CONF7_AR)) {
1442			/*
1443			 * Effectively physically indexed dcache,
1444			 * thus no virtual aliases.
1445			*/
1446			c->dcache.flags |= MIPS_CACHE_PINDEX;
1447			break;
1448		}
1449		fallthrough;
1450	default:
1451		if (has_74k_erratum || c->dcache.waysize > PAGE_SIZE)
1452			c->dcache.flags |= MIPS_CACHE_ALIASES;
1453	}
1454
1455	/* Physically indexed caches don't suffer from virtual aliasing */
1456	if (c->dcache.flags & MIPS_CACHE_PINDEX)
1457		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1458
1459	/*
1460	 * In systems with CM the icache fills from L2 or closer caches, and
1461	 * thus sees remote stores without needing to write them back any
1462	 * further than that.
1463	 */
1464	if (mips_cm_present())
1465		c->icache.flags |= MIPS_IC_SNOOPS_REMOTE;
1466
1467	switch (current_cpu_type()) {
1468	case CPU_20KC:
1469		/*
1470		 * Some older 20Kc chips doesn't have the 'VI' bit in
1471		 * the config register.
1472		 */
1473		c->icache.flags |= MIPS_CACHE_VTAG;
1474		break;
1475
1476	case CPU_ALCHEMY:
1477	case CPU_I6400:
1478	case CPU_I6500:
1479		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1480		break;
1481
1482	case CPU_BMIPS5000:
1483		c->icache.flags |= MIPS_CACHE_IC_F_DC;
1484		/* Cache aliases are handled in hardware; allow HIGHMEM */
1485		c->dcache.flags &= ~MIPS_CACHE_ALIASES;
1486		break;
1487
1488	case CPU_LOONGSON2EF:
1489		/*
1490		 * LOONGSON2 has 4 way icache, but when using indexed cache op,
1491		 * one op will act on all 4 ways
1492		 */
1493		c->icache.ways = 1;
1494	}
1495
1496	pr_info("Primary instruction cache %ldkB, %s, %s, linesize %d bytes.\n",
1497		icache_size >> 10,
1498		c->icache.flags & MIPS_CACHE_VTAG ? "VIVT" : "VIPT",
1499		way_string[c->icache.ways], c->icache.linesz);
1500
1501	pr_info("Primary data cache %ldkB, %s, %s, %s, linesize %d bytes\n",
1502		dcache_size >> 10, way_string[c->dcache.ways],
1503		(c->dcache.flags & MIPS_CACHE_PINDEX) ? "PIPT" : "VIPT",
1504		(c->dcache.flags & MIPS_CACHE_ALIASES) ?
1505			"cache aliases" : "no aliases",
1506		c->dcache.linesz);
1507}
1508
1509static void probe_vcache(void)
1510{
1511	struct cpuinfo_mips *c = &current_cpu_data;
1512	unsigned int config2, lsize;
1513
1514	if (current_cpu_type() != CPU_LOONGSON64)
1515		return;
1516
1517	config2 = read_c0_config2();
1518	if ((lsize = ((config2 >> 20) & 15)))
1519		c->vcache.linesz = 2 << lsize;
1520	else
1521		c->vcache.linesz = lsize;
1522
1523	c->vcache.sets = 64 << ((config2 >> 24) & 15);
1524	c->vcache.ways = 1 + ((config2 >> 16) & 15);
1525
1526	vcache_size = c->vcache.sets * c->vcache.ways * c->vcache.linesz;
1527
1528	c->vcache.waybit = 0;
1529	c->vcache.waysize = vcache_size / c->vcache.ways;
1530
1531	pr_info("Unified victim cache %ldkB %s, linesize %d bytes.\n",
1532		vcache_size >> 10, way_string[c->vcache.ways], c->vcache.linesz);
1533}
1534
1535/*
1536 * If you even _breathe_ on this function, look at the gcc output and make sure
1537 * it does not pop things on and off the stack for the cache sizing loop that
1538 * executes in KSEG1 space or else you will crash and burn badly.  You have
1539 * been warned.
1540 */
1541static int probe_scache(void)
1542{
1543	unsigned long flags, addr, begin, end, pow2;
1544	unsigned int config = read_c0_config();
1545	struct cpuinfo_mips *c = &current_cpu_data;
1546
1547	if (config & CONF_SC)
1548		return 0;
1549
1550	begin = (unsigned long) &_stext;
1551	begin &= ~((4 * 1024 * 1024) - 1);
1552	end = begin + (4 * 1024 * 1024);
1553
1554	/*
1555	 * This is such a bitch, you'd think they would make it easy to do
1556	 * this.  Away you daemons of stupidity!
