xref: /kernel/linux/linux-5.10/arch/mips/kvm/emulate.c (revision 8c2ecf20)
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License.  See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * KVM/MIPS: Instruction/Exception emulation
7 *
8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
10 */
11
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/ktime.h>
15#include <linux/kvm_host.h>
16#include <linux/vmalloc.h>
17#include <linux/fs.h>
18#include <linux/memblock.h>
19#include <linux/random.h>
20#include <asm/page.h>
21#include <asm/cacheflush.h>
22#include <asm/cacheops.h>
23#include <asm/cpu-info.h>
24#include <asm/mmu_context.h>
25#include <asm/tlbflush.h>
26#include <asm/inst.h>
27
28#undef CONFIG_MIPS_MT
29#include <asm/r4kcache.h>
30#define CONFIG_MIPS_MT
31
32#include "interrupt.h"
33#include "commpage.h"
34
35#include "trace.h"
36
37/*
38 * Compute the return address and do emulate branch simulation, if required.
39 * This function should be called only in branch delay slot active.
40 */
41static int kvm_compute_return_epc(struct kvm_vcpu *vcpu, unsigned long instpc,
42				  unsigned long *out)
43{
44	unsigned int dspcontrol;
45	union mips_instruction insn;
46	struct kvm_vcpu_arch *arch = &vcpu->arch;
47	long epc = instpc;
48	long nextpc;
49	int err;
50
51	if (epc & 3) {
52		kvm_err("%s: unaligned epc\n", __func__);
53		return -EINVAL;
54	}
55
56	/* Read the instruction */
57	err = kvm_get_badinstrp((u32 *)epc, vcpu, &insn.word);
58	if (err)
59		return err;
60
61	switch (insn.i_format.opcode) {
62		/* jr and jalr are in r_format format. */
63	case spec_op:
64		switch (insn.r_format.func) {
65		case jalr_op:
66			arch->gprs[insn.r_format.rd] = epc + 8;
67			fallthrough;
68		case jr_op:
69			nextpc = arch->gprs[insn.r_format.rs];
70			break;
71		default:
72			return -EINVAL;
73		}
74		break;
75
76		/*
77		 * This group contains:
78		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
79		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
80		 */
81	case bcond_op:
82		switch (insn.i_format.rt) {
83		case bltz_op:
84		case bltzl_op:
85			if ((long)arch->gprs[insn.i_format.rs] < 0)
86				epc = epc + 4 + (insn.i_format.simmediate << 2);
87			else
88				epc += 8;
89			nextpc = epc;
90			break;
91
92		case bgez_op:
93		case bgezl_op:
94			if ((long)arch->gprs[insn.i_format.rs] >= 0)
95				epc = epc + 4 + (insn.i_format.simmediate << 2);
96			else
97				epc += 8;
98			nextpc = epc;
99			break;
100
101		case bltzal_op:
102		case bltzall_op:
103			arch->gprs[31] = epc + 8;
104			if ((long)arch->gprs[insn.i_format.rs] < 0)
105				epc = epc + 4 + (insn.i_format.simmediate << 2);
106			else
107				epc += 8;
108			nextpc = epc;
109			break;
110
111		case bgezal_op:
112		case bgezall_op:
113			arch->gprs[31] = epc + 8;
114			if ((long)arch->gprs[insn.i_format.rs] >= 0)
115				epc = epc + 4 + (insn.i_format.simmediate << 2);
116			else
117				epc += 8;
118			nextpc = epc;
119			break;
120		case bposge32_op:
121			if (!cpu_has_dsp) {
122				kvm_err("%s: DSP branch but not DSP ASE\n",
123					__func__);
124				return -EINVAL;
125			}
126
127			dspcontrol = rddsp(0x01);
128
129			if (dspcontrol >= 32)
130				epc = epc + 4 + (insn.i_format.simmediate << 2);
131			else
132				epc += 8;
133			nextpc = epc;
134			break;
135		default:
136			return -EINVAL;
137		}
138		break;
139
140		/* These are unconditional and in j_format. */
141	case jal_op:
142		arch->gprs[31] = instpc + 8;
143		fallthrough;
144	case j_op:
145		epc += 4;
146		epc >>= 28;
147		epc <<= 28;
148		epc |= (insn.j_format.target << 2);
149		nextpc = epc;
150		break;
151
152		/* These are conditional and in i_format. */
153	case beq_op:
154	case beql_op:
155		if (arch->gprs[insn.i_format.rs] ==
156		    arch->gprs[insn.i_format.rt])
157			epc = epc + 4 + (insn.i_format.simmediate << 2);
158		else
159			epc += 8;
160		nextpc = epc;
161		break;
162
163	case bne_op:
164	case bnel_op:
165		if (arch->gprs[insn.i_format.rs] !=
166		    arch->gprs[insn.i_format.rt])
167			epc = epc + 4 + (insn.i_format.simmediate << 2);
168		else
169			epc += 8;
170		nextpc = epc;
171		break;
172
173	case blez_op:	/* POP06 */
174#ifndef CONFIG_CPU_MIPSR6
175	case blezl_op:	/* removed in R6 */
176#endif
177		if (insn.i_format.rt != 0)
178			goto compact_branch;
179		if ((long)arch->gprs[insn.i_format.rs] <= 0)
180			epc = epc + 4 + (insn.i_format.simmediate << 2);
181		else
182			epc += 8;
183		nextpc = epc;
184		break;
185
186	case bgtz_op:	/* POP07 */
187#ifndef CONFIG_CPU_MIPSR6
188	case bgtzl_op:	/* removed in R6 */
189#endif
190		if (insn.i_format.rt != 0)
191			goto compact_branch;
192		if ((long)arch->gprs[insn.i_format.rs] > 0)
193			epc = epc + 4 + (insn.i_format.simmediate << 2);
194		else
195			epc += 8;
196		nextpc = epc;
197		break;
198
199		/* And now the FPA/cp1 branch instructions. */
200	case cop1_op:
201		kvm_err("%s: unsupported cop1_op\n", __func__);
202		return -EINVAL;
203
204#ifdef CONFIG_CPU_MIPSR6
205	/* R6 added the following compact branches with forbidden slots */
206	case blezl_op:	/* POP26 */
207	case bgtzl_op:	/* POP27 */
208		/* only rt == 0 isn't compact branch */
209		if (insn.i_format.rt != 0)
210			goto compact_branch;
211		return -EINVAL;
212	case pop10_op:
213	case pop30_op:
214		/* only rs == rt == 0 is reserved, rest are compact branches */
215		if (insn.i_format.rs != 0 || insn.i_format.rt != 0)
216			goto compact_branch;
217		return -EINVAL;
218	case pop66_op:
219	case pop76_op:
220		/* only rs == 0 isn't compact branch */
221		if (insn.i_format.rs != 0)
222			goto compact_branch;
223		return -EINVAL;
224compact_branch:
225		/*
226		 * If we've hit an exception on the forbidden slot, then
227		 * the branch must not have been taken.
228		 */
229		epc += 8;
230		nextpc = epc;
231		break;
232#else
233compact_branch:
234		/* Fall through - Compact branches not supported before R6 */
235#endif
236	default:
237		return -EINVAL;
238	}
239
240	*out = nextpc;
241	return 0;
242}
243
244enum emulation_result update_pc(struct kvm_vcpu *vcpu, u32 cause)
245{
246	int err;
247
248	if (cause & CAUSEF_BD) {
249		err = kvm_compute_return_epc(vcpu, vcpu->arch.pc,
250					     &vcpu->arch.pc);
251		if (err)
252			return EMULATE_FAIL;
253	} else {
254		vcpu->arch.pc += 4;
255	}
256
257	kvm_debug("update_pc(): New PC: %#lx\n", vcpu->arch.pc);
258
259	return EMULATE_DONE;
260}
261
262/**
263 * kvm_get_badinstr() - Get bad instruction encoding.
264 * @opc:	Guest pointer to faulting instruction.
265 * @vcpu:	KVM VCPU information.
266 *
267 * Gets the instruction encoding of the faulting instruction, using the saved
268 * BadInstr register value if it exists, otherwise falling back to reading guest
269 * memory at @opc.
270 *
271 * Returns:	The instruction encoding of the faulting instruction.
272 */
273int kvm_get_badinstr(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
274{
275	if (cpu_has_badinstr) {
276		*out = vcpu->arch.host_cp0_badinstr;
277		return 0;
278	} else {
279		return kvm_get_inst(opc, vcpu, out);
280	}
281}
282
283/**
284 * kvm_get_badinstrp() - Get bad prior instruction encoding.
285 * @opc:	Guest pointer to prior faulting instruction.
286 * @vcpu:	KVM VCPU information.
287 *
288 * Gets the instruction encoding of the prior faulting instruction (the branch
289 * containing the delay slot which faulted), using the saved BadInstrP register
290 * value if it exists, otherwise falling back to reading guest memory at @opc.
291 *
292 * Returns:	The instruction encoding of the prior faulting instruction.
293 */
294int kvm_get_badinstrp(u32 *opc, struct kvm_vcpu *vcpu, u32 *out)
295{
296	if (cpu_has_badinstrp) {
297		*out = vcpu->arch.host_cp0_badinstrp;
298		return 0;
299	} else {
300		return kvm_get_inst(opc, vcpu, out);
301	}
302}
303
304/**
305 * kvm_mips_count_disabled() - Find whether the CP0_Count timer is disabled.
306 * @vcpu:	Virtual CPU.
307 *
308 * Returns:	1 if the CP0_Count timer is disabled by either the guest
309 *		CP0_Cause.DC bit or the count_ctl.DC bit.
310 *		0 otherwise (in which case CP0_Count timer is running).
311 */
312int kvm_mips_count_disabled(struct kvm_vcpu *vcpu)
313{
314	struct mips_coproc *cop0 = vcpu->arch.cop0;
315
316	return	(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) ||
317		(kvm_read_c0_guest_cause(cop0) & CAUSEF_DC);
318}
319
320/**
321 * kvm_mips_ktime_to_count() - Scale ktime_t to a 32-bit count.
322 *
323 * Caches the dynamic nanosecond bias in vcpu->arch.count_dyn_bias.
324 *
325 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
326 */
327static u32 kvm_mips_ktime_to_count(struct kvm_vcpu *vcpu, ktime_t now)
328{
329	s64 now_ns, periods;
330	u64 delta;
331
332	now_ns = ktime_to_ns(now);
333	delta = now_ns + vcpu->arch.count_dyn_bias;
334
335	if (delta >= vcpu->arch.count_period) {
336		/* If delta is out of safe range the bias needs adjusting */
337		periods = div64_s64(now_ns, vcpu->arch.count_period);
338		vcpu->arch.count_dyn_bias = -periods * vcpu->arch.count_period;
339		/* Recalculate delta with new bias */
340		delta = now_ns + vcpu->arch.count_dyn_bias;
341	}
342
343	/*
344	 * We've ensured that:
345	 *   delta < count_period
346	 *
347	 * Therefore the intermediate delta*count_hz will never overflow since
348	 * at the boundary condition:
349	 *   delta = count_period
350	 *   delta = NSEC_PER_SEC * 2^32 / count_hz
351	 *   delta * count_hz = NSEC_PER_SEC * 2^32
352	 */
353	return div_u64(delta * vcpu->arch.count_hz, NSEC_PER_SEC);
354}
355
356/**
357 * kvm_mips_count_time() - Get effective current time.
358 * @vcpu:	Virtual CPU.
359 *
360 * Get effective monotonic ktime. This is usually a straightforward ktime_get(),
361 * except when the master disable bit is set in count_ctl, in which case it is
362 * count_resume, i.e. the time that the count was disabled.
363 *
364 * Returns:	Effective monotonic ktime for CP0_Count.
365 */
366static inline ktime_t kvm_mips_count_time(struct kvm_vcpu *vcpu)
367{
368	if (unlikely(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
369		return vcpu->arch.count_resume;
370
371	return ktime_get();
372}
373
374/**
375 * kvm_mips_read_count_running() - Read the current count value as if running.
376 * @vcpu:	Virtual CPU.
377 * @now:	Kernel time to read CP0_Count at.
378 *
379 * Returns the current guest CP0_Count register at time @now and handles if the
380 * timer interrupt is pending and hasn't been handled yet.
381 *
382 * Returns:	The current value of the guest CP0_Count register.
383 */
384static u32 kvm_mips_read_count_running(struct kvm_vcpu *vcpu, ktime_t now)
385{
386	struct mips_coproc *cop0 = vcpu->arch.cop0;
387	ktime_t expires, threshold;
388	u32 count, compare;
389	int running;
390
391	/* Calculate the biased and scaled guest CP0_Count */
392	count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
393	compare = kvm_read_c0_guest_compare(cop0);
394
395	/*
396	 * Find whether CP0_Count has reached the closest timer interrupt. If
397	 * not, we shouldn't inject it.
