xref: /kernel/linux/linux-5.10/arch/mips/kvm/entry.c (revision 8c2ecf20)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Generation of main entry point for the guest, exception handling.
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 *
11 * Copyright (C) 2016 Imagination Technologies Ltd.
12 */
13
14#include <linux/kvm_host.h>
15#include <linux/log2.h>
16#include <asm/mmu_context.h>
17#include <asm/msa.h>
18#include <asm/setup.h>
19#include <asm/tlbex.h>
20#include <asm/uasm.h>
21
22/* Register names */
23#define ZERO		0
24#define AT		1
25#define V0		2
26#define V1		3
27#define A0		4
28#define A1		5
29
30#if _MIPS_SIM == _MIPS_SIM_ABI32
31#define T0		8
32#define T1		9
33#define T2		10
34#define T3		11
35#endif /* _MIPS_SIM == _MIPS_SIM_ABI32 */
36
37#if _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32
38#define T0		12
39#define T1		13
40#define T2		14
41#define T3		15
42#endif /* _MIPS_SIM == _MIPS_SIM_ABI64 || _MIPS_SIM == _MIPS_SIM_NABI32 */
43
44#define S0		16
45#define S1		17
46#define T9		25
47#define K0		26
48#define K1		27
49#define GP		28
50#define SP		29
51#define RA		31
52
53/* Some CP0 registers */
54#define C0_PWBASE	5, 5
55#define C0_HWRENA	7, 0
56#define C0_BADVADDR	8, 0
57#define C0_BADINSTR	8, 1
58#define C0_BADINSTRP	8, 2
59#define C0_PGD		9, 7
60#define C0_ENTRYHI	10, 0
61#define C0_GUESTCTL1	10, 4
62#define C0_STATUS	12, 0
63#define C0_GUESTCTL0	12, 6
64#define C0_CAUSE	13, 0
65#define C0_EPC		14, 0
66#define C0_EBASE	15, 1
67#define C0_CONFIG5	16, 5
68#define C0_DDATA_LO	28, 3
69#define C0_ERROREPC	30, 0
70
71#define CALLFRAME_SIZ   32
72
73#ifdef CONFIG_64BIT
74#define ST0_KX_IF_64	ST0_KX
75#else
76#define ST0_KX_IF_64	0
77#endif
78
79static unsigned int scratch_vcpu[2] = { C0_DDATA_LO };
80static unsigned int scratch_tmp[2] = { C0_ERROREPC };
81
82enum label_id {
83	label_fpu_1 = 1,
84	label_msa_1,
85	label_return_to_host,
86	label_kernel_asid,
87	label_exit_common,
88};
89
90UASM_L_LA(_fpu_1)
91UASM_L_LA(_msa_1)
92UASM_L_LA(_return_to_host)
93UASM_L_LA(_kernel_asid)
94UASM_L_LA(_exit_common)
95
96static void *kvm_mips_build_enter_guest(void *addr);
97static void *kvm_mips_build_ret_from_exit(void *addr);
98static void *kvm_mips_build_ret_to_guest(void *addr);
99static void *kvm_mips_build_ret_to_host(void *addr);
100
101/*
102 * The version of this function in tlbex.c uses current_cpu_type(), but for KVM
103 * we assume symmetry.
104 */
105static int c0_kscratch(void)
106{
107	switch (boot_cpu_type()) {
108	case CPU_XLP:
109	case CPU_XLR:
110		return 22;
111	default:
112		return 31;
113	}
114}
115
116/**
117 * kvm_mips_entry_setup() - Perform global setup for entry code.
118 *
119 * Perform global setup for entry code, such as choosing a scratch register.
120 *
121 * Returns:	0 on success.
122 *		-errno on failure.
123 */
124int kvm_mips_entry_setup(void)
125{
126	/*
127	 * We prefer to use KScratchN registers if they are available over the
128	 * defaults above, which may not work on all cores.