1557	 */
1558	local_irq_save(flags);
1559
1560	/* Fill each size-multiple cache line with a valid tag. */
1561	pow2 = (64 * 1024);
1562	for (addr = begin; addr < end; addr = (begin + pow2)) {
1563		unsigned long *p = (unsigned long *) addr;
1564		__asm__ __volatile__("nop" : : "r" (*p)); /* whee... */
1565		pow2 <<= 1;
1566	}
1567
1568	/* Load first line with zero (therefore invalid) tag. */
1569	write_c0_taglo(0);
1570	write_c0_taghi(0);
1571	__asm__ __volatile__("nop; nop; nop; nop;"); /* avoid the hazard */
1572	cache_op(Index_Store_Tag_I, begin);
1573	cache_op(Index_Store_Tag_D, begin);
1574	cache_op(Index_Store_Tag_SD, begin);
1575
1576	/* Now search for the wrap around point. */
1577	pow2 = (128 * 1024);
1578	for (addr = begin + (128 * 1024); addr < end; addr = begin + pow2) {
1579		cache_op(Index_Load_Tag_SD, addr);
1580		__asm__ __volatile__("nop; nop; nop; nop;"); /* hazard... */
1581		if (!read_c0_taglo())
1582			break;
1583		pow2 <<= 1;
1584	}
1585	local_irq_restore(flags);
1586	addr -= begin;
1587
1588	scache_size = addr;
1589	c->scache.linesz = 16 << ((config & R4K_CONF_SB) >> 22);
1590	c->scache.ways = 1;
1591	c->scache.waybit = 0;		/* does not matter */
1592
1593	return 1;
1594}
1595
1596static void loongson2_sc_init(void)
1597{
1598	struct cpuinfo_mips *c = &current_cpu_data;
1599
1600	scache_size = 512*1024;
1601	c->scache.linesz = 32;
1602	c->scache.ways = 4;
1603	c->scache.waybit = 0;
1604	c->scache.waysize = scache_size / (c->scache.ways);
1605	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1606	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1607	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1608
1609	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1610}
1611
1612static void loongson3_sc_init(void)
1613{
1614	struct cpuinfo_mips *c = &current_cpu_data;
1615	unsigned int config2, lsize;
1616
1617	config2 = read_c0_config2();
1618	lsize = (config2 >> 4) & 15;
1619	if (lsize)
1620		c->scache.linesz = 2 << lsize;
1621	else
1622		c->scache.linesz = 0;
1623	c->scache.sets = 64 << ((config2 >> 8) & 15);
1624	c->scache.ways = 1 + (config2 & 15);
1625
1626	scache_size = c->scache.sets *
1627				  c->scache.ways *
1628				  c->scache.linesz;
1629
1630	/* Loongson-3 has 4-Scache banks, while Loongson-2K have only 2 banks */
1631	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_LOONGSON_64R)
1632		scache_size *= 2;
1633	else
1634		scache_size *= 4;
1635
1636	c->scache.waybit = 0;
1637	c->scache.waysize = scache_size / c->scache.ways;
1638	pr_info("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1639	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1640	if (scache_size)
1641		c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1642	return;
1643}
1644
1645extern int r5k_sc_init(void);
1646extern int rm7k_sc_init(void);
1647extern int mips_sc_init(void);
1648
1649static void setup_scache(void)
1650{
1651	struct cpuinfo_mips *c = &current_cpu_data;
1652	unsigned int config = read_c0_config();
1653	int sc_present = 0;
1654
1655	/*
1656	 * Do the probing thing on R4000SC and R4400SC processors.  Other
1657	 * processors don't have a S-cache that would be relevant to the
1658	 * Linux memory management.