398	 */
399	if ((s32)(count - compare) < 0)
400		return count;
401
402	/*
403	 * The CP0_Count we're going to return has already reached the closest
404	 * timer interrupt. Quickly check if it really is a new interrupt by
405	 * looking at whether the interval until the hrtimer expiry time is
406	 * less than 1/4 of the timer period.
407	 */
408	expires = hrtimer_get_expires(&vcpu->arch.comparecount_timer);
409	threshold = ktime_add_ns(now, vcpu->arch.count_period / 4);
410	if (ktime_before(expires, threshold)) {
411		/*
412		 * Cancel it while we handle it so there's no chance of
413		 * interference with the timeout handler.
414		 */
415		running = hrtimer_cancel(&vcpu->arch.comparecount_timer);
416
417		/* Nothing should be waiting on the timeout */
418		kvm_mips_callbacks->queue_timer_int(vcpu);
419
420		/*
421		 * Restart the timer if it was running based on the expiry time
422		 * we read, so that we don't push it back 2 periods.
423		 */
424		if (running) {
425			expires = ktime_add_ns(expires,
426					       vcpu->arch.count_period);
427			hrtimer_start(&vcpu->arch.comparecount_timer, expires,
428				      HRTIMER_MODE_ABS);
429		}
430	}
431
432	return count;
433}
434
435/**
436 * kvm_mips_read_count() - Read the current count value.
437 * @vcpu:	Virtual CPU.
438 *
439 * Read the current guest CP0_Count value, taking into account whether the timer
440 * is stopped.
441 *
442 * Returns:	The current guest CP0_Count value.
443 */
444u32 kvm_mips_read_count(struct kvm_vcpu *vcpu)
445{
446	struct mips_coproc *cop0 = vcpu->arch.cop0;
447
448	/* If count disabled just read static copy of count */
449	if (kvm_mips_count_disabled(vcpu))
450		return kvm_read_c0_guest_count(cop0);
451
452	return kvm_mips_read_count_running(vcpu, ktime_get());
453}
454
455/**
456 * kvm_mips_freeze_hrtimer() - Safely stop the hrtimer.
457 * @vcpu:	Virtual CPU.
458 * @count:	Output pointer for CP0_Count value at point of freeze.
459 *
460 * Freeze the hrtimer safely and return both the ktime and the CP0_Count value
461 * at the point it was frozen. It is guaranteed that any pending interrupts at
462 * the point it was frozen are handled, and none after that point.
463 *
464 * This is useful where the time/CP0_Count is needed in the calculation of the
465 * new parameters.
466 *
467 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
468 *
469 * Returns:	The ktime at the point of freeze.
470 */
471ktime_t kvm_mips_freeze_hrtimer(struct kvm_vcpu *vcpu, u32 *count)
472{
473	ktime_t now;
474
475	/* stop hrtimer before finding time */
476	hrtimer_cancel(&vcpu->arch.comparecount_timer);
477	now = ktime_get();
478
479	/* find count at this point and handle pending hrtimer */
480	*count = kvm_mips_read_count_running(vcpu, now);
481
482	return now;
483}
484
485/**
486 * kvm_mips_resume_hrtimer() - Resume hrtimer, updating expiry.
487 * @vcpu:	Virtual CPU.
488 * @now:	ktime at point of resume.
489 * @count:	CP0_Count at point of resume.
490 *
491 * Resumes the timer and updates the timer expiry based on @now and @count.
492 * This can be used in conjunction with kvm_mips_freeze_timer() when timer
493 * parameters need to be changed.
494 *
495 * It is guaranteed that a timer interrupt immediately after resume will be
496 * handled, but not if CP_Compare is exactly at @count. That case is already
497 * handled by kvm_mips_freeze_timer().
498 *
499 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is running).
500 */
501static void kvm_mips_resume_hrtimer(struct kvm_vcpu *vcpu,
502				    ktime_t now, u32 count)
503{
504	struct mips_coproc *cop0 = vcpu->arch.cop0;
505	u32 compare;
506	u64 delta;
507	ktime_t expire;
508
509	/* Calculate timeout (wrap 0 to 2^32) */
510	compare = kvm_read_c0_guest_compare(cop0);
511	delta = (u64)(u32)(compare - count - 1) + 1;
512	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
513	expire = ktime_add_ns(now, delta);
514
515	/* Update hrtimer to use new timeout */
516	hrtimer_cancel(&vcpu->arch.comparecount_timer);
517	hrtimer_start(&vcpu->arch.comparecount_timer, expire, HRTIMER_MODE_ABS);
518}
519
520/**
521 * kvm_mips_restore_hrtimer() - Restore hrtimer after a gap, updating expiry.
522 * @vcpu:	Virtual CPU.
523 * @before:	Time before Count was saved, lower bound of drift calculation.
524 * @count:	CP0_Count at point of restore.
525 * @min_drift:	Minimum amount of drift permitted before correction.
526 *		Must be <= 0.
527 *
528 * Restores the timer from a particular @count, accounting for drift. This can
529 * be used in conjunction with kvm_mips_freeze_timer() when a hardware timer is
530 * to be used for a period of time, but the exact ktime corresponding to the
531 * final Count that must be restored is not known.
532 *
533 * It is gauranteed that a timer interrupt immediately after restore will be
534 * handled, but not if CP0_Compare is exactly at @count. That case should
535 * already be handled when the hardware timer state is saved.
536 *
537 * Assumes !kvm_mips_count_disabled(@vcpu) (guest CP0_Count timer is not
538 * stopped).
539 *
540 * Returns:	Amount of correction to count_bias due to drift.
541 */
542int kvm_mips_restore_hrtimer(struct kvm_vcpu *vcpu, ktime_t before,
543			     u32 count, int min_drift)
544{
545	ktime_t now, count_time;
546	u32 now_count, before_count;
547	u64 delta;
548	int drift, ret = 0;
549
550	/* Calculate expected count at before */
551	before_count = vcpu->arch.count_bias +
552			kvm_mips_ktime_to_count(vcpu, before);
553
554	/*
555	 * Detect significantly negative drift, where count is lower than
556	 * expected. Some negative drift is expected when hardware counter is
557	 * set after kvm_mips_freeze_timer(), and it is harmless to allow the
558	 * time to jump forwards a little, within reason. If the drift is too
559	 * significant, adjust the bias to avoid a big Guest.CP0_Count jump.
560	 */
561	drift = count - before_count;
562	if (drift < min_drift) {
563		count_time = before;
564		vcpu->arch.count_bias += drift;
565		ret = drift;
566		goto resume;
567	}
568
569	/* Calculate expected count right now */
570	now = ktime_get();
571	now_count = vcpu->arch.count_bias + kvm_mips_ktime_to_count(vcpu, now);
572
573	/*
574	 * Detect positive drift, where count is higher than expected, and
575	 * adjust the bias to avoid guest time going backwards.
576	 */
577	drift = count - now_count;
578	if (drift > 0) {
579		count_time = now;
580		vcpu->arch.count_bias += drift;
581		ret = drift;
582		goto resume;
583	}
584
585	/* Subtract nanosecond delta to find ktime when count was read */
586	delta = (u64)(u32)(now_count - count);
587	delta = div_u64(delta * NSEC_PER_SEC, vcpu->arch.count_hz);
588	count_time = ktime_sub_ns(now, delta);
589
590resume:
591	/* Resume using the calculated ktime */
592	kvm_mips_resume_hrtimer(vcpu, count_time, count);
593	return ret;
594}
595
596/**
597 * kvm_mips_write_count() - Modify the count and update timer.
598 * @vcpu:	Virtual CPU.
599 * @count:	Guest CP0_Count value to set.
600 *
601 * Sets the CP0_Count value and updates the timer accordingly.
602 */
603void kvm_mips_write_count(struct kvm_vcpu *vcpu, u32 count)
604{
605	struct mips_coproc *cop0 = vcpu->arch.cop0;
606	ktime_t now;
607
608	/* Calculate bias */
609	now = kvm_mips_count_time(vcpu);
610	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
611
612	if (kvm_mips_count_disabled(vcpu))
613		/* The timer's disabled, adjust the static count */
614		kvm_write_c0_guest_count(cop0, count);
615	else
616		/* Update timeout */
617		kvm_mips_resume_hrtimer(vcpu, now, count);
618}
619
620/**
621 * kvm_mips_init_count() - Initialise timer.
622 * @vcpu:	Virtual CPU.
623 * @count_hz:	Frequency of timer.
624 *
625 * Initialise the timer to the specified frequency, zero it, and set it going if
626 * it's enabled.
627 */
628void kvm_mips_init_count(struct kvm_vcpu *vcpu, unsigned long count_hz)
629{
630	vcpu->arch.count_hz = count_hz;
631	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
632	vcpu->arch.count_dyn_bias = 0;
633
634	/* Starting at 0 */
635	kvm_mips_write_count(vcpu, 0);
636}
637
638/**
639 * kvm_mips_set_count_hz() - Update the frequency of the timer.
640 * @vcpu:	Virtual CPU.
641 * @count_hz:	Frequency of CP0_Count timer in Hz.
642 *
643 * Change the frequency of the CP0_Count timer. This is done atomically so that
644 * CP0_Count is continuous and no timer interrupt is lost.
645 *
646 * Returns:	-EINVAL if @count_hz is out of range.
647 *		0 on success.
648 */
649int kvm_mips_set_count_hz(struct kvm_vcpu *vcpu, s64 count_hz)
650{
651	struct mips_coproc *cop0 = vcpu->arch.cop0;
652	int dc;
653	ktime_t now;
654	u32 count;
655
656	/* ensure the frequency is in a sensible range... */
657	if (count_hz <= 0 || count_hz > NSEC_PER_SEC)
658		return -EINVAL;
659	/* ... and has actually changed */
660	if (vcpu->arch.count_hz == count_hz)
661		return 0;
662
663	/* Safely freeze timer so we can keep it continuous */
664	dc = kvm_mips_count_disabled(vcpu);
665	if (dc) {
666		now = kvm_mips_count_time(vcpu);
667		count = kvm_read_c0_guest_count(cop0);
668	} else {
669		now = kvm_mips_freeze_hrtimer(vcpu, &count);
670	}
671
672	/* Update the frequency */
673	vcpu->arch.count_hz = count_hz;
674	vcpu->arch.count_period = div_u64((u64)NSEC_PER_SEC << 32, count_hz);
675	vcpu->arch.count_dyn_bias = 0;
676
677	/* Calculate adjusted bias so dynamic count is unchanged */
678	vcpu->arch.count_bias = count - kvm_mips_ktime_to_count(vcpu, now);
679
680	/* Update and resume hrtimer */
681	if (!dc)
682		kvm_mips_resume_hrtimer(vcpu, now, count);
683	return 0;
684}
685
686/**
687 * kvm_mips_write_compare() - Modify compare and update timer.
688 * @vcpu:	Virtual CPU.
689 * @compare:	New CP0_Compare value.
690 * @ack:	Whether to acknowledge timer interrupt.
691 *
692 * Update CP0_Compare to a new value and update the timeout.
693 * If @ack, atomically acknowledge any pending timer interrupt, otherwise ensure
694 * any pending timer interrupt is preserved.
695 */
696void kvm_mips_write_compare(struct kvm_vcpu *vcpu, u32 compare, bool ack)
697{
698	struct mips_coproc *cop0 = vcpu->arch.cop0;
699	int dc;
700	u32 old_compare = kvm_read_c0_guest_compare(cop0);
701	s32 delta = compare - old_compare;
702	u32 cause;
703	ktime_t now = ktime_set(0, 0); /* silence bogus GCC warning */
704	u32 count;
705
706	/* if unchanged, must just be an ack */
707	if (old_compare == compare) {
708		if (!ack)
709			return;
710		kvm_mips_callbacks->dequeue_timer_int(vcpu);
711		kvm_write_c0_guest_compare(cop0, compare);
712		return;
713	}
714
715	/*
716	 * If guest CP0_Compare moves forward, CP0_GTOffset should be adjusted
717	 * too to prevent guest CP0_Count hitting guest CP0_Compare.
718	 *
719	 * The new GTOffset corresponds to the new value of CP0_Compare, and is
720	 * set prior to it being written into the guest context. We disable
721	 * preemption until the new value is written to prevent restore of a
722	 * GTOffset corresponding to the old CP0_Compare value.
723	 */
724	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta > 0) {
725		preempt_disable();
726		write_c0_gtoffset(compare - read_c0_count());
727		back_to_back_c0_hazard();
728	}
729
730	/* freeze_hrtimer() takes care of timer interrupts <= count */
731	dc = kvm_mips_count_disabled(vcpu);
732	if (!dc)
733		now = kvm_mips_freeze_hrtimer(vcpu, &count);
734
735	if (ack)
736		kvm_mips_callbacks->dequeue_timer_int(vcpu);
737	else if (IS_ENABLED(CONFIG_KVM_MIPS_VZ))
738		/*
739		 * With VZ, writing CP0_Compare acks (clears) CP0_Cause.TI, so
740		 * preserve guest CP0_Cause.TI if we don't want to ack it.