129	 */
130	unsigned int kscratch_mask = cpu_data[0].kscratch_mask;
131
132	if (pgd_reg != -1)
133		kscratch_mask &= ~BIT(pgd_reg);
134
135	/* Pick a scratch register for storing VCPU */
136	if (kscratch_mask) {
137		scratch_vcpu[0] = c0_kscratch();
138		scratch_vcpu[1] = ffs(kscratch_mask) - 1;
139		kscratch_mask &= ~BIT(scratch_vcpu[1]);
140	}
141
142	/* Pick a scratch register to use as a temp for saving state */
143	if (kscratch_mask) {
144		scratch_tmp[0] = c0_kscratch();
145		scratch_tmp[1] = ffs(kscratch_mask) - 1;
146		kscratch_mask &= ~BIT(scratch_tmp[1]);
147	}
148
149	return 0;
150}
151
152static void kvm_mips_build_save_scratch(u32 **p, unsigned int tmp,
153					unsigned int frame)
154{
155	/* Save the VCPU scratch register value in cp0_epc of the stack frame */
156	UASM_i_MFC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
157	UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
158
159	/* Save the temp scratch register value in cp0_cause of stack frame */
160	if (scratch_tmp[0] == c0_kscratch()) {
161		UASM_i_MFC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
162		UASM_i_SW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
163	}
164}
165
166static void kvm_mips_build_restore_scratch(u32 **p, unsigned int tmp,
167					   unsigned int frame)
168{
169	/*
170	 * Restore host scratch register values saved by
171	 * kvm_mips_build_save_scratch().
172	 */
173	UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_epc), frame);
174	UASM_i_MTC0(p, tmp, scratch_vcpu[0], scratch_vcpu[1]);
175
176	if (scratch_tmp[0] == c0_kscratch()) {
177		UASM_i_LW(p, tmp, offsetof(struct pt_regs, cp0_cause), frame);
178		UASM_i_MTC0(p, tmp, scratch_tmp[0], scratch_tmp[1]);
179	}
180}
181
182/**
183 * build_set_exc_base() - Assemble code to write exception base address.
184 * @p:		Code buffer pointer.
185 * @reg:	Source register (generated code may set WG bit in @reg).
186 *
187 * Assemble code to modify the exception base address in the EBase register,
188 * using the appropriately sized access and setting the WG bit if necessary.
189 */
190static inline void build_set_exc_base(u32 **p, unsigned int reg)
191{
192	if (cpu_has_ebase_wg) {
193		/* Set WG so that all the bits get written */
194		uasm_i_ori(p, reg, reg, MIPS_EBASE_WG);
195		UASM_i_MTC0(p, reg, C0_EBASE);
196	} else {
197		uasm_i_mtc0(p, reg, C0_EBASE);
198	}
199}
200
201/**
202 * kvm_mips_build_vcpu_run() - Assemble function to start running a guest VCPU.
203 * @addr:	Address to start writing code.
204 *
205 * Assemble the start of the vcpu_run function to run a guest VCPU. The function
206 * conforms to the following prototype:
207 *
208 * int vcpu_run(struct kvm_vcpu *vcpu);
209 *
210 * The exit from the guest and return to the caller is handled by the code
211 * generated by kvm_mips_build_ret_to_host().
212 *
213 * Returns:	Next address after end of written function.
214 */
215void *kvm_mips_build_vcpu_run(void *addr)
216{
217	u32 *p = addr;
218	unsigned int i;
219
220	/*
221	 * A0: vcpu
222	 */
223
224	/* k0/k1 not being used in host kernel context */
225	UASM_i_ADDIU(&p, K1, SP, -(int)sizeof(struct pt_regs));
226	for (i = 16; i < 32; ++i) {
227		if (i == 24)
228			i = 28;
229		UASM_i_SW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
230	}
231
232	/* Save host status */
233	uasm_i_mfc0(&p, V0, C0_STATUS);
234	UASM_i_SW(&p, V0, offsetof(struct pt_regs, cp0_status), K1);
235
236	/* Save scratch registers, will be used to store pointer to vcpu etc */
237	kvm_mips_build_save_scratch(&p, V1, K1);
238
239	/* VCPU scratch register has pointer to vcpu */
240	UASM_i_MTC0(&p, A0, scratch_vcpu[0], scratch_vcpu[1]);
241
242	/* Offset into vcpu->arch */
243	UASM_i_ADDIU(&p, K1, A0, offsetof(struct kvm_vcpu, arch));
244
245	/*
246	 * Save the host stack to VCPU, used for exception processing
247	 * when we exit from the Guest
248	 */
249	UASM_i_SW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
250
251	/* Save the kernel gp as well */
252	UASM_i_SW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
253
254	/*
255	 * Setup status register for running the guest in UM, interrupts
256	 * are disabled
257	 */
258	UASM_i_LA(&p, K0, ST0_EXL | KSU_USER | ST0_BEV | ST0_KX_IF_64);
259	uasm_i_mtc0(&p, K0, C0_STATUS);
260	uasm_i_ehb(&p);
261
262	/* load up the new EBASE */
263	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
264	build_set_exc_base(&p, K0);
265
266	/*
267	 * Now that the new EBASE has been loaded, unset BEV, set
268	 * interrupt mask as it was but make sure that timer interrupts
269	 * are enabled
270	 */
271	uasm_i_addiu(&p, K0, ZERO, ST0_EXL | KSU_USER | ST0_IE | ST0_KX_IF_64);
272	uasm_i_andi(&p, V0, V0, ST0_IM);
273	uasm_i_or(&p, K0, K0, V0);
274	uasm_i_mtc0(&p, K0, C0_STATUS);
275	uasm_i_ehb(&p);
276
277	p = kvm_mips_build_enter_guest(p);
278
279	return p;
280}
281
282/**
283 * kvm_mips_build_enter_guest() - Assemble code to resume guest execution.