1659	 */
1660	switch (current_cpu_type()) {
1661	case CPU_R4000SC:
1662	case CPU_R4000MC:
1663	case CPU_R4400SC:
1664	case CPU_R4400MC:
1665		sc_present = run_uncached(probe_scache);
1666		if (sc_present)
1667			c->options |= MIPS_CPU_CACHE_CDEX_S;
1668		break;
1669
1670	case CPU_R10000:
1671	case CPU_R12000:
1672	case CPU_R14000:
1673	case CPU_R16000:
1674		scache_size = 0x80000 << ((config & R10K_CONF_SS) >> 16);
1675		c->scache.linesz = 64 << ((config >> 13) & 1);
1676		c->scache.ways = 2;
1677		c->scache.waybit= 0;
1678		sc_present = 1;
1679		break;
1680
1681	case CPU_R5000:
1682	case CPU_NEVADA:
1683#ifdef CONFIG_R5000_CPU_SCACHE
1684		r5k_sc_init();
1685#endif
1686		return;
1687
1688	case CPU_RM7000:
1689#ifdef CONFIG_RM7000_CPU_SCACHE
1690		rm7k_sc_init();
1691#endif
1692		return;
1693
1694	case CPU_LOONGSON2EF:
1695		loongson2_sc_init();
1696		return;
1697
1698	case CPU_LOONGSON64:
1699		loongson3_sc_init();
1700		return;
1701
1702	case CPU_CAVIUM_OCTEON3:
1703	case CPU_XLP:
1704		/* don't need to worry about L2, fully coherent */
1705		return;
1706
1707	default:
1708		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
1709				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
1710				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
1711				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
1712#ifdef CONFIG_MIPS_CPU_SCACHE
1713			if (mips_sc_init ()) {
1714				scache_size = c->scache.ways * c->scache.sets * c->scache.linesz;
1715				printk("MIPS secondary cache %ldkB, %s, linesize %d bytes.\n",
1716				       scache_size >> 10,
1717				       way_string[c->scache.ways], c->scache.linesz);
1718
1719				if (current_cpu_type() == CPU_BMIPS5000)
1720					c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1721			}
1722
1723#else
1724			if (!(c->scache.flags & MIPS_CACHE_NOT_PRESENT))
1725				panic("Dunno how to handle MIPS32 / MIPS64 second level cache");
1726#endif
1727			return;
1728		}
1729		sc_present = 0;
1730	}
1731
1732	if (!sc_present)
1733		return;
1734
1735	/* compute a couple of other cache variables */
1736	c->scache.waysize = scache_size / c->scache.ways;
1737
1738	c->scache.sets = scache_size / (c->scache.linesz * c->scache.ways);
1739
1740	printk("Unified secondary cache %ldkB %s, linesize %d bytes.\n",
1741	       scache_size >> 10, way_string[c->scache.ways], c->scache.linesz);
1742
1743	c->options |= MIPS_CPU_INCLUSIVE_CACHES;
1744}
1745
1746void au1x00_fixup_config_od(void)
1747{
1748	/*
1749	 * c0_config.od (bit 19) was write only (and read as 0)
1750	 * on the early revisions of Alchemy SOCs.  It disables the bus
1751	 * transaction overlapping and needs to be set to fix various errata.
1752	 */
1753	switch (read_c0_prid()) {
1754	case 0x00030100: /* Au1000 DA */
1755	case 0x00030201: /* Au1000 HA */
1756	case 0x00030202: /* Au1000 HB */
1757	case 0x01030200: /* Au1500 AB */
1758	/*
1759	 * Au1100 errata actually keeps silence about this bit, so we set it
1760	 * just in case for those revisions that require it to be set according
1761	 * to the (now gone) cpu table.
1762	 */
1763	case 0x02030200: /* Au1100 AB */
1764	case 0x02030201: /* Au1100 BA */
1765	case 0x02030202: /* Au1100 BC */
1766		set_c0_config(1 << 19);
1767		break;
1768	}
1769}
1770
1771/* CP0 hazard avoidance. */
1772#define NXP_BARRIER()							\
1773	 __asm__ __volatile__(						\
1774	".set noreorder\n\t"						\
1775	"nop; nop; nop; nop; nop; nop;\n\t"				\
1776	".set reorder\n\t")
1777
1778static void nxp_pr4450_fixup_config(void)
1779{
1780	unsigned long config0;
1781
1782	config0 = read_c0_config();
1783
1784	/* clear all three cache coherency fields */
1785	config0 &= ~(0x7 | (7 << 25) | (7 << 28));
1786	config0 |= (((_page_cachable_default >> _CACHE_SHIFT) <<  0) |
1787		    ((_page_cachable_default >> _CACHE_SHIFT) << 25) |
1788		    ((_page_cachable_default >> _CACHE_SHIFT) << 28));
1789	write_c0_config(config0);
1790	NXP_BARRIER();
1791}
1792
1793static int cca = -1;
1794
1795static int __init cca_setup(char *str)
1796{
1797	get_option(&str, &cca);
1798
1799	return 0;
1800}
1801
1802early_param("cca", cca_setup);
1803
1804static void coherency_setup(void)
1805{
1806	if (cca < 0 || cca > 7)
1807		cca = read_c0_config() & CONF_CM_CMASK;
1808	_page_cachable_default = cca << _CACHE_SHIFT;
1809
1810	pr_debug("Using cache attribute %d\n", cca);
1811	change_c0_config(CONF_CM_CMASK, cca);
1812
1813	/*
1814	 * c0_status.cu=0 specifies that updates by the sc instruction use
1815	 * the coherency mode specified by the TLB; 1 means cachable
1816	 * coherent update on write will be used.  Not all processors have
1817	 * this bit and; some wire it to zero, others like Toshiba had the
1818	 * silly idea of putting something else there ...