741		 */
742		cause = kvm_read_c0_guest_cause(cop0);
743
744	kvm_write_c0_guest_compare(cop0, compare);
745
746	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ)) {
747		if (delta > 0)
748			preempt_enable();
749
750		back_to_back_c0_hazard();
751
752		if (!ack && cause & CAUSEF_TI)
753			kvm_write_c0_guest_cause(cop0, cause);
754	}
755
756	/* resume_hrtimer() takes care of timer interrupts > count */
757	if (!dc)
758		kvm_mips_resume_hrtimer(vcpu, now, count);
759
760	/*
761	 * If guest CP0_Compare is moving backward, we delay CP0_GTOffset change
762	 * until after the new CP0_Compare is written, otherwise new guest
763	 * CP0_Count could hit new guest CP0_Compare.
764	 */
765	if (IS_ENABLED(CONFIG_KVM_MIPS_VZ) && delta <= 0)
766		write_c0_gtoffset(compare - read_c0_count());
767}
768
769/**
770 * kvm_mips_count_disable() - Disable count.
771 * @vcpu:	Virtual CPU.
772 *
773 * Disable the CP0_Count timer. A timer interrupt on or before the final stop
774 * time will be handled but not after.
775 *
776 * Assumes CP0_Count was previously enabled but now Guest.CP0_Cause.DC or
777 * count_ctl.DC has been set (count disabled).
778 *
779 * Returns:	The time that the timer was stopped.
780 */
781static ktime_t kvm_mips_count_disable(struct kvm_vcpu *vcpu)
782{
783	struct mips_coproc *cop0 = vcpu->arch.cop0;
784	u32 count;
785	ktime_t now;
786
787	/* Stop hrtimer */
788	hrtimer_cancel(&vcpu->arch.comparecount_timer);
789
790	/* Set the static count from the dynamic count, handling pending TI */
791	now = ktime_get();
792	count = kvm_mips_read_count_running(vcpu, now);
793	kvm_write_c0_guest_count(cop0, count);
794
795	return now;
796}
797
798/**
799 * kvm_mips_count_disable_cause() - Disable count using CP0_Cause.DC.
800 * @vcpu:	Virtual CPU.
801 *
802 * Disable the CP0_Count timer and set CP0_Cause.DC. A timer interrupt on or
803 * before the final stop time will be handled if the timer isn't disabled by
804 * count_ctl.DC, but not after.
805 *
806 * Assumes CP0_Cause.DC is clear (count enabled).
807 */
808void kvm_mips_count_disable_cause(struct kvm_vcpu *vcpu)
809{
810	struct mips_coproc *cop0 = vcpu->arch.cop0;
811
812	kvm_set_c0_guest_cause(cop0, CAUSEF_DC);
813	if (!(vcpu->arch.count_ctl & KVM_REG_MIPS_COUNT_CTL_DC))
814		kvm_mips_count_disable(vcpu);
815}
816
817/**
818 * kvm_mips_count_enable_cause() - Enable count using CP0_Cause.DC.
819 * @vcpu:	Virtual CPU.
820 *
821 * Enable the CP0_Count timer and clear CP0_Cause.DC. A timer interrupt after
822 * the start time will be handled if the timer isn't disabled by count_ctl.DC,
823 * potentially before even returning, so the caller should be careful with
824 * ordering of CP0_Cause modifications so as not to lose it.
825 *
826 * Assumes CP0_Cause.DC is set (count disabled).
827 */
828void kvm_mips_count_enable_cause(struct kvm_vcpu *vcpu)
829{
830	struct mips_coproc *cop0 = vcpu->arch.cop0;
831	u32 count;
832
833	kvm_clear_c0_guest_cause(cop0, CAUSEF_DC);
834
835	/*
836	 * Set the dynamic count to match the static count.
837	 * This starts the hrtimer if count_ctl.DC allows it.
838	 * Otherwise it conveniently updates the biases.
839	 */
840	count = kvm_read_c0_guest_count(cop0);
841	kvm_mips_write_count(vcpu, count);
842}
843
844/**
845 * kvm_mips_set_count_ctl() - Update the count control KVM register.
846 * @vcpu:	Virtual CPU.
847 * @count_ctl:	Count control register new value.
848 *
849 * Set the count control KVM register. The timer is updated accordingly.
850 *
851 * Returns:	-EINVAL if reserved bits are set.
852 *		0 on success.
853 */
854int kvm_mips_set_count_ctl(struct kvm_vcpu *vcpu, s64 count_ctl)
855{
856	struct mips_coproc *cop0 = vcpu->arch.cop0;
857	s64 changed = count_ctl ^ vcpu->arch.count_ctl;
858	s64 delta;
859	ktime_t expire, now;
860	u32 count, compare;
861
862	/* Only allow defined bits to be changed */
863	if (changed & ~(s64)(KVM_REG_MIPS_COUNT_CTL_DC))
864		return -EINVAL;
865
866	/* Apply new value */
867	vcpu->arch.count_ctl = count_ctl;
868
869	/* Master CP0_Count disable */
870	if (changed & KVM_REG_MIPS_COUNT_CTL_DC) {
871		/* Is CP0_Cause.DC already disabling CP0_Count? */
872		if (kvm_read_c0_guest_cause(cop0) & CAUSEF_DC) {
873			if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC)
874				/* Just record the current time */
875				vcpu->arch.count_resume = ktime_get();
876		} else if (count_ctl & KVM_REG_MIPS_COUNT_CTL_DC) {
877			/* disable timer and record current time */
878			vcpu->arch.count_resume = kvm_mips_count_disable(vcpu);
879		} else {
880			/*
881			 * Calculate timeout relative to static count at resume
882			 * time (wrap 0 to 2^32).
883			 */
884			count = kvm_read_c0_guest_count(cop0);
885			compare = kvm_read_c0_guest_compare(cop0);
886			delta = (u64)(u32)(compare - count - 1) + 1;
887			delta = div_u64(delta * NSEC_PER_SEC,
888					vcpu->arch.count_hz);
889			expire = ktime_add_ns(vcpu->arch.count_resume, delta);
890
891			/* Handle pending interrupt */
892			now = ktime_get();
893			if (ktime_compare(now, expire) >= 0)
894				/* Nothing should be waiting on the timeout */
895				kvm_mips_callbacks->queue_timer_int(vcpu);
896
897			/* Resume hrtimer without changing bias */
898			count = kvm_mips_read_count_running(vcpu, now);
899			kvm_mips_resume_hrtimer(vcpu, now, count);
900		}
901	}
902
903	return 0;
904}
905
906/**
907 * kvm_mips_set_count_resume() - Update the count resume KVM register.
908 * @vcpu:		Virtual CPU.
909 * @count_resume:	Count resume register new value.
910 *
911 * Set the count resume KVM register.
912 *
913 * Returns:	-EINVAL if out of valid range (0..now).
914 *		0 on success.
915 */
916int kvm_mips_set_count_resume(struct kvm_vcpu *vcpu, s64 count_resume)
917{
918	/*
919	 * It doesn't make sense for the resume time to be in the future, as it
920	 * would be possible for the next interrupt to be more than a full
921	 * period in the future.
922	 */
923	if (count_resume < 0 || count_resume > ktime_to_ns(ktime_get()))
924		return -EINVAL;
925
926	vcpu->arch.count_resume = ns_to_ktime(count_resume);
927	return 0;
928}
929
930/**
931 * kvm_mips_count_timeout() - Push timer forward on timeout.
932 * @vcpu:	Virtual CPU.
933 *
934 * Handle an hrtimer event by push the hrtimer forward a period.
935 *
936 * Returns:	The hrtimer_restart value to return to the hrtimer subsystem.
937 */
938enum hrtimer_restart kvm_mips_count_timeout(struct kvm_vcpu *vcpu)
939{
940	/* Add the Count period to the current expiry time */
941	hrtimer_add_expires_ns(&vcpu->arch.comparecount_timer,
942			       vcpu->arch.count_period);
943	return HRTIMER_RESTART;
944}
945
946enum emulation_result kvm_mips_emul_eret(struct kvm_vcpu *vcpu)
947{
948	struct mips_coproc *cop0 = vcpu->arch.cop0;
949	enum emulation_result er = EMULATE_DONE;
950
951	if (kvm_read_c0_guest_status(cop0) & ST0_ERL) {
952		kvm_clear_c0_guest_status(cop0, ST0_ERL);
953		vcpu->arch.pc = kvm_read_c0_guest_errorepc(cop0);
954	} else if (kvm_read_c0_guest_status(cop0) & ST0_EXL) {
955		kvm_debug("[%#lx] ERET to %#lx\n", vcpu->arch.pc,
956			  kvm_read_c0_guest_epc(cop0));
957		kvm_clear_c0_guest_status(cop0, ST0_EXL);
958		vcpu->arch.pc = kvm_read_c0_guest_epc(cop0);
959
960	} else {
961		kvm_err("[%#lx] ERET when MIPS_SR_EXL|MIPS_SR_ERL == 0\n",
962			vcpu->arch.pc);
963		er = EMULATE_FAIL;
964	}
965
966	return er;
967}
968
969enum emulation_result kvm_mips_emul_wait(struct kvm_vcpu *vcpu)
970{
971	kvm_debug("[%#lx] !!!WAIT!!! (%#lx)\n", vcpu->arch.pc,
972		  vcpu->arch.pending_exceptions);
973
974	++vcpu->stat.wait_exits;
975	trace_kvm_exit(vcpu, KVM_TRACE_EXIT_WAIT);
976	if (!vcpu->arch.pending_exceptions) {
977		kvm_vz_lose_htimer(vcpu);
978		vcpu->arch.wait = 1;
979		kvm_vcpu_block(vcpu);
980
981		/*
982		 * We we are runnable, then definitely go off to user space to
983		 * check if any I/O interrupts are pending.
984		 */
985		if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) {
986			kvm_clear_request(KVM_REQ_UNHALT, vcpu);
987			vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
988		}
989	}
990
991	return EMULATE_DONE;
992}
993
994static void kvm_mips_change_entryhi(struct kvm_vcpu *vcpu,
995				    unsigned long entryhi)
996{
997	struct mips_coproc *cop0 = vcpu->arch.cop0;
998	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
999	int cpu, i;
1000	u32 nasid = entryhi & KVM_ENTRYHI_ASID;
1001
1002	if (((kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID) != nasid)) {
1003		trace_kvm_asid_change(vcpu, kvm_read_c0_guest_entryhi(cop0) &
1004				      KVM_ENTRYHI_ASID, nasid);
1005
1006		/*
1007		 * Flush entries from the GVA page tables.
1008		 * Guest user page table will get flushed lazily on re-entry to
1009		 * guest user if the guest ASID actually changes.
1010		 */
1011		kvm_mips_flush_gva_pt(kern_mm->pgd, KMF_KERN);
1012
1013		/*
1014		 * Regenerate/invalidate kernel MMU context.
1015		 * The user MMU context will be regenerated lazily on re-entry
1016		 * to guest user if the guest ASID actually changes.
1017		 */
1018		preempt_disable();
1019		cpu = smp_processor_id();
1020		get_new_mmu_context(kern_mm);
1021		for_each_possible_cpu(i)
1022			if (i != cpu)
1023				set_cpu_context(i, kern_mm, 0);
1024		preempt_enable();
1025	}
1026	kvm_write_c0_guest_entryhi(cop0, entryhi);
1027}
1028
1029enum emulation_result kvm_mips_emul_tlbr(struct kvm_vcpu *vcpu)
1030{
1031	struct mips_coproc *cop0 = vcpu->arch.cop0;
1032	struct kvm_mips_tlb *tlb;
1033	unsigned long pc = vcpu->arch.pc;
1034	int index;
1035
1036	index = kvm_read_c0_guest_index(cop0);
1037	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1038		/* UNDEFINED */
1039		kvm_debug("[%#lx] TLBR Index %#x out of range\n", pc, index);
1040		index &= KVM_MIPS_GUEST_TLB_SIZE - 1;
1041	}
1042
1043	tlb = &vcpu->arch.guest_tlb[index];
1044	kvm_write_c0_guest_pagemask(cop0, tlb->tlb_mask);
1045	kvm_write_c0_guest_entrylo0(cop0, tlb->tlb_lo[0]);
1046	kvm_write_c0_guest_entrylo1(cop0, tlb->tlb_lo[1]);
1047	kvm_mips_change_entryhi(vcpu, tlb->tlb_hi);
1048
1049	return EMULATE_DONE;
1050}
1051
1052/**
1053 * kvm_mips_invalidate_guest_tlb() - Indicates a change in guest MMU map.
1054 * @vcpu:	VCPU with changed mappings.
1055 * @tlb:	TLB entry being removed.