284 * @addr:	Address to start writing code.
285 *
286 * Assemble the code to resume guest execution. This code is common between the
287 * initial entry into the guest from the host, and returning from the exit
288 * handler back to the guest.
289 *
290 * Returns:	Next address after end of written function.
291 */
292static void *kvm_mips_build_enter_guest(void *addr)
293{
294	u32 *p = addr;
295	unsigned int i;
296	struct uasm_label labels[2];
297	struct uasm_reloc relocs[2];
298	struct uasm_label __maybe_unused *l = labels;
299	struct uasm_reloc __maybe_unused *r = relocs;
300
301	memset(labels, 0, sizeof(labels));
302	memset(relocs, 0, sizeof(relocs));
303
304	/* Set Guest EPC */
305	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, pc), K1);
306	UASM_i_MTC0(&p, T0, C0_EPC);
307
308#ifdef CONFIG_KVM_MIPS_VZ
309	/* Save normal linux process pgd (VZ guarantees pgd_reg is set) */
310	if (cpu_has_ldpte)
311		UASM_i_MFC0(&p, K0, C0_PWBASE);
312	else
313		UASM_i_MFC0(&p, K0, c0_kscratch(), pgd_reg);
314	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_pgd), K1);
315
316	/*
317	 * Set up KVM GPA pgd.
318	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
319	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
320	 * - write mm->pgd into CP0_PWBase
321	 *
322	 * We keep S0 pointing at struct kvm so we can load the ASID below.
323	 */
324	UASM_i_LW(&p, S0, (int)offsetof(struct kvm_vcpu, kvm) -
325			  (int)offsetof(struct kvm_vcpu, arch), K1);
326	UASM_i_LW(&p, A0, offsetof(struct kvm, arch.gpa_mm.pgd), S0);
327	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
328	uasm_i_jalr(&p, RA, T9);
329	/* delay slot */
330	if (cpu_has_htw)
331		UASM_i_MTC0(&p, A0, C0_PWBASE);
332	else
333		uasm_i_nop(&p);
334
335	/* Set GM bit to setup eret to VZ guest context */
336	uasm_i_addiu(&p, V1, ZERO, 1);
337	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
338	uasm_i_ins(&p, K0, V1, MIPS_GCTL0_GM_SHIFT, 1);
339	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
340
341	if (cpu_has_guestid) {
342		/*
343		 * Set root mode GuestID, so that root TLB refill handler can
344		 * use the correct GuestID in the root TLB.
345		 */
346
347		/* Get current GuestID */
348		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
349		/* Set GuestCtl1.RID = GuestCtl1.ID */
350		uasm_i_ext(&p, T1, T0, MIPS_GCTL1_ID_SHIFT,
351			   MIPS_GCTL1_ID_WIDTH);
352		uasm_i_ins(&p, T0, T1, MIPS_GCTL1_RID_SHIFT,
353			   MIPS_GCTL1_RID_WIDTH);
354		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
355
356		/* GuestID handles dealiasing so we don't need to touch ASID */
357		goto skip_asid_restore;
358	}
359
360	/* Root ASID Dealias (RAD) */
361
362	/* Save host ASID */
363	UASM_i_MFC0(&p, K0, C0_ENTRYHI);
364	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
365		  K1);
366
367	/* Set the root ASID for the Guest */
368	UASM_i_ADDIU(&p, T1, S0,
369		     offsetof(struct kvm, arch.gpa_mm.context.asid));
370#else
371	/* Set the ASID for the Guest Kernel or User */
372	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, cop0), K1);
373	UASM_i_LW(&p, T0, offsetof(struct mips_coproc, reg[MIPS_CP0_STATUS][0]),
374		  T0);
375	uasm_i_andi(&p, T0, T0, KSU_USER | ST0_ERL | ST0_EXL);
376	uasm_i_xori(&p, T0, T0, KSU_USER);
377	uasm_il_bnez(&p, &r, T0, label_kernel_asid);
378	 UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
379					   guest_kernel_mm.context.asid));
380	/* else user */
381	UASM_i_ADDIU(&p, T1, K1, offsetof(struct kvm_vcpu_arch,
382					  guest_user_mm.context.asid));
383	uasm_l_kernel_asid(&l, p);
384#endif
385
386	/* t1: contains the base of the ASID array, need to get the cpu id  */
387	/* smp_processor_id */
388	uasm_i_lw(&p, T2, offsetof(struct thread_info, cpu), GP);
389	/* index the ASID array */
390	uasm_i_sll(&p, T2, T2, ilog2(sizeof(long)));
391	UASM_i_ADDU(&p, T3, T1, T2);