1819	 */
1820	switch (current_cpu_type()) {
1821	case CPU_R4000PC:
1822	case CPU_R4000SC:
1823	case CPU_R4000MC:
1824	case CPU_R4400PC:
1825	case CPU_R4400SC:
1826	case CPU_R4400MC:
1827		clear_c0_config(CONF_CU);
1828		break;
1829	/*
1830	 * We need to catch the early Alchemy SOCs with
1831	 * the write-only co_config.od bit and set it back to one on:
1832	 * Au1000 rev DA, HA, HB;  Au1100 AB, BA, BC, Au1500 AB
1833	 */
1834	case CPU_ALCHEMY:
1835		au1x00_fixup_config_od();
1836		break;
1837
1838	case PRID_IMP_PR4450:
1839		nxp_pr4450_fixup_config();
1840		break;
1841	}
1842}
1843
1844static void r4k_cache_error_setup(void)
1845{
1846	extern char __weak except_vec2_generic;
1847	extern char __weak except_vec2_sb1;
1848
1849	switch (current_cpu_type()) {
1850	case CPU_SB1:
1851	case CPU_SB1A:
1852		set_uncached_handler(0x100, &except_vec2_sb1, 0x80);
1853		break;
1854
1855	default:
1856		set_uncached_handler(0x100, &except_vec2_generic, 0x80);
1857		break;
1858	}
1859}
1860
1861void r4k_cache_init(void)
1862{
1863	extern void build_clear_page(void);
1864	extern void build_copy_page(void);
1865	struct cpuinfo_mips *c = &current_cpu_data;
1866
1867	probe_pcache();
1868	probe_vcache();
1869	setup_scache();
1870
1871	r4k_blast_dcache_page_setup();
1872	r4k_blast_dcache_page_indexed_setup();
1873	r4k_blast_dcache_setup();
1874	r4k_blast_icache_page_setup();
1875	r4k_blast_icache_page_indexed_setup();
1876	r4k_blast_icache_setup();
1877	r4k_blast_scache_page_setup();
1878	r4k_blast_scache_page_indexed_setup();
1879	r4k_blast_scache_setup();
1880	r4k_blast_scache_node_setup();
1881#ifdef CONFIG_EVA
1882	r4k_blast_dcache_user_page_setup();
1883	r4k_blast_icache_user_page_setup();
1884#endif
1885
1886	/*
1887	 * Some MIPS32 and MIPS64 processors have physically indexed caches.
1888	 * This code supports virtually indexed processors and will be
1889	 * unnecessarily inefficient on physically indexed processors.