1056 *
1057 * This is called to indicate a single change in guest MMU mappings, so that we
1058 * can arrange TLB flushes on this and other CPUs.
1059 */
1060static void kvm_mips_invalidate_guest_tlb(struct kvm_vcpu *vcpu,
1061					  struct kvm_mips_tlb *tlb)
1062{
1063	struct mm_struct *kern_mm = &vcpu->arch.guest_kernel_mm;
1064	struct mm_struct *user_mm = &vcpu->arch.guest_user_mm;
1065	int cpu, i;
1066	bool user;
1067
1068	/* No need to flush for entries which are already invalid */
1069	if (!((tlb->tlb_lo[0] | tlb->tlb_lo[1]) & ENTRYLO_V))
1070		return;
1071	/* Don't touch host kernel page tables or TLB mappings */
1072	if ((unsigned long)tlb->tlb_hi > 0x7fffffff)
1073		return;
1074	/* User address space doesn't need flushing for KSeg2/3 changes */
1075	user = tlb->tlb_hi < KVM_GUEST_KSEG0;
1076
1077	preempt_disable();
1078
1079	/* Invalidate page table entries */
1080	kvm_trap_emul_invalidate_gva(vcpu, tlb->tlb_hi & VPN2_MASK, user);
1081
1082	/*
1083	 * Probe the shadow host TLB for the entry being overwritten, if one
1084	 * matches, invalidate it
1085	 */
1086	kvm_mips_host_tlb_inv(vcpu, tlb->tlb_hi, user, true);
1087
1088	/* Invalidate the whole ASID on other CPUs */
1089	cpu = smp_processor_id();
1090	for_each_possible_cpu(i) {
1091		if (i == cpu)
1092			continue;
1093		if (user)
1094			set_cpu_context(i, user_mm, 0);
1095		set_cpu_context(i, kern_mm, 0);
1096	}
1097
1098	preempt_enable();
1099}
1100
1101/* Write Guest TLB Entry @ Index */
1102enum emulation_result kvm_mips_emul_tlbwi(struct kvm_vcpu *vcpu)
1103{
1104	struct mips_coproc *cop0 = vcpu->arch.cop0;
1105	int index = kvm_read_c0_guest_index(cop0);
1106	struct kvm_mips_tlb *tlb = NULL;
1107	unsigned long pc = vcpu->arch.pc;
1108
1109	if (index < 0 || index >= KVM_MIPS_GUEST_TLB_SIZE) {
1110		kvm_debug("%s: illegal index: %d\n", __func__, index);
1111		kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1112			  pc, index, kvm_read_c0_guest_entryhi(cop0),
1113			  kvm_read_c0_guest_entrylo0(cop0),
1114			  kvm_read_c0_guest_entrylo1(cop0),
1115			  kvm_read_c0_guest_pagemask(cop0));
1116		index = (index & ~0x80000000) % KVM_MIPS_GUEST_TLB_SIZE;
1117	}
1118
1119	tlb = &vcpu->arch.guest_tlb[index];
1120
1121	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1122
1123	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1124	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1125	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1126	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1127
1128	kvm_debug("[%#lx] COP0_TLBWI [%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx, mask: %#lx)\n",
1129		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1130		  kvm_read_c0_guest_entrylo0(cop0),
1131		  kvm_read_c0_guest_entrylo1(cop0),
1132		  kvm_read_c0_guest_pagemask(cop0));
1133
1134	return EMULATE_DONE;
1135}
1136
1137/* Write Guest TLB Entry @ Random Index */
1138enum emulation_result kvm_mips_emul_tlbwr(struct kvm_vcpu *vcpu)
1139{
1140	struct mips_coproc *cop0 = vcpu->arch.cop0;
1141	struct kvm_mips_tlb *tlb = NULL;
1142	unsigned long pc = vcpu->arch.pc;
1143	int index;
1144
1145	index = prandom_u32_max(KVM_MIPS_GUEST_TLB_SIZE);
1146	tlb = &vcpu->arch.guest_tlb[index];
1147
1148	kvm_mips_invalidate_guest_tlb(vcpu, tlb);
1149
1150	tlb->tlb_mask = kvm_read_c0_guest_pagemask(cop0);
1151	tlb->tlb_hi = kvm_read_c0_guest_entryhi(cop0);
1152	tlb->tlb_lo[0] = kvm_read_c0_guest_entrylo0(cop0);
1153	tlb->tlb_lo[1] = kvm_read_c0_guest_entrylo1(cop0);
1154
1155	kvm_debug("[%#lx] COP0_TLBWR[%d] (entryhi: %#lx, entrylo0: %#lx entrylo1: %#lx)\n",
1156		  pc, index, kvm_read_c0_guest_entryhi(cop0),
1157		  kvm_read_c0_guest_entrylo0(cop0),
1158		  kvm_read_c0_guest_entrylo1(cop0));
1159
1160	return EMULATE_DONE;
1161}
1162
1163enum emulation_result kvm_mips_emul_tlbp(struct kvm_vcpu *vcpu)
1164{
1165	struct mips_coproc *cop0 = vcpu->arch.cop0;
1166	long entryhi = kvm_read_c0_guest_entryhi(cop0);
1167	unsigned long pc = vcpu->arch.pc;
1168	int index = -1;
1169
1170	index = kvm_mips_guest_tlb_lookup(vcpu, entryhi);
1171
1172	kvm_write_c0_guest_index(cop0, index);
1173
1174	kvm_debug("[%#lx] COP0_TLBP (entryhi: %#lx), index: %d\n", pc, entryhi,
1175		  index);
1176
1177	return EMULATE_DONE;
1178}
1179
1180/**
1181 * kvm_mips_config1_wrmask() - Find mask of writable bits in guest Config1
1182 * @vcpu:	Virtual CPU.
1183 *
1184 * Finds the mask of bits which are writable in the guest's Config1 CP0
1185 * register, by userland (currently read-only to the guest).
1186 */
1187unsigned int kvm_mips_config1_wrmask(struct kvm_vcpu *vcpu)
1188{
1189	unsigned int mask = 0;
1190
1191	/* Permit FPU to be present if FPU is supported */
1192	if (kvm_mips_guest_can_have_fpu(&vcpu->arch))
1193		mask |= MIPS_CONF1_FP;
1194
1195	return mask;
1196}
1197
1198/**
1199 * kvm_mips_config3_wrmask() - Find mask of writable bits in guest Config3
1200 * @vcpu:	Virtual CPU.
1201 *
1202 * Finds the mask of bits which are writable in the guest's Config3 CP0
1203 * register, by userland (currently read-only to the guest).
1204 */
1205unsigned int kvm_mips_config3_wrmask(struct kvm_vcpu *vcpu)
1206{
1207	/* Config4 and ULRI are optional */
1208	unsigned int mask = MIPS_CONF_M | MIPS_CONF3_ULRI;
1209
1210	/* Permit MSA to be present if MSA is supported */
1211	if (kvm_mips_guest_can_have_msa(&vcpu->arch))
1212		mask |= MIPS_CONF3_MSA;
1213
1214	return mask;
1215}
1216
1217/**
1218 * kvm_mips_config4_wrmask() - Find mask of writable bits in guest Config4
1219 * @vcpu:	Virtual CPU.
1220 *
1221 * Finds the mask of bits which are writable in the guest's Config4 CP0
1222 * register, by userland (currently read-only to the guest).
1223 */
1224unsigned int kvm_mips_config4_wrmask(struct kvm_vcpu *vcpu)
1225{
1226	/* Config5 is optional */
1227	unsigned int mask = MIPS_CONF_M;
1228
1229	/* KScrExist */
1230	mask |= 0xfc << MIPS_CONF4_KSCREXIST_SHIFT;
1231
1232	return mask;
1233}
1234
1235/**
1236 * kvm_mips_config5_wrmask() - Find mask of writable bits in guest Config5
1237 * @vcpu:	Virtual CPU.
1238 *
1239 * Finds the mask of bits which are writable in the guest's Config5 CP0
1240 * register, by the guest itself.
1241 */
1242unsigned int kvm_mips_config5_wrmask(struct kvm_vcpu *vcpu)
1243{
1244	unsigned int mask = 0;
1245
1246	/* Permit MSAEn changes if MSA supported and enabled */
1247	if (kvm_mips_guest_has_msa(&vcpu->arch))
1248		mask |= MIPS_CONF5_MSAEN;
1249
1250	/*
1251	 * Permit guest FPU mode changes if FPU is enabled and the relevant
1252	 * feature exists according to FIR register.
1253	 */
1254	if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1255		if (cpu_has_fre)
1256			mask |= MIPS_CONF5_FRE;
1257		/* We don't support UFR or UFE */
1258	}
1259
1260	return mask;
1261}
1262
1263enum emulation_result kvm_mips_emulate_CP0(union mips_instruction inst,
1264					   u32 *opc, u32 cause,
1265					   struct kvm_vcpu *vcpu)
1266{
1267	struct mips_coproc *cop0 = vcpu->arch.cop0;
1268	enum emulation_result er = EMULATE_DONE;
1269	u32 rt, rd, sel;
1270	unsigned long curr_pc;
1271
1272	/*
1273	 * Update PC and hold onto current PC in case there is
1274	 * an error and we want to rollback the PC
1275	 */
1276	curr_pc = vcpu->arch.pc;
1277	er = update_pc(vcpu, cause);
1278	if (er == EMULATE_FAIL)
1279		return er;
1280
1281	if (inst.co_format.co) {
1282		switch (inst.co_format.func) {
1283		case tlbr_op:	/*  Read indexed TLB entry  */
1284			er = kvm_mips_emul_tlbr(vcpu);
1285			break;
1286		case tlbwi_op:	/*  Write indexed  */
1287			er = kvm_mips_emul_tlbwi(vcpu);
1288			break;
1289		case tlbwr_op:	/*  Write random  */
1290			er = kvm_mips_emul_tlbwr(vcpu);
1291			break;
1292		case tlbp_op:	/* TLB Probe */
1293			er = kvm_mips_emul_tlbp(vcpu);
1294			break;
1295		case rfe_op:
1296			kvm_err("!!!COP0_RFE!!!\n");
1297			break;
1298		case eret_op:
1299			er = kvm_mips_emul_eret(vcpu);
1300			goto dont_update_pc;
1301		case wait_op:
1302			er = kvm_mips_emul_wait(vcpu);
1303			break;
1304		case hypcall_op:
1305			er = kvm_mips_emul_hypcall(vcpu, inst);
1306			break;
1307		}
1308	} else {
1309		rt = inst.c0r_format.rt;
1310		rd = inst.c0r_format.rd;
1311		sel = inst.c0r_format.sel;
1312
1313		switch (inst.c0r_format.rs) {
1314		case mfc_op:
1315#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1316			cop0->stat[rd][sel]++;
1317#endif
1318			/* Get reg */
1319			if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1320				vcpu->arch.gprs[rt] =
1321				    (s32)kvm_mips_read_count(vcpu);
1322			} else if ((rd == MIPS_CP0_ERRCTL) && (sel == 0)) {
1323				vcpu->arch.gprs[rt] = 0x0;
1324#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1325				kvm_mips_trans_mfc0(inst, opc, vcpu);
1326#endif
1327			} else {
1328				vcpu->arch.gprs[rt] = (s32)cop0->reg[rd][sel];
1329
1330#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1331				kvm_mips_trans_mfc0(inst, opc, vcpu);
1332#endif
1333			}
1334
1335			trace_kvm_hwr(vcpu, KVM_TRACE_MFC0,
1336				      KVM_TRACE_COP0(rd, sel),
1337				      vcpu->arch.gprs[rt]);
1338			break;
1339
1340		case dmfc_op:
1341			vcpu->arch.gprs[rt] = cop0->reg[rd][sel];
1342
1343			trace_kvm_hwr(vcpu, KVM_TRACE_DMFC0,
1344				      KVM_TRACE_COP0(rd, sel),
1345				      vcpu->arch.gprs[rt]);
1346			break;
1347
1348		case mtc_op:
1349#ifdef CONFIG_KVM_MIPS_DEBUG_COP0_COUNTERS
1350			cop0->stat[rd][sel]++;
1351#endif
1352			trace_kvm_hwr(vcpu, KVM_TRACE_MTC0,
1353				      KVM_TRACE_COP0(rd, sel),
1354				      vcpu->arch.gprs[rt]);
1355
1356			if ((rd == MIPS_CP0_TLB_INDEX)
1357			    && (vcpu->arch.gprs[rt] >=
1358				KVM_MIPS_GUEST_TLB_SIZE)) {
1359				kvm_err("Invalid TLB Index: %ld",
1360					vcpu->arch.gprs[rt]);
1361				er = EMULATE_FAIL;
1362				break;
1363			}
1364			if ((rd == MIPS_CP0_PRID) && (sel == 1)) {
1365				/*
1366				 * Preserve core number, and keep the exception
1367				 * base in guest KSeg0.