392	UASM_i_LW(&p, K0, 0, T3);
393#ifdef CONFIG_MIPS_ASID_BITS_VARIABLE
394	/*
395	 * reuse ASID array offset
396	 * cpuinfo_mips is a multiple of sizeof(long)
397	 */
398	uasm_i_addiu(&p, T3, ZERO, sizeof(struct cpuinfo_mips)/sizeof(long));
399	uasm_i_mul(&p, T2, T2, T3);
400
401	UASM_i_LA_mostly(&p, AT, (long)&cpu_data[0].asid_mask);
402	UASM_i_ADDU(&p, AT, AT, T2);
403	UASM_i_LW(&p, T2, uasm_rel_lo((long)&cpu_data[0].asid_mask), AT);
404	uasm_i_and(&p, K0, K0, T2);
405#else
406	uasm_i_andi(&p, K0, K0, MIPS_ENTRYHI_ASID);
407#endif
408
409#ifndef CONFIG_KVM_MIPS_VZ
410	/*
411	 * Set up KVM T&E GVA pgd.
412	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
413	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
414	 * - but skips write into CP0_PWBase for now
415	 */
416	UASM_i_LW(&p, A0, (int)offsetof(struct mm_struct, pgd) -
417			  (int)offsetof(struct mm_struct, context.asid), T1);
418
419	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
420	uasm_i_jalr(&p, RA, T9);
421	 uasm_i_mtc0(&p, K0, C0_ENTRYHI);
422#else
423	/* Set up KVM VZ root ASID (!guestid) */
424	uasm_i_mtc0(&p, K0, C0_ENTRYHI);
425skip_asid_restore:
426#endif
427	uasm_i_ehb(&p);
428
429	/* Disable RDHWR access */
430	uasm_i_mtc0(&p, ZERO, C0_HWRENA);
431
432	/* load the guest context from VCPU and return */
433	for (i = 1; i < 32; ++i) {
434		/* Guest k0/k1 loaded later */
435		if (i == K0 || i == K1)
436			continue;
437		UASM_i_LW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
438	}
439
440#ifndef CONFIG_CPU_MIPSR6
441	/* Restore hi/lo */
442	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, hi), K1);
443	uasm_i_mthi(&p, K0);
444
445	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, lo), K1);
446	uasm_i_mtlo(&p, K0);
447#endif
448
449	/* Restore the guest's k0/k1 registers */
450	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
451	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
452
453	/* Jump to guest */
454	uasm_i_eret(&p);
455
456	uasm_resolve_relocs(relocs, labels);
457
458	return p;
459}
460
461/**
462 * kvm_mips_build_tlb_refill_exception() - Assemble TLB refill handler.
463 * @addr:	Address to start writing code.
464 * @handler:	Address of common handler (within range of @addr).
465 *
466 * Assemble TLB refill exception fast path handler for guest execution.
467 *
468 * Returns:	Next address after end of written function.
469 */
470void *kvm_mips_build_tlb_refill_exception(void *addr, void *handler)
471{
472	u32 *p = addr;
473	struct uasm_label labels[2];
474	struct uasm_reloc relocs[2];
475#ifndef CONFIG_CPU_LOONGSON64
476	struct uasm_label *l = labels;
477	struct uasm_reloc *r = relocs;
478#endif
479
480	memset(labels, 0, sizeof(labels));
481	memset(relocs, 0, sizeof(relocs));
482
483	/* Save guest k1 into scratch register */
484	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
485
486	/* Get the VCPU pointer from the VCPU scratch register */
487	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
488
489	/* Save guest k0 into VCPU structure */
490	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
491
492	/*
493	 * Some of the common tlbex code uses current_cpu_type(). For KVM we
494	 * assume symmetry and just disable preemption to silence the warning.
495	 */
496	preempt_disable();
497
498#ifdef CONFIG_CPU_LOONGSON64
499	UASM_i_MFC0(&p, K1, C0_PGD);
500	uasm_i_lddir(&p, K0, K1, 3);  /* global page dir */
501#ifndef __PAGETABLE_PMD_FOLDED
502	uasm_i_lddir(&p, K1, K0, 1);  /* middle page dir */
503#endif
504	uasm_i_ldpte(&p, K1, 0);      /* even */
505	uasm_i_ldpte(&p, K1, 1);      /* odd */
506	uasm_i_tlbwr(&p);
507#else
508	/*
509	 * Now for the actual refill bit. A lot of this can be common with the
510	 * Linux TLB refill handler, however we don't need to handle so many
511	 * cases. We only need to handle user mode refills, and user mode runs
512	 * with 32-bit addressing.