1890	 */
1891	if (c->dcache.linesz && cpu_has_dc_aliases)
1892		shm_align_mask = max_t( unsigned long,
1893					c->dcache.sets * c->dcache.linesz - 1,
1894					PAGE_SIZE - 1);
1895	else
1896		shm_align_mask = PAGE_SIZE-1;
1897
1898	__flush_cache_vmap	= r4k__flush_cache_vmap;
1899	__flush_cache_vunmap	= r4k__flush_cache_vunmap;
1900
1901	flush_cache_all		= cache_noop;
1902	__flush_cache_all	= r4k___flush_cache_all;
1903	flush_cache_mm		= r4k_flush_cache_mm;
1904	flush_cache_page	= r4k_flush_cache_page;
1905	flush_cache_range	= r4k_flush_cache_range;
1906
1907	__flush_kernel_vmap_range = r4k_flush_kernel_vmap_range;
1908
1909	flush_icache_all	= r4k_flush_icache_all;
1910	local_flush_data_cache_page	= local_r4k_flush_data_cache_page;
1911	flush_data_cache_page	= r4k_flush_data_cache_page;
1912	flush_icache_range	= r4k_flush_icache_range;
1913	local_flush_icache_range	= local_r4k_flush_icache_range;
1914	__flush_icache_user_range	= r4k_flush_icache_user_range;
1915	__local_flush_icache_user_range	= local_r4k_flush_icache_user_range;
1916
1917#ifdef CONFIG_DMA_NONCOHERENT
1918#ifdef CONFIG_DMA_MAYBE_COHERENT
1919	if (coherentio == IO_COHERENCE_ENABLED ||
1920	    (coherentio == IO_COHERENCE_DEFAULT && hw_coherentio)) {
1921		_dma_cache_wback_inv	= (void *)cache_noop;
1922		_dma_cache_wback	= (void *)cache_noop;
1923		_dma_cache_inv		= (void *)cache_noop;
1924	} else
1925#endif /* CONFIG_DMA_MAYBE_COHERENT */
1926	{
1927		_dma_cache_wback_inv	= r4k_dma_cache_wback_inv;
1928		_dma_cache_wback	= r4k_dma_cache_wback_inv;
1929		_dma_cache_inv		= r4k_dma_cache_inv;
1930	}
1931#endif /* CONFIG_DMA_NONCOHERENT */
1932
1933	build_clear_page();
1934	build_copy_page();
1935
1936	/*
1937	 * We want to run CMP kernels on core with and without coherent
1938	 * caches. Therefore, do not use CONFIG_MIPS_CMP to decide whether
1939	 * or not to flush caches.
1940	 */
1941	local_r4k___flush_cache_all(NULL);
1942
1943	coherency_setup();
1944	board_cache_error_setup = r4k_cache_error_setup;
1945
1946	/*
1947	 * Per-CPU overrides
1948	 */
1949	switch (current_cpu_type()) {
1950	case CPU_BMIPS4350:
1951	case CPU_BMIPS4380:
1952		/* No IPI is needed because all CPUs share the same D$ */
1953		flush_data_cache_page = r4k_blast_dcache_page;
1954		break;
1955	case CPU_BMIPS5000:
1956		/* We lose our superpowers if L2 is disabled */
1957		if (c->scache.flags & MIPS_CACHE_NOT_PRESENT)
1958			break;
1959
1960		/* I$ fills from D$ just by emptying the write buffers */
1961		flush_cache_page = (void *)b5k_instruction_hazard;
1962		flush_cache_range = (void *)b5k_instruction_hazard;
1963		local_flush_data_cache_page = (void *)b5k_instruction_hazard;
1964		flush_data_cache_page = (void *)b5k_instruction_hazard;
1965		flush_icache_range = (void *)b5k_instruction_hazard;
1966		local_flush_icache_range = (void *)b5k_instruction_hazard;
1967
1968
1969		/* Optimization: an L2 flush implicitly flushes the L1 */
1970		current_cpu_data.options |= MIPS_CPU_INCLUSIVE_CACHES;
1971		break;
1972	case CPU_LOONGSON64:
1973		/* Loongson-3 maintains cache coherency by hardware */
1974		__flush_cache_all	= cache_noop;
1975		__flush_cache_vmap	= cache_noop;
1976		__flush_cache_vunmap	= cache_noop;
1977		__flush_kernel_vmap_range = (void *)cache_noop;
1978		flush_cache_mm		= (void *)cache_noop;
1979		flush_cache_page	= (void *)cache_noop;
1980		flush_cache_range	= (void *)cache_noop;
1981		flush_icache_all	= (void *)cache_noop;
1982		flush_data_cache_page	= (void *)cache_noop;
1983		local_flush_data_cache_page	= (void *)cache_noop;
1984		break;
1985	}
1986}
1987
1988static int r4k_cache_pm_notifier(struct notifier_block *self, unsigned long cmd,
1989			       void *v)
1990{
1991	switch (cmd) {
1992	case CPU_PM_ENTER_FAILED:
1993	case CPU_PM_EXIT:
1994		coherency_setup();
1995		break;
1996	}
1997
1998	return NOTIFY_OK;
1999}
2000
2001static struct notifier_block r4k_cache_pm_notifier_block = {
2002	.notifier_call = r4k_cache_pm_notifier,
2003};
2004
2005int __init r4k_cache_init_pm(void)
2006{
2007	return cpu_pm_register_notifier(&r4k_cache_pm_notifier_block);
2008}
2009arch_initcall(r4k_cache_init_pm);
2010