1368				 */
1369				kvm_change_c0_guest_ebase(cop0, 0x1ffff000,
1370							  vcpu->arch.gprs[rt]);
1371			} else if (rd == MIPS_CP0_TLB_HI && sel == 0) {
1372				kvm_mips_change_entryhi(vcpu,
1373							vcpu->arch.gprs[rt]);
1374			}
1375			/* Are we writing to COUNT */
1376			else if ((rd == MIPS_CP0_COUNT) && (sel == 0)) {
1377				kvm_mips_write_count(vcpu, vcpu->arch.gprs[rt]);
1378				goto done;
1379			} else if ((rd == MIPS_CP0_COMPARE) && (sel == 0)) {
1380				/* If we are writing to COMPARE */
1381				/* Clear pending timer interrupt, if any */
1382				kvm_mips_write_compare(vcpu,
1383						       vcpu->arch.gprs[rt],
1384						       true);
1385			} else if ((rd == MIPS_CP0_STATUS) && (sel == 0)) {
1386				unsigned int old_val, val, change;
1387
1388				old_val = kvm_read_c0_guest_status(cop0);
1389				val = vcpu->arch.gprs[rt];
1390				change = val ^ old_val;
1391
1392				/* Make sure that the NMI bit is never set */
1393				val &= ~ST0_NMI;
1394
1395				/*
1396				 * Don't allow CU1 or FR to be set unless FPU
1397				 * capability enabled and exists in guest
1398				 * configuration.
1399				 */
1400				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1401					val &= ~(ST0_CU1 | ST0_FR);
1402
1403				/*
1404				 * Also don't allow FR to be set if host doesn't
1405				 * support it.
1406				 */
1407				if (!(current_cpu_data.fpu_id & MIPS_FPIR_F64))
1408					val &= ~ST0_FR;
1409
1410
1411				/* Handle changes in FPU mode */
1412				preempt_disable();
1413
1414				/*
1415				 * FPU and Vector register state is made
1416				 * UNPREDICTABLE by a change of FR, so don't
1417				 * even bother saving it.
1418				 */
1419				if (change & ST0_FR)
1420					kvm_drop_fpu(vcpu);
1421
1422				/*
1423				 * If MSA state is already live, it is undefined
1424				 * how it interacts with FR=0 FPU state, and we
1425				 * don't want to hit reserved instruction
1426				 * exceptions trying to save the MSA state later
1427				 * when CU=1 && FR=1, so play it safe and save
1428				 * it first.
1429				 */
1430				if (change & ST0_CU1 && !(val & ST0_FR) &&
1431				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1432					kvm_lose_fpu(vcpu);
1433
1434				/*
1435				 * Propagate CU1 (FPU enable) changes
1436				 * immediately if the FPU context is already
1437				 * loaded. When disabling we leave the context
1438				 * loaded so it can be quickly enabled again in
1439				 * the near future.
1440				 */
1441				if (change & ST0_CU1 &&
1442				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1443					change_c0_status(ST0_CU1, val);
1444
1445				preempt_enable();
1446
1447				kvm_write_c0_guest_status(cop0, val);
1448
1449#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1450				/*
1451				 * If FPU present, we need CU1/FR bits to take
1452				 * effect fairly soon.
1453				 */
1454				if (!kvm_mips_guest_has_fpu(&vcpu->arch))
1455					kvm_mips_trans_mtc0(inst, opc, vcpu);
1456#endif
1457			} else if ((rd == MIPS_CP0_CONFIG) && (sel == 5)) {
1458				unsigned int old_val, val, change, wrmask;
1459
1460				old_val = kvm_read_c0_guest_config5(cop0);
1461				val = vcpu->arch.gprs[rt];
1462
1463				/* Only a few bits are writable in Config5 */
1464				wrmask = kvm_mips_config5_wrmask(vcpu);
1465				change = (val ^ old_val) & wrmask;
1466				val = old_val ^ change;
1467
1468
1469				/* Handle changes in FPU/MSA modes */
1470				preempt_disable();
1471
1472				/*
1473				 * Propagate FRE changes immediately if the FPU
1474				 * context is already loaded.
1475				 */
1476				if (change & MIPS_CONF5_FRE &&
1477				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)
1478					change_c0_config5(MIPS_CONF5_FRE, val);
1479
1480				/*
1481				 * Propagate MSAEn changes immediately if the
1482				 * MSA context is already loaded. When disabling
1483				 * we leave the context loaded so it can be
1484				 * quickly enabled again in the near future.
1485				 */
1486				if (change & MIPS_CONF5_MSAEN &&
1487				    vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1488					change_c0_config5(MIPS_CONF5_MSAEN,
1489							  val);
1490
1491				preempt_enable();
1492
1493				kvm_write_c0_guest_config5(cop0, val);
1494			} else if ((rd == MIPS_CP0_CAUSE) && (sel == 0)) {
1495				u32 old_cause, new_cause;
1496
1497				old_cause = kvm_read_c0_guest_cause(cop0);
1498				new_cause = vcpu->arch.gprs[rt];
1499				/* Update R/W bits */
1500				kvm_change_c0_guest_cause(cop0, 0x08800300,
1501							  new_cause);
1502				/* DC bit enabling/disabling timer? */
1503				if ((old_cause ^ new_cause) & CAUSEF_DC) {
1504					if (new_cause & CAUSEF_DC)
1505						kvm_mips_count_disable_cause(vcpu);
1506					else
1507						kvm_mips_count_enable_cause(vcpu);
1508				}
1509			} else if ((rd == MIPS_CP0_HWRENA) && (sel == 0)) {
1510				u32 mask = MIPS_HWRENA_CPUNUM |
1511					   MIPS_HWRENA_SYNCISTEP |
1512					   MIPS_HWRENA_CC |
1513					   MIPS_HWRENA_CCRES;
1514
1515				if (kvm_read_c0_guest_config3(cop0) &
1516				    MIPS_CONF3_ULRI)
1517					mask |= MIPS_HWRENA_ULR;
1518				cop0->reg[rd][sel] = vcpu->arch.gprs[rt] & mask;
1519			} else {
1520				cop0->reg[rd][sel] = vcpu->arch.gprs[rt];
1521#ifdef CONFIG_KVM_MIPS_DYN_TRANS
1522				kvm_mips_trans_mtc0(inst, opc, vcpu);
1523#endif
1524			}
1525			break;
1526
1527		case dmtc_op:
1528			kvm_err("!!!!!!![%#lx]dmtc_op: rt: %d, rd: %d, sel: %d!!!!!!\n",
1529				vcpu->arch.pc, rt, rd, sel);
1530			trace_kvm_hwr(vcpu, KVM_TRACE_DMTC0,
1531				      KVM_TRACE_COP0(rd, sel),
1532				      vcpu->arch.gprs[rt]);
1533			er = EMULATE_FAIL;
1534			break;
1535
1536		case mfmc0_op:
1537#ifdef KVM_MIPS_DEBUG_COP0_COUNTERS
1538			cop0->stat[MIPS_CP0_STATUS][0]++;
1539#endif
1540			if (rt != 0)
1541				vcpu->arch.gprs[rt] =
1542				    kvm_read_c0_guest_status(cop0);
1543			/* EI */
1544			if (inst.mfmc0_format.sc) {
1545				kvm_debug("[%#lx] mfmc0_op: EI\n",
1546					  vcpu->arch.pc);
1547				kvm_set_c0_guest_status(cop0, ST0_IE);
1548			} else {
1549				kvm_debug("[%#lx] mfmc0_op: DI\n",
1550					  vcpu->arch.pc);
1551				kvm_clear_c0_guest_status(cop0, ST0_IE);
1552			}
1553
1554			break;
1555
1556		case wrpgpr_op:
1557			{
1558				u32 css = cop0->reg[MIPS_CP0_STATUS][2] & 0xf;
1559				u32 pss =
1560				    (cop0->reg[MIPS_CP0_STATUS][2] >> 6) & 0xf;
1561				/*
1562				 * We don't support any shadow register sets, so
1563				 * SRSCtl[PSS] == SRSCtl[CSS] = 0
1564				 */
1565				if (css || pss) {
1566					er = EMULATE_FAIL;
1567					break;
1568				}
1569				kvm_debug("WRPGPR[%d][%d] = %#lx\n", pss, rd,
1570					  vcpu->arch.gprs[rt]);
1571				vcpu->arch.gprs[rd] = vcpu->arch.gprs[rt];
1572			}
1573			break;
1574		default:
1575			kvm_err("[%#lx]MachEmulateCP0: unsupported COP0, copz: 0x%x\n",
1576				vcpu->arch.pc, inst.c0r_format.rs);
1577			er = EMULATE_FAIL;
1578			break;
1579		}
1580	}
1581
1582done:
1583	/* Rollback PC only if emulation was unsuccessful */
1584	if (er == EMULATE_FAIL)
1585		vcpu->arch.pc = curr_pc;
1586
1587dont_update_pc:
1588	/*
1589	 * This is for special instructions whose emulation
1590	 * updates the PC, so do not overwrite the PC under
1591	 * any circumstances
1592	 */
1593
1594	return er;
1595}
1596
1597enum emulation_result kvm_mips_emulate_store(union mips_instruction inst,
1598					     u32 cause,
1599					     struct kvm_vcpu *vcpu)
1600{
1601	int r;
1602	enum emulation_result er;
1603	u32 rt;
1604	struct kvm_run *run = vcpu->run;
1605	void *data = run->mmio.data;
1606	unsigned int imme;
1607	unsigned long curr_pc;
1608
1609	/*
1610	 * Update PC and hold onto current PC in case there is
1611	 * an error and we want to rollback the PC
1612	 */
1613	curr_pc = vcpu->arch.pc;
1614	er = update_pc(vcpu, cause);
1615	if (er == EMULATE_FAIL)
1616		return er;
1617
1618	rt = inst.i_format.rt;
1619
1620	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1621						vcpu->arch.host_cp0_badvaddr);
1622	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1623		goto out_fail;
1624
1625	switch (inst.i_format.opcode) {
1626#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1627	case sd_op:
1628		run->mmio.len = 8;
1629		*(u64 *)data = vcpu->arch.gprs[rt];
1630
1631		kvm_debug("[%#lx] OP_SD: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1632			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1633			  vcpu->arch.gprs[rt], *(u64 *)data);
1634		break;
1635#endif
1636
1637	case sw_op:
1638		run->mmio.len = 4;
1639		*(u32 *)data = vcpu->arch.gprs[rt];
1640
1641		kvm_debug("[%#lx] OP_SW: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1642			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1643			  vcpu->arch.gprs[rt], *(u32 *)data);
1644		break;
1645
1646	case sh_op:
1647		run->mmio.len = 2;
1648		*(u16 *)data = vcpu->arch.gprs[rt];
1649
1650		kvm_debug("[%#lx] OP_SH: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1651			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1652			  vcpu->arch.gprs[rt], *(u16 *)data);
1653		break;
1654
1655	case sb_op:
1656		run->mmio.len = 1;
1657		*(u8 *)data = vcpu->arch.gprs[rt];
1658
1659		kvm_debug("[%#lx] OP_SB: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1660			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1661			  vcpu->arch.gprs[rt], *(u8 *)data);
1662		break;
1663
1664	case swl_op:
1665		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1666					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1667		run->mmio.len = 4;
1668		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1669		switch (imme) {
1670		case 0:
1671			*(u32 *)data = ((*(u32 *)data) & 0xffffff00) |
1672					(vcpu->arch.gprs[rt] >> 24);
1673			break;
1674		case 1:
1675			*(u32 *)data = ((*(u32 *)data) & 0xffff0000) |
1676					(vcpu->arch.gprs[rt] >> 16);
1677			break;
1678		case 2:
1679			*(u32 *)data = ((*(u32 *)data) & 0xff000000) |
1680					(vcpu->arch.gprs[rt] >> 8);
1681			break;
1682		case 3:
1683			*(u32 *)data = vcpu->arch.gprs[rt];
1684			break;
1685		default:
1686			break;
1687		}
1688
1689		kvm_debug("[%#lx] OP_SWL: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1690			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1691			  vcpu->arch.gprs[rt], *(u32 *)data);
1692		break;
1693
1694	case swr_op:
1695		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1696					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1697		run->mmio.len = 4;
1698		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1699		switch (imme) {
1700		case 0:
1701			*(u32 *)data = vcpu->arch.gprs[rt];
1702			break;
1703		case 1:
1704			*(u32 *)data = ((*(u32 *)data) & 0xff) |
1705					(vcpu->arch.gprs[rt] << 8);
1706			break;
1707		case 2:
1708			*(u32 *)data = ((*(u32 *)data) & 0xffff) |
1709					(vcpu->arch.gprs[rt] << 16);
1710			break;
1711		case 3:
1712			*(u32 *)data = ((*(u32 *)data) & 0xffffff) |
1713					(vcpu->arch.gprs[rt] << 24);
1714			break;
1715		default:
1716			break;
1717		}
1718
1719		kvm_debug("[%#lx] OP_SWR: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1720			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1721			  vcpu->arch.gprs[rt], *(u32 *)data);
1722		break;
1723
1724#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1725	case sdl_op:
1726		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1727					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1728
1729		run->mmio.len = 8;
1730		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1731		switch (imme) {
1732		case 0:
1733			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff00) |
1734					((vcpu->arch.gprs[rt] >> 56) & 0xff);
1735			break;
1736		case 1:
1737			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff0000) |
1738					((vcpu->arch.gprs[rt] >> 48) & 0xffff);
1739			break;
1740		case 2:
1741			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff000000) |
1742					((vcpu->arch.gprs[rt] >> 40) & 0xffffff);
1743			break;
1744		case 3:
1745			*(u64 *)data = ((*(u64 *)data) & 0xffffffff00000000) |
1746					((vcpu->arch.gprs[rt] >> 32) & 0xffffffff);
1747			break;
1748		case 4:
1749			*(u64 *)data = ((*(u64 *)data) & 0xffffff0000000000) |
1750					((vcpu->arch.gprs[rt] >> 24) & 0xffffffffff);
1751			break;
1752		case 5:
1753			*(u64 *)data = ((*(u64 *)data) & 0xffff000000000000) |
1754					((vcpu->arch.gprs[rt] >> 16) & 0xffffffffffff);
1755			break;
1756		case 6:
1757			*(u64 *)data = ((*(u64 *)data) & 0xff00000000000000) |
1758					((vcpu->arch.gprs[rt] >> 8) & 0xffffffffffffff);
1759			break;
1760		case 7:
1761			*(u64 *)data = vcpu->arch.gprs[rt];
1762			break;
1763		default:
1764			break;
1765		}
1766
1767		kvm_debug("[%#lx] OP_SDL: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1768			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1769			  vcpu->arch.gprs[rt], *(u64 *)data);
1770		break;
1771
1772	case sdr_op:
1773		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1774					vcpu->arch.host_cp0_badvaddr) & (~0x7);
1775
1776		run->mmio.len = 8;
1777		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
1778		switch (imme) {
1779		case 0:
1780			*(u64 *)data = vcpu->arch.gprs[rt];
1781			break;
1782		case 1:
1783			*(u64 *)data = ((*(u64 *)data) & 0xff) |
1784					(vcpu->arch.gprs[rt] << 8);
1785			break;
1786		case 2:
1787			*(u64 *)data = ((*(u64 *)data) & 0xffff) |
1788					(vcpu->arch.gprs[rt] << 16);
1789			break;
1790		case 3:
1791			*(u64 *)data = ((*(u64 *)data) & 0xffffff) |
1792					(vcpu->arch.gprs[rt] << 24);
1793			break;
1794		case 4:
1795			*(u64 *)data = ((*(u64 *)data) & 0xffffffff) |
1796					(vcpu->arch.gprs[rt] << 32);
1797			break;
1798		case 5:
1799			*(u64 *)data = ((*(u64 *)data) & 0xffffffffff) |
1800					(vcpu->arch.gprs[rt] << 40);
1801			break;
1802		case 6:
1803			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffff) |
1804					(vcpu->arch.gprs[rt] << 48);
1805			break;
1806		case 7:
1807			*(u64 *)data = ((*(u64 *)data) & 0xffffffffffffff) |
1808					(vcpu->arch.gprs[rt] << 56);
1809			break;
1810		default:
1811			break;
1812		}
1813
1814		kvm_debug("[%#lx] OP_SDR: eaddr: %#lx, gpr: %#lx, data: %llx\n",
1815			  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1816			  vcpu->arch.gprs[rt], *(u64 *)data);
1817		break;
1818#endif
1819
1820#ifdef CONFIG_CPU_LOONGSON64
1821	case sdc2_op:
1822		rt = inst.loongson3_lsdc2_format.rt;
1823		switch (inst.loongson3_lsdc2_format.opcode1) {
1824		/*
1825		 * Loongson-3 overridden sdc2 instructions.
1826		 * opcode1              instruction
1827		 *   0x0          gssbx: store 1 bytes from GPR
1828		 *   0x1          gsshx: store 2 bytes from GPR
1829		 *   0x2          gsswx: store 4 bytes from GPR
1830		 *   0x3          gssdx: store 8 bytes from GPR
1831		 */
1832		case 0x0:
1833			run->mmio.len = 1;
1834			*(u8 *)data = vcpu->arch.gprs[rt];
1835
1836			kvm_debug("[%#lx] OP_GSSBX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1837				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1838				  vcpu->arch.gprs[rt], *(u8 *)data);
1839			break;
1840		case 0x1:
1841			run->mmio.len = 2;
1842			*(u16 *)data = vcpu->arch.gprs[rt];
1843
1844			kvm_debug("[%#lx] OP_GSSSHX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1845				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1846				  vcpu->arch.gprs[rt], *(u16 *)data);
1847			break;
1848		case 0x2:
1849			run->mmio.len = 4;
1850			*(u32 *)data = vcpu->arch.gprs[rt];
1851
1852			kvm_debug("[%#lx] OP_GSSWX: eaddr: %#lx, gpr: %#lx, data: %#x\n",
1853				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1854				  vcpu->arch.gprs[rt], *(u32 *)data);
1855			break;
1856		case 0x3:
1857			run->mmio.len = 8;
1858			*(u64 *)data = vcpu->arch.gprs[rt];
1859
1860			kvm_debug("[%#lx] OP_GSSDX: eaddr: %#lx, gpr: %#lx, data: %#llx\n",
1861				  vcpu->arch.pc, vcpu->arch.host_cp0_badvaddr,
1862				  vcpu->arch.gprs[rt], *(u64 *)data);
1863			break;
1864		default:
1865			kvm_err("Godson Extended GS-Store not yet supported (inst=0x%08x)\n",
1866				inst.word);
1867			break;
1868		}
1869		break;
1870#endif
1871	default:
1872		kvm_err("Store not yet supported (inst=0x%08x)\n",
1873			inst.word);
1874		goto out_fail;
1875	}
1876
1877	vcpu->mmio_needed = 1;
1878	run->mmio.is_write = 1;
1879	vcpu->mmio_is_write = 1;
1880
1881	r = kvm_io_bus_write(vcpu, KVM_MMIO_BUS,
1882			run->mmio.phys_addr, run->mmio.len, data);
1883
1884	if (!r) {
1885		vcpu->mmio_needed = 0;
1886		return EMULATE_DONE;
1887	}
1888
1889	return EMULATE_DO_MMIO;
1890
1891out_fail:
1892	/* Rollback PC if emulation was unsuccessful */
1893	vcpu->arch.pc = curr_pc;
1894	return EMULATE_FAIL;
1895}
1896
1897enum emulation_result kvm_mips_emulate_load(union mips_instruction inst,
1898					    u32 cause, struct kvm_vcpu *vcpu)
1899{
1900	struct kvm_run *run = vcpu->run;
1901	int r;
1902	enum emulation_result er;
1903	unsigned long curr_pc;
1904	u32 op, rt;
1905	unsigned int imme;
1906
1907	rt = inst.i_format.rt;
1908	op = inst.i_format.opcode;
1909
1910	/*
1911	 * Find the resume PC now while we have safe and easy access to the
1912	 * prior branch instruction, and save it for
1913	 * kvm_mips_complete_mmio_load() to restore later.
1914	 */
1915	curr_pc = vcpu->arch.pc;
1916	er = update_pc(vcpu, cause);
1917	if (er == EMULATE_FAIL)
1918		return er;
1919	vcpu->arch.io_pc = vcpu->arch.pc;
1920	vcpu->arch.pc = curr_pc;
1921
1922	vcpu->arch.io_gpr = rt;
1923
1924	run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1925						vcpu->arch.host_cp0_badvaddr);
1926	if (run->mmio.phys_addr == KVM_INVALID_ADDR)
1927		return EMULATE_FAIL;
1928
1929	vcpu->mmio_needed = 2;	/* signed */
1930	switch (op) {
1931#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
1932	case ld_op:
1933		run->mmio.len = 8;
1934		break;
1935
1936	case lwu_op:
1937		vcpu->mmio_needed = 1;	/* unsigned */
1938		fallthrough;
1939#endif
1940	case lw_op:
1941		run->mmio.len = 4;
1942		break;
1943
1944	case lhu_op:
1945		vcpu->mmio_needed = 1;	/* unsigned */
1946		fallthrough;
1947	case lh_op:
1948		run->mmio.len = 2;
1949		break;
1950
1951	case lbu_op:
1952		vcpu->mmio_needed = 1;	/* unsigned */
1953		fallthrough;
1954	case lb_op:
1955		run->mmio.len = 1;
1956		break;
1957
1958	case lwl_op:
1959		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1960					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1961
1962		run->mmio.len = 4;
1963		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1964		switch (imme) {
1965		case 0:
1966			vcpu->mmio_needed = 3;	/* 1 byte */
1967			break;
1968		case 1:
1969			vcpu->mmio_needed = 4;	/* 2 bytes */
1970			break;
1971		case 2:
1972			vcpu->mmio_needed = 5;	/* 3 bytes */
1973			break;
1974		case 3:
1975			vcpu->mmio_needed = 6;	/* 4 bytes */
1976			break;
1977		default:
1978			break;
1979		}
1980		break;
1981
1982	case lwr_op:
1983		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
1984					vcpu->arch.host_cp0_badvaddr) & (~0x3);
1985
1986		run->mmio.len = 4;
1987		imme = vcpu->arch.host_cp0_badvaddr & 0x3;
1988		switch (imme) {
1989		case 0:
1990			vcpu->mmio_needed = 7;	/* 4 bytes */
1991			break;
1992		case 1:
1993			vcpu->mmio_needed = 8;	/* 3 bytes */
1994			break;
1995		case 2:
1996			vcpu->mmio_needed = 9;	/* 2 bytes */
1997			break;
1998		case 3:
1999			vcpu->mmio_needed = 10;	/* 1 byte */
2000			break;
2001		default:
2002			break;
2003		}
2004		break;
2005
2006#if defined(CONFIG_64BIT) && defined(CONFIG_KVM_MIPS_VZ)
2007	case ldl_op:
2008		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2009					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2010
2011		run->mmio.len = 8;
2012		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2013		switch (imme) {
2014		case 0:
2015			vcpu->mmio_needed = 11;	/* 1 byte */
2016			break;
2017		case 1:
2018			vcpu->mmio_needed = 12;	/* 2 bytes */
2019			break;
2020		case 2:
2021			vcpu->mmio_needed = 13;	/* 3 bytes */
2022			break;
2023		case 3:
2024			vcpu->mmio_needed = 14;	/* 4 bytes */
2025			break;
2026		case 4:
2027			vcpu->mmio_needed = 15;	/* 5 bytes */
2028			break;
2029		case 5:
2030			vcpu->mmio_needed = 16;	/* 6 bytes */
2031			break;
2032		case 6:
2033			vcpu->mmio_needed = 17;	/* 7 bytes */
2034			break;
2035		case 7:
2036			vcpu->mmio_needed = 18;	/* 8 bytes */
2037			break;
2038		default:
2039			break;
2040		}
2041		break;
2042
2043	case ldr_op:
2044		run->mmio.phys_addr = kvm_mips_callbacks->gva_to_gpa(
2045					vcpu->arch.host_cp0_badvaddr) & (~0x7);
2046
2047		run->mmio.len = 8;
2048		imme = vcpu->arch.host_cp0_badvaddr & 0x7;
2049		switch (imme) {
2050		case 0:
2051			vcpu->mmio_needed = 19;	/* 8 bytes */
2052			break;
2053		case 1:
2054			vcpu->mmio_needed = 20;	/* 7 bytes */
2055			break;
2056		case 2:
2057			vcpu->mmio_needed = 21;	/* 6 bytes */
2058			break;
2059		case 3:
2060			vcpu->mmio_needed = 22;	/* 5 bytes */
2061			break;
2062		case 4:
2063			vcpu->mmio_needed = 23;	/* 4 bytes */
2064			break;
2065		case 5:
2066			vcpu->mmio_needed = 24;	/* 3 bytes */
2067			break;
2068		case 6:
2069			vcpu->mmio_needed = 25;	/* 2 bytes */
2070			break;
2071		case 7:
2072			vcpu->mmio_needed = 26;	/* 1 byte */
2073			break;
2074		default:
2075			break;
2076		}
2077		break;
2078#endif
2079
2080#ifdef CONFIG_CPU_LOONGSON64
2081	case ldc2_op:
2082		rt = inst.loongson3_lsdc2_format.rt;
2083		switch (inst.loongson3_lsdc2_format.opcode1) {
2084		/*
2085		 * Loongson-3 overridden ldc2 instructions.