513	 *
514	 * Therefore the branch to label_vmalloc generated by build_get_pmde64()
515	 * that isn't resolved should never actually get taken and is harmless
516	 * to leave in place for now.
517	 */
518
519#ifdef CONFIG_64BIT
520	build_get_pmde64(&p, &l, &r, K0, K1); /* get pmd in K1 */
521#else
522	build_get_pgde32(&p, K0, K1); /* get pgd in K1 */
523#endif
524
525	/* we don't support huge pages yet */
526
527	build_get_ptep(&p, K0, K1);
528	build_update_entries(&p, K0, K1);
529	build_tlb_write_entry(&p, &l, &r, tlb_random);
530#endif
531
532	preempt_enable();
533
534	/* Get the VCPU pointer from the VCPU scratch register again */
535	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
536
537	/* Restore the guest's k0/k1 registers */
538	UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu, arch.gprs[K0]), K1);
539	uasm_i_ehb(&p);
540	UASM_i_MFC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
541
542	/* Jump to guest */
543	uasm_i_eret(&p);
544
545	return p;
546}
547
548/**
549 * kvm_mips_build_exception() - Assemble first level guest exception handler.
550 * @addr:	Address to start writing code.
551 * @handler:	Address of common handler (within range of @addr).
552 *
553 * Assemble exception vector code for guest execution. The generated vector will
554 * branch to the common exception handler generated by kvm_mips_build_exit().
555 *
556 * Returns:	Next address after end of written function.
557 */
558void *kvm_mips_build_exception(void *addr, void *handler)
559{
560	u32 *p = addr;
561	struct uasm_label labels[2];
562	struct uasm_reloc relocs[2];
563	struct uasm_label *l = labels;
564	struct uasm_reloc *r = relocs;
565
566	memset(labels, 0, sizeof(labels));
567	memset(relocs, 0, sizeof(relocs));
568
569	/* Save guest k1 into scratch register */
570	UASM_i_MTC0(&p, K1, scratch_tmp[0], scratch_tmp[1]);
571
572	/* Get the VCPU pointer from the VCPU scratch register */
573	UASM_i_MFC0(&p, K1, scratch_vcpu[0], scratch_vcpu[1]);
574	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
575
576	/* Save guest k0 into VCPU structure */
577	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, gprs[K0]), K1);
578
579	/* Branch to the common handler */
580	uasm_il_b(&p, &r, label_exit_common);
581	 uasm_i_nop(&p);
582
583	uasm_l_exit_common(&l, handler);
584	uasm_resolve_relocs(relocs, labels);
585
586	return p;
587}
588
589/**
590 * kvm_mips_build_exit() - Assemble common guest exit handler.
591 * @addr:	Address to start writing code.
592 *
593 * Assemble the generic guest exit handling code. This is called by the
594 * exception vectors (generated by kvm_mips_build_exception()), and calls
595 * kvm_mips_handle_exit(), then either resumes the guest or returns to the host
596 * depending on the return value.
597 *
598 * Returns:	Next address after end of written function.
599 */
600void *kvm_mips_build_exit(void *addr)
601{
602	u32 *p = addr;
603	unsigned int i;
604	struct uasm_label labels[3];
605	struct uasm_reloc relocs[3];
606	struct uasm_label *l = labels;
607	struct uasm_reloc *r = relocs;
608
609	memset(labels, 0, sizeof(labels));
610	memset(relocs, 0, sizeof(relocs));
611
612	/*
613	 * Generic Guest exception handler. We end up here when the guest
614	 * does something that causes a trap to kernel mode.
615	 *
616	 * Both k0/k1 registers will have already been saved (k0 into the vcpu
617	 * structure, and k1 into the scratch_tmp register).
618	 *
619	 * The k1 register will already contain the kvm_vcpu_arch pointer.