2086		 * opcode1              instruction
2087		 *   0x0          gslbx: store 1 bytes from GPR
2088		 *   0x1          gslhx: store 2 bytes from GPR
2089		 *   0x2          gslwx: store 4 bytes from GPR
2090		 *   0x3          gsldx: store 8 bytes from GPR
2091		 */
2092		case 0x0:
2093			run->mmio.len = 1;
2094			vcpu->mmio_needed = 27;	/* signed */
2095			break;
2096		case 0x1:
2097			run->mmio.len = 2;
2098			vcpu->mmio_needed = 28;	/* signed */
2099			break;
2100		case 0x2:
2101			run->mmio.len = 4;
2102			vcpu->mmio_needed = 29;	/* signed */
2103			break;
2104		case 0x3:
2105			run->mmio.len = 8;
2106			vcpu->mmio_needed = 30;	/* signed */
2107			break;
2108		default:
2109			kvm_err("Godson Extended GS-Load for float not yet supported (inst=0x%08x)\n",
2110				inst.word);
2111			break;
2112		}
2113		break;
2114#endif
2115
2116	default:
2117		kvm_err("Load not yet supported (inst=0x%08x)\n",
2118			inst.word);
2119		vcpu->mmio_needed = 0;
2120		return EMULATE_FAIL;
2121	}
2122
2123	run->mmio.is_write = 0;
2124	vcpu->mmio_is_write = 0;
2125
2126	r = kvm_io_bus_read(vcpu, KVM_MMIO_BUS,
2127			run->mmio.phys_addr, run->mmio.len, run->mmio.data);
2128
2129	if (!r) {
2130		kvm_mips_complete_mmio_load(vcpu);
2131		vcpu->mmio_needed = 0;
2132		return EMULATE_DONE;
2133	}
2134
2135	return EMULATE_DO_MMIO;
2136}
2137
2138#ifndef CONFIG_KVM_MIPS_VZ
2139static enum emulation_result kvm_mips_guest_cache_op(int (*fn)(unsigned long),
2140						     unsigned long curr_pc,
2141						     unsigned long addr,
2142						     struct kvm_vcpu *vcpu,
2143						     u32 cause)
2144{
2145	int err;
2146
2147	for (;;) {
2148		/* Carefully attempt the cache operation */
2149		kvm_trap_emul_gva_lockless_begin(vcpu);
2150		err = fn(addr);
2151		kvm_trap_emul_gva_lockless_end(vcpu);
2152
2153		if (likely(!err))
2154			return EMULATE_DONE;
2155
2156		/*
2157		 * Try to handle the fault and retry, maybe we just raced with a
2158		 * GVA invalidation.
2159		 */
2160		switch (kvm_trap_emul_gva_fault(vcpu, addr, false)) {
2161		case KVM_MIPS_GVA:
2162		case KVM_MIPS_GPA:
2163			/* bad virtual or physical address */
2164			return EMULATE_FAIL;
2165		case KVM_MIPS_TLB:
2166			/* no matching guest TLB */
2167			vcpu->arch.host_cp0_badvaddr = addr;
2168			vcpu->arch.pc = curr_pc;
2169			kvm_mips_emulate_tlbmiss_ld(cause, NULL, vcpu);
2170			return EMULATE_EXCEPT;
2171		case KVM_MIPS_TLBINV:
2172			/* invalid matching guest TLB */
2173			vcpu->arch.host_cp0_badvaddr = addr;
2174			vcpu->arch.pc = curr_pc;
2175			kvm_mips_emulate_tlbinv_ld(cause, NULL, vcpu);
2176			return EMULATE_EXCEPT;
2177		default:
2178			break;
2179		}
2180	}
2181}
2182
2183enum emulation_result kvm_mips_emulate_cache(union mips_instruction inst,
2184					     u32 *opc, u32 cause,
2185					     struct kvm_vcpu *vcpu)
2186{
2187	enum emulation_result er = EMULATE_DONE;
2188	u32 cache, op_inst, op, base;
2189	s16 offset;
2190	struct kvm_vcpu_arch *arch = &vcpu->arch;
2191	unsigned long va;
2192	unsigned long curr_pc;
2193
2194	/*
2195	 * Update PC and hold onto current PC in case there is
2196	 * an error and we want to rollback the PC
2197	 */
2198	curr_pc = vcpu->arch.pc;
2199	er = update_pc(vcpu, cause);
2200	if (er == EMULATE_FAIL)
2201		return er;
2202
2203	base = inst.i_format.rs;
2204	op_inst = inst.i_format.rt;
2205	if (cpu_has_mips_r6)
2206		offset = inst.spec3_format.simmediate;
2207	else
2208		offset = inst.i_format.simmediate;
2209	cache = op_inst & CacheOp_Cache;
2210	op = op_inst & CacheOp_Op;
2211
2212	va = arch->gprs[base] + offset;
2213
2214	kvm_debug("CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2215		  cache, op, base, arch->gprs[base], offset);
2216
2217	/*
2218	 * Treat INDEX_INV as a nop, basically issued by Linux on startup to
2219	 * invalidate the caches entirely by stepping through all the
2220	 * ways/indexes
2221	 */
2222	if (op == Index_Writeback_Inv) {
2223		kvm_debug("@ %#lx/%#lx CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2224			  vcpu->arch.pc, vcpu->arch.gprs[31], cache, op, base,
2225			  arch->gprs[base], offset);
2226
2227		if (cache == Cache_D) {
2228#ifdef CONFIG_CPU_R4K_CACHE_TLB
2229			r4k_blast_dcache();
2230#else
2231			switch (boot_cpu_type()) {
2232			case CPU_CAVIUM_OCTEON3:
2233				/* locally flush icache */
2234				local_flush_icache_range(0, 0);
2235				break;
2236			default:
2237				__flush_cache_all();
2238				break;
2239			}
2240#endif
2241		} else if (cache == Cache_I) {
2242#ifdef CONFIG_CPU_R4K_CACHE_TLB
2243			r4k_blast_icache();
2244#else
2245			switch (boot_cpu_type()) {
2246			case CPU_CAVIUM_OCTEON3:
2247				/* locally flush icache */
2248				local_flush_icache_range(0, 0);
2249				break;
2250			default:
2251				flush_icache_all();
2252				break;
2253			}
2254#endif
2255		} else {
2256			kvm_err("%s: unsupported CACHE INDEX operation\n",
2257				__func__);
2258			return EMULATE_FAIL;
2259		}
2260
2261#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2262		kvm_mips_trans_cache_index(inst, opc, vcpu);
2263#endif
2264		goto done;
2265	}
2266
2267	/* XXXKYMA: Only a subset of cache ops are supported, used by Linux */
2268	if (op_inst == Hit_Writeback_Inv_D || op_inst == Hit_Invalidate_D) {
2269		/*
2270		 * Perform the dcache part of icache synchronisation on the
2271		 * guest's behalf.
2272		 */
2273		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2274					     curr_pc, va, vcpu, cause);
2275		if (er != EMULATE_DONE)
2276			goto done;
2277#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2278		/*
2279		 * Replace the CACHE instruction, with a SYNCI, not the same,
2280		 * but avoids a trap
2281		 */
2282		kvm_mips_trans_cache_va(inst, opc, vcpu);
2283#endif
2284	} else if (op_inst == Hit_Invalidate_I) {
2285		/* Perform the icache synchronisation on the guest's behalf */
2286		er = kvm_mips_guest_cache_op(protected_writeback_dcache_line,
2287					     curr_pc, va, vcpu, cause);
2288		if (er != EMULATE_DONE)
2289			goto done;
2290		er = kvm_mips_guest_cache_op(protected_flush_icache_line,
2291					     curr_pc, va, vcpu, cause);
2292		if (er != EMULATE_DONE)
2293			goto done;
2294
2295#ifdef CONFIG_KVM_MIPS_DYN_TRANS
2296		/* Replace the CACHE instruction, with a SYNCI */
2297		kvm_mips_trans_cache_va(inst, opc, vcpu);
2298#endif
2299	} else {
2300		kvm_err("NO-OP CACHE (cache: %#x, op: %#x, base[%d]: %#lx, offset: %#x\n",
2301			cache, op, base, arch->gprs[base], offset);
2302		er = EMULATE_FAIL;
2303	}
2304
2305done:
2306	/* Rollback PC only if emulation was unsuccessful */
2307	if (er == EMULATE_FAIL)
2308		vcpu->arch.pc = curr_pc;
2309	/* Guest exception needs guest to resume */
2310	if (er == EMULATE_EXCEPT)
2311		er = EMULATE_DONE;
2312
2313	return er;
2314}
2315
2316enum emulation_result kvm_mips_emulate_inst(u32 cause, u32 *opc,
2317					    struct kvm_vcpu *vcpu)
2318{
2319	union mips_instruction inst;
2320	enum emulation_result er = EMULATE_DONE;
2321	int err;
2322
2323	/* Fetch the instruction. */
2324	if (cause & CAUSEF_BD)
2325		opc += 1;
2326	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2327	if (err)
2328		return EMULATE_FAIL;
2329
2330	switch (inst.r_format.opcode) {
2331	case cop0_op:
2332		er = kvm_mips_emulate_CP0(inst, opc, cause, vcpu);
2333		break;
2334
2335#ifndef CONFIG_CPU_MIPSR6
2336	case cache_op:
2337		++vcpu->stat.cache_exits;
2338		trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2339		er = kvm_mips_emulate_cache(inst, opc, cause, vcpu);
2340		break;
2341#else
2342	case spec3_op:
2343		switch (inst.spec3_format.func) {
2344		case cache6_op:
2345			++vcpu->stat.cache_exits;
2346			trace_kvm_exit(vcpu, KVM_TRACE_EXIT_CACHE);
2347			er = kvm_mips_emulate_cache(inst, opc, cause,
2348						    vcpu);
2349			break;
2350		default:
2351			goto unknown;
2352		}
2353		break;
2354unknown:
2355#endif
2356
2357	default:
2358		kvm_err("Instruction emulation not supported (%p/%#x)\n", opc,
2359			inst.word);
2360		kvm_arch_vcpu_dump_regs(vcpu);
2361		er = EMULATE_FAIL;
2362		break;
2363	}
2364
2365	return er;
2366}
2367#endif /* CONFIG_KVM_MIPS_VZ */
2368
2369/**
2370 * kvm_mips_guest_exception_base() - Find guest exception vector base address.
2371 *
2372 * Returns:	The base address of the current guest exception vector, taking
2373 *		both Guest.CP0_Status.BEV and Guest.CP0_EBase into account.