620	 */
621
622	/* Start saving Guest context to VCPU */
623	for (i = 0; i < 32; ++i) {
624		/* Guest k0/k1 saved later */
625		if (i == K0 || i == K1)
626			continue;
627		UASM_i_SW(&p, i, offsetof(struct kvm_vcpu_arch, gprs[i]), K1);
628	}
629
630#ifndef CONFIG_CPU_MIPSR6
631	/* We need to save hi/lo and restore them on the way out */
632	uasm_i_mfhi(&p, T0);
633	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, hi), K1);
634
635	uasm_i_mflo(&p, T0);
636	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, lo), K1);
637#endif
638
639	/* Finally save guest k1 to VCPU */
640	uasm_i_ehb(&p);
641	UASM_i_MFC0(&p, T0, scratch_tmp[0], scratch_tmp[1]);
642	UASM_i_SW(&p, T0, offsetof(struct kvm_vcpu_arch, gprs[K1]), K1);
643
644	/* Now that context has been saved, we can use other registers */
645
646	/* Restore vcpu */
647	UASM_i_MFC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
648
649	/*
650	 * Save Host level EPC, BadVaddr and Cause to VCPU, useful to process
651	 * the exception
652	 */
653	UASM_i_MFC0(&p, K0, C0_EPC);
654	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, pc), K1);
655
656	UASM_i_MFC0(&p, K0, C0_BADVADDR);
657	UASM_i_SW(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_badvaddr),
658		  K1);
659
660	uasm_i_mfc0(&p, K0, C0_CAUSE);
661	uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch, host_cp0_cause), K1);
662
663	if (cpu_has_badinstr) {
664		uasm_i_mfc0(&p, K0, C0_BADINSTR);
665		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
666					   host_cp0_badinstr), K1);
667	}
668
669	if (cpu_has_badinstrp) {
670		uasm_i_mfc0(&p, K0, C0_BADINSTRP);
671		uasm_i_sw(&p, K0, offsetof(struct kvm_vcpu_arch,
672					   host_cp0_badinstrp), K1);
673	}
674
675	/* Now restore the host state just enough to run the handlers */
676
677	/* Switch EBASE to the one used by Linux */
678	/* load up the host EBASE */
679	uasm_i_mfc0(&p, V0, C0_STATUS);
680
681	uasm_i_lui(&p, AT, ST0_BEV >> 16);
682	uasm_i_or(&p, K0, V0, AT);
683
684	uasm_i_mtc0(&p, K0, C0_STATUS);
685	uasm_i_ehb(&p);
686
687	UASM_i_LA_mostly(&p, K0, (long)&ebase);
688	UASM_i_LW(&p, K0, uasm_rel_lo((long)&ebase), K0);
689	build_set_exc_base(&p, K0);
690
691	if (raw_cpu_has_fpu) {
692		/*
693		 * If FPU is enabled, save FCR31 and clear it so that later
694		 * ctc1's don't trigger FPE for pending exceptions.
695		 */
696		uasm_i_lui(&p, AT, ST0_CU1 >> 16);
697		uasm_i_and(&p, V1, V0, AT);
698		uasm_il_beqz(&p, &r, V1, label_fpu_1);
699		 uasm_i_nop(&p);
700		uasm_i_cfc1(&p, T0, 31);
701		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.fcr31),
702			  K1);
703		uasm_i_ctc1(&p, ZERO, 31);
704		uasm_l_fpu_1(&l, p);
705	}
706
707	if (cpu_has_msa) {
708		/*
709		 * If MSA is enabled, save MSACSR and clear it so that later
710		 * instructions don't trigger MSAFPE for pending exceptions.
711		 */
712		uasm_i_mfc0(&p, T0, C0_CONFIG5);
713		uasm_i_ext(&p, T0, T0, 27, 1); /* MIPS_CONF5_MSAEN */
714		uasm_il_beqz(&p, &r, T0, label_msa_1);
715		 uasm_i_nop(&p);
716		uasm_i_cfcmsa(&p, T0, MSA_CSR);
717		uasm_i_sw(&p, T0, offsetof(struct kvm_vcpu_arch, fpu.msacsr),
718			  K1);
719		uasm_i_ctcmsa(&p, MSA_CSR, ZERO);
720		uasm_l_msa_1(&l, p);
721	}
722
723#ifdef CONFIG_KVM_MIPS_VZ
724	/* Restore host ASID */
725	if (!cpu_has_guestid) {
726		UASM_i_LW(&p, K0, offsetof(struct kvm_vcpu_arch, host_entryhi),
727			  K1);
728		UASM_i_MTC0(&p, K0, C0_ENTRYHI);
729	}
730
731	/*
732	 * Set up normal Linux process pgd.
733	 * This does roughly the same as TLBMISS_HANDLER_SETUP_PGD():
734	 * - call tlbmiss_handler_setup_pgd(mm->pgd)
735	 * - write mm->pgd into CP0_PWBase
736	 */
737	UASM_i_LW(&p, A0,
738		  offsetof(struct kvm_vcpu_arch, host_pgd), K1);
739	UASM_i_LA(&p, T9, (unsigned long)tlbmiss_handler_setup_pgd);
740	uasm_i_jalr(&p, RA, T9);
741	/* delay slot */
742	if (cpu_has_htw)
743		UASM_i_MTC0(&p, A0, C0_PWBASE);
744	else
745		uasm_i_nop(&p);
746
747	/* Clear GM bit so we don't enter guest mode when EXL is cleared */
748	uasm_i_mfc0(&p, K0, C0_GUESTCTL0);
749	uasm_i_ins(&p, K0, ZERO, MIPS_GCTL0_GM_SHIFT, 1);
750	uasm_i_mtc0(&p, K0, C0_GUESTCTL0);
751
752	/* Save GuestCtl0 so we can access GExcCode after CPU migration */
753	uasm_i_sw(&p, K0,
754		  offsetof(struct kvm_vcpu_arch, host_cp0_guestctl0), K1);
755
756	if (cpu_has_guestid) {
757		/*
758		 * Clear root mode GuestID, so that root TLB operations use the
759		 * root GuestID in the root TLB.
760		 */
761		uasm_i_mfc0(&p, T0, C0_GUESTCTL1);
762		/* Set GuestCtl1.RID = MIPS_GCTL1_ROOT_GUESTID (i.e. 0) */
763		uasm_i_ins(&p, T0, ZERO, MIPS_GCTL1_RID_SHIFT,
764			   MIPS_GCTL1_RID_WIDTH);
765		uasm_i_mtc0(&p, T0, C0_GUESTCTL1);
766	}
767#endif
768
769	/* Now that the new EBASE has been loaded, unset BEV and KSU_USER */
770	uasm_i_addiu(&p, AT, ZERO, ~(ST0_EXL | KSU_USER | ST0_IE));
771	uasm_i_and(&p, V0, V0, AT);
772	uasm_i_lui(&p, AT, ST0_CU0 >> 16);
773	uasm_i_or(&p, V0, V0, AT);
774#ifdef CONFIG_64BIT
775	uasm_i_ori(&p, V0, V0, ST0_SX | ST0_UX);
776#endif
777	uasm_i_mtc0(&p, V0, C0_STATUS);
778	uasm_i_ehb(&p);
779
780	/* Load up host GP */
781	UASM_i_LW(&p, GP, offsetof(struct kvm_vcpu_arch, host_gp), K1);
782
783	/* Need a stack before we can jump to "C" */
784	UASM_i_LW(&p, SP, offsetof(struct kvm_vcpu_arch, host_stack), K1);
785
786	/* Saved host state */
787	UASM_i_ADDIU(&p, SP, SP, -(int)sizeof(struct pt_regs));
788
789	/*
790	 * XXXKYMA do we need to load the host ASID, maybe not because the
791	 * kernel entries are marked GLOBAL, need to verify
792	 */
793
794	/* Restore host scratch registers, as we'll have clobbered them */
795	kvm_mips_build_restore_scratch(&p, K0, SP);
796
797	/* Restore RDHWR access */
798	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
799	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
800	uasm_i_mtc0(&p, K0, C0_HWRENA);
801
802	/* Jump to handler */
803	/*
804	 * XXXKYMA: not sure if this is safe, how large is the stack??
805	 * Now jump to the kvm_mips_handle_exit() to see if we can deal
806	 * with this in the kernel
807	 */
808	uasm_i_move(&p, A0, S0);
809	UASM_i_LA(&p, T9, (unsigned long)kvm_mips_handle_exit);
810	uasm_i_jalr(&p, RA, T9);
811	 UASM_i_ADDIU(&p, SP, SP, -CALLFRAME_SIZ);
812
813	uasm_resolve_relocs(relocs, labels);
814
815	p = kvm_mips_build_ret_from_exit(p);
816
817	return p;
818}
819
820/**
821 * kvm_mips_build_ret_from_exit() - Assemble guest exit return handler.
822 * @addr:	Address to start writing code.
823 *
824 * Assemble the code to handle the return from kvm_mips_handle_exit(), either
825 * resuming the guest or returning to the host depending on the return value.
826 *
827 * Returns:	Next address after end of written function.
828 */
829static void *kvm_mips_build_ret_from_exit(void *addr)
830{
831	u32 *p = addr;
832	struct uasm_label labels[2];
833	struct uasm_reloc relocs[2];
834	struct uasm_label *l = labels;
835	struct uasm_reloc *r = relocs;
836
837	memset(labels, 0, sizeof(labels));
838	memset(relocs, 0, sizeof(relocs));
839
840	/* Return from handler Make sure interrupts are disabled */
841	uasm_i_di(&p, ZERO);
842	uasm_i_ehb(&p);
843
844	/*
845	 * XXXKYMA: k0/k1 could have been blown away if we processed
846	 * an exception while we were handling the exception from the
847	 * guest, reload k1
848	 */
849
850	uasm_i_move(&p, K1, S0);
851	UASM_i_ADDIU(&p, K1, K1, offsetof(struct kvm_vcpu, arch));
852
853	/*
854	 * Check return value, should tell us if we are returning to the
855	 * host (handle I/O etc)or resuming the guest
856	 */
857	uasm_i_andi(&p, T0, V0, RESUME_HOST);
858	uasm_il_bnez(&p, &r, T0, label_return_to_host);
859	 uasm_i_nop(&p);
860
861	p = kvm_mips_build_ret_to_guest(p);
862
863	uasm_l_return_to_host(&l, p);
864	p = kvm_mips_build_ret_to_host(p);
865
866	uasm_resolve_relocs(relocs, labels);
867
868	return p;
869}
870
871/**
872 * kvm_mips_build_ret_to_guest() - Assemble code to return to the guest.
873 * @addr:	Address to start writing code.
874 *
875 * Assemble the code to handle return from the guest exit handler
876 * (kvm_mips_handle_exit()) back to the guest.
877 *
878 * Returns:	Next address after end of written function.
879 */
880static void *kvm_mips_build_ret_to_guest(void *addr)
881{
882	u32 *p = addr;
883
884	/* Put the saved pointer to vcpu (s0) back into the scratch register */
885	UASM_i_MTC0(&p, S0, scratch_vcpu[0], scratch_vcpu[1]);
886
887	/* Load up the Guest EBASE to minimize the window where BEV is set */
888	UASM_i_LW(&p, T0, offsetof(struct kvm_vcpu_arch, guest_ebase), K1);
889
890	/* Switch EBASE back to the one used by KVM */
891	uasm_i_mfc0(&p, V1, C0_STATUS);
892	uasm_i_lui(&p, AT, ST0_BEV >> 16);
893	uasm_i_or(&p, K0, V1, AT);
894	uasm_i_mtc0(&p, K0, C0_STATUS);
895	uasm_i_ehb(&p);
896	build_set_exc_base(&p, T0);
897
898	/* Setup status register for running guest in UM */
899	uasm_i_ori(&p, V1, V1, ST0_EXL | KSU_USER | ST0_IE);
900	UASM_i_LA(&p, AT, ~(ST0_CU0 | ST0_MX | ST0_SX | ST0_UX));
901	uasm_i_and(&p, V1, V1, AT);
902	uasm_i_mtc0(&p, V1, C0_STATUS);
903	uasm_i_ehb(&p);
904
905	p = kvm_mips_build_enter_guest(p);
906
907	return p;
908}
909
910/**
911 * kvm_mips_build_ret_to_host() - Assemble code to return to the host.
912 * @addr:	Address to start writing code.
913 *
914 * Assemble the code to handle return from the guest exit handler
915 * (kvm_mips_handle_exit()) back to the host, i.e. to the caller of the vcpu_run
916 * function generated by kvm_mips_build_vcpu_run().
917 *
918 * Returns:	Next address after end of written function.
919 */
920static void *kvm_mips_build_ret_to_host(void *addr)
921{
922	u32 *p = addr;
923	unsigned int i;
924
925	/* EBASE is already pointing to Linux */
926	UASM_i_LW(&p, K1, offsetof(struct kvm_vcpu_arch, host_stack), K1);
927	UASM_i_ADDIU(&p, K1, K1, -(int)sizeof(struct pt_regs));
928
929	/*
930	 * r2/v0 is the return code, shift it down by 2 (arithmetic)
931	 * to recover the err code
932	 */
933	uasm_i_sra(&p, K0, V0, 2);
934	uasm_i_move(&p, V0, K0);
935
936	/* Load context saved on the host stack */
937	for (i = 16; i < 31; ++i) {
938		if (i == 24)
939			i = 28;
940		UASM_i_LW(&p, i, offsetof(struct pt_regs, regs[i]), K1);
941	}
942
943	/* Restore RDHWR access */
944	UASM_i_LA_mostly(&p, K0, (long)&hwrena);
945	uasm_i_lw(&p, K0, uasm_rel_lo((long)&hwrena), K0);
946	uasm_i_mtc0(&p, K0, C0_HWRENA);
947
948	/* Restore RA, which is the address we will return to */
949	UASM_i_LW(&p, RA, offsetof(struct pt_regs, regs[RA]), K1);
950	uasm_i_jr(&p, RA);
951	 uasm_i_nop(&p);
952
953	return p;
954}
955
956