2374 */
2375long kvm_mips_guest_exception_base(struct kvm_vcpu *vcpu)
2376{
2377	struct mips_coproc *cop0 = vcpu->arch.cop0;
2378
2379	if (kvm_read_c0_guest_status(cop0) & ST0_BEV)
2380		return KVM_GUEST_CKSEG1ADDR(0x1fc00200);
2381	else
2382		return kvm_read_c0_guest_ebase(cop0) & MIPS_EBASE_BASE;
2383}
2384
2385enum emulation_result kvm_mips_emulate_syscall(u32 cause,
2386					       u32 *opc,
2387					       struct kvm_vcpu *vcpu)
2388{
2389	struct mips_coproc *cop0 = vcpu->arch.cop0;
2390	struct kvm_vcpu_arch *arch = &vcpu->arch;
2391	enum emulation_result er = EMULATE_DONE;
2392
2393	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2394		/* save old pc */
2395		kvm_write_c0_guest_epc(cop0, arch->pc);
2396		kvm_set_c0_guest_status(cop0, ST0_EXL);
2397
2398		if (cause & CAUSEF_BD)
2399			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2400		else
2401			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2402
2403		kvm_debug("Delivering SYSCALL @ pc %#lx\n", arch->pc);
2404
2405		kvm_change_c0_guest_cause(cop0, (0xff),
2406					  (EXCCODE_SYS << CAUSEB_EXCCODE));
2407
2408		/* Set PC to the exception entry point */
2409		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2410
2411	} else {
2412		kvm_err("Trying to deliver SYSCALL when EXL is already set\n");
2413		er = EMULATE_FAIL;
2414	}
2415
2416	return er;
2417}
2418
2419enum emulation_result kvm_mips_emulate_tlbmiss_ld(u32 cause,
2420						  u32 *opc,
2421						  struct kvm_vcpu *vcpu)
2422{
2423	struct mips_coproc *cop0 = vcpu->arch.cop0;
2424	struct kvm_vcpu_arch *arch = &vcpu->arch;
2425	unsigned long entryhi = (vcpu->arch.  host_cp0_badvaddr & VPN2_MASK) |
2426			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2427
2428	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2429		/* save old pc */
2430		kvm_write_c0_guest_epc(cop0, arch->pc);
2431		kvm_set_c0_guest_status(cop0, ST0_EXL);
2432
2433		if (cause & CAUSEF_BD)
2434			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2435		else
2436			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2437
2438		kvm_debug("[EXL == 0] delivering TLB MISS @ pc %#lx\n",
2439			  arch->pc);
2440
2441		/* set pc to the exception entry point */
2442		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2443
2444	} else {
2445		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2446			  arch->pc);
2447
2448		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2449	}
2450
2451	kvm_change_c0_guest_cause(cop0, (0xff),
2452				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2453
2454	/* setup badvaddr, context and entryhi registers for the guest */
2455	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2456	/* XXXKYMA: is the context register used by linux??? */
2457	kvm_write_c0_guest_entryhi(cop0, entryhi);
2458
2459	return EMULATE_DONE;
2460}
2461
2462enum emulation_result kvm_mips_emulate_tlbinv_ld(u32 cause,
2463						 u32 *opc,
2464						 struct kvm_vcpu *vcpu)
2465{
2466	struct mips_coproc *cop0 = vcpu->arch.cop0;
2467	struct kvm_vcpu_arch *arch = &vcpu->arch;
2468	unsigned long entryhi =
2469		(vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2470		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2471
2472	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2473		/* save old pc */
2474		kvm_write_c0_guest_epc(cop0, arch->pc);
2475		kvm_set_c0_guest_status(cop0, ST0_EXL);
2476
2477		if (cause & CAUSEF_BD)
2478			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2479		else
2480			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2481
2482		kvm_debug("[EXL == 0] delivering TLB INV @ pc %#lx\n",
2483			  arch->pc);
2484	} else {
2485		kvm_debug("[EXL == 1] delivering TLB MISS @ pc %#lx\n",
2486			  arch->pc);
2487	}
2488
2489	/* set pc to the exception entry point */
2490	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2491
2492	kvm_change_c0_guest_cause(cop0, (0xff),
2493				  (EXCCODE_TLBL << CAUSEB_EXCCODE));
2494
2495	/* setup badvaddr, context and entryhi registers for the guest */
2496	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2497	/* XXXKYMA: is the context register used by linux??? */
2498	kvm_write_c0_guest_entryhi(cop0, entryhi);
2499
2500	return EMULATE_DONE;
2501}
2502
2503enum emulation_result kvm_mips_emulate_tlbmiss_st(u32 cause,
2504						  u32 *opc,
2505						  struct kvm_vcpu *vcpu)
2506{
2507	struct mips_coproc *cop0 = vcpu->arch.cop0;
2508	struct kvm_vcpu_arch *arch = &vcpu->arch;
2509	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2510			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2511
2512	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2513		/* save old pc */
2514		kvm_write_c0_guest_epc(cop0, arch->pc);
2515		kvm_set_c0_guest_status(cop0, ST0_EXL);
2516
2517		if (cause & CAUSEF_BD)
2518			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2519		else
2520			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2521
2522		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2523			  arch->pc);
2524
2525		/* Set PC to the exception entry point */
2526		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x0;
2527	} else {
2528		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2529			  arch->pc);
2530		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2531	}
2532
2533	kvm_change_c0_guest_cause(cop0, (0xff),
2534				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2535
2536	/* setup badvaddr, context and entryhi registers for the guest */
2537	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2538	/* XXXKYMA: is the context register used by linux??? */
2539	kvm_write_c0_guest_entryhi(cop0, entryhi);
2540
2541	return EMULATE_DONE;
2542}
2543
2544enum emulation_result kvm_mips_emulate_tlbinv_st(u32 cause,
2545						 u32 *opc,
2546						 struct kvm_vcpu *vcpu)
2547{
2548	struct mips_coproc *cop0 = vcpu->arch.cop0;
2549	struct kvm_vcpu_arch *arch = &vcpu->arch;
2550	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2551		(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2552
2553	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2554		/* save old pc */
2555		kvm_write_c0_guest_epc(cop0, arch->pc);
2556		kvm_set_c0_guest_status(cop0, ST0_EXL);
2557
2558		if (cause & CAUSEF_BD)
2559			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2560		else
2561			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2562
2563		kvm_debug("[EXL == 0] Delivering TLB MISS @ pc %#lx\n",
2564			  arch->pc);
2565	} else {
2566		kvm_debug("[EXL == 1] Delivering TLB MISS @ pc %#lx\n",
2567			  arch->pc);
2568	}
2569
2570	/* Set PC to the exception entry point */
2571	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2572
2573	kvm_change_c0_guest_cause(cop0, (0xff),
2574				  (EXCCODE_TLBS << CAUSEB_EXCCODE));
2575
2576	/* setup badvaddr, context and entryhi registers for the guest */
2577	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2578	/* XXXKYMA: is the context register used by linux??? */
2579	kvm_write_c0_guest_entryhi(cop0, entryhi);
2580
2581	return EMULATE_DONE;
2582}
2583
2584enum emulation_result kvm_mips_emulate_tlbmod(u32 cause,
2585					      u32 *opc,
2586					      struct kvm_vcpu *vcpu)
2587{
2588	struct mips_coproc *cop0 = vcpu->arch.cop0;
2589	unsigned long entryhi = (vcpu->arch.host_cp0_badvaddr & VPN2_MASK) |
2590			(kvm_read_c0_guest_entryhi(cop0) & KVM_ENTRYHI_ASID);
2591	struct kvm_vcpu_arch *arch = &vcpu->arch;
2592
2593	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2594		/* save old pc */
2595		kvm_write_c0_guest_epc(cop0, arch->pc);
2596		kvm_set_c0_guest_status(cop0, ST0_EXL);
2597
2598		if (cause & CAUSEF_BD)
2599			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2600		else
2601			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2602
2603		kvm_debug("[EXL == 0] Delivering TLB MOD @ pc %#lx\n",
2604			  arch->pc);
2605	} else {
2606		kvm_debug("[EXL == 1] Delivering TLB MOD @ pc %#lx\n",
2607			  arch->pc);
2608	}
2609
2610	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2611
2612	kvm_change_c0_guest_cause(cop0, (0xff),
2613				  (EXCCODE_MOD << CAUSEB_EXCCODE));
2614
2615	/* setup badvaddr, context and entryhi registers for the guest */
2616	kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
2617	/* XXXKYMA: is the context register used by linux??? */
2618	kvm_write_c0_guest_entryhi(cop0, entryhi);
2619
2620	return EMULATE_DONE;
2621}
2622
2623enum emulation_result kvm_mips_emulate_fpu_exc(u32 cause,
2624					       u32 *opc,
2625					       struct kvm_vcpu *vcpu)
2626{
2627	struct mips_coproc *cop0 = vcpu->arch.cop0;
2628	struct kvm_vcpu_arch *arch = &vcpu->arch;
2629
2630	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2631		/* save old pc */
2632		kvm_write_c0_guest_epc(cop0, arch->pc);
2633		kvm_set_c0_guest_status(cop0, ST0_EXL);
2634
2635		if (cause & CAUSEF_BD)
2636			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2637		else
2638			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2639
2640	}
2641
2642	arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2643
2644	kvm_change_c0_guest_cause(cop0, (0xff),
2645				  (EXCCODE_CPU << CAUSEB_EXCCODE));
2646	kvm_change_c0_guest_cause(cop0, (CAUSEF_CE), (0x1 << CAUSEB_CE));
2647
2648	return EMULATE_DONE;
2649}
2650
2651enum emulation_result kvm_mips_emulate_ri_exc(u32 cause,
2652					      u32 *opc,
2653					      struct kvm_vcpu *vcpu)
2654{
2655	struct mips_coproc *cop0 = vcpu->arch.cop0;
2656	struct kvm_vcpu_arch *arch = &vcpu->arch;
2657	enum emulation_result er = EMULATE_DONE;
2658
2659	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2660		/* save old pc */
2661		kvm_write_c0_guest_epc(cop0, arch->pc);
2662		kvm_set_c0_guest_status(cop0, ST0_EXL);
2663
2664		if (cause & CAUSEF_BD)
2665			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2666		else
2667			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2668
2669		kvm_debug("Delivering RI @ pc %#lx\n", arch->pc);
2670
2671		kvm_change_c0_guest_cause(cop0, (0xff),
2672					  (EXCCODE_RI << CAUSEB_EXCCODE));
2673
2674		/* Set PC to the exception entry point */
2675		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2676
2677	} else {
2678		kvm_err("Trying to deliver RI when EXL is already set\n");
2679		er = EMULATE_FAIL;
2680	}
2681
2682	return er;
2683}
2684
2685enum emulation_result kvm_mips_emulate_bp_exc(u32 cause,
2686					      u32 *opc,
2687					      struct kvm_vcpu *vcpu)
2688{
2689	struct mips_coproc *cop0 = vcpu->arch.cop0;
2690	struct kvm_vcpu_arch *arch = &vcpu->arch;
2691	enum emulation_result er = EMULATE_DONE;
2692
2693	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2694		/* save old pc */
2695		kvm_write_c0_guest_epc(cop0, arch->pc);
2696		kvm_set_c0_guest_status(cop0, ST0_EXL);
2697
2698		if (cause & CAUSEF_BD)
2699			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2700		else
2701			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2702
2703		kvm_debug("Delivering BP @ pc %#lx\n", arch->pc);
2704
2705		kvm_change_c0_guest_cause(cop0, (0xff),
2706					  (EXCCODE_BP << CAUSEB_EXCCODE));
2707
2708		/* Set PC to the exception entry point */
2709		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2710
2711	} else {
2712		kvm_err("Trying to deliver BP when EXL is already set\n");
2713		er = EMULATE_FAIL;
2714	}
2715
2716	return er;
2717}
2718
2719enum emulation_result kvm_mips_emulate_trap_exc(u32 cause,
2720						u32 *opc,
2721						struct kvm_vcpu *vcpu)
2722{
2723	struct mips_coproc *cop0 = vcpu->arch.cop0;
2724	struct kvm_vcpu_arch *arch = &vcpu->arch;
2725	enum emulation_result er = EMULATE_DONE;
2726
2727	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2728		/* save old pc */
2729		kvm_write_c0_guest_epc(cop0, arch->pc);
2730		kvm_set_c0_guest_status(cop0, ST0_EXL);
2731
2732		if (cause & CAUSEF_BD)
2733			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2734		else
2735			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2736
2737		kvm_debug("Delivering TRAP @ pc %#lx\n", arch->pc);
2738
2739		kvm_change_c0_guest_cause(cop0, (0xff),
2740					  (EXCCODE_TR << CAUSEB_EXCCODE));
2741
2742		/* Set PC to the exception entry point */
2743		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2744
2745	} else {
2746		kvm_err("Trying to deliver TRAP when EXL is already set\n");
2747		er = EMULATE_FAIL;
2748	}
2749
2750	return er;
2751}
2752
2753enum emulation_result kvm_mips_emulate_msafpe_exc(u32 cause,
2754						  u32 *opc,
2755						  struct kvm_vcpu *vcpu)
2756{
2757	struct mips_coproc *cop0 = vcpu->arch.cop0;
2758	struct kvm_vcpu_arch *arch = &vcpu->arch;
2759	enum emulation_result er = EMULATE_DONE;
2760
2761	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2762		/* save old pc */
2763		kvm_write_c0_guest_epc(cop0, arch->pc);
2764		kvm_set_c0_guest_status(cop0, ST0_EXL);
2765
2766		if (cause & CAUSEF_BD)
2767			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2768		else
2769			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2770
2771		kvm_debug("Delivering MSAFPE @ pc %#lx\n", arch->pc);
2772
2773		kvm_change_c0_guest_cause(cop0, (0xff),
2774					  (EXCCODE_MSAFPE << CAUSEB_EXCCODE));
2775
2776		/* Set PC to the exception entry point */
2777		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2778
2779	} else {
2780		kvm_err("Trying to deliver MSAFPE when EXL is already set\n");
2781		er = EMULATE_FAIL;
2782	}
2783
2784	return er;
2785}
2786
2787enum emulation_result kvm_mips_emulate_fpe_exc(u32 cause,
2788					       u32 *opc,
2789					       struct kvm_vcpu *vcpu)
2790{
2791	struct mips_coproc *cop0 = vcpu->arch.cop0;
2792	struct kvm_vcpu_arch *arch = &vcpu->arch;
2793	enum emulation_result er = EMULATE_DONE;
2794
2795	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2796		/* save old pc */
2797		kvm_write_c0_guest_epc(cop0, arch->pc);
2798		kvm_set_c0_guest_status(cop0, ST0_EXL);
2799
2800		if (cause & CAUSEF_BD)
2801			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2802		else
2803			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2804
2805		kvm_debug("Delivering FPE @ pc %#lx\n", arch->pc);
2806
2807		kvm_change_c0_guest_cause(cop0, (0xff),
2808					  (EXCCODE_FPE << CAUSEB_EXCCODE));
2809
2810		/* Set PC to the exception entry point */
2811		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2812
2813	} else {
2814		kvm_err("Trying to deliver FPE when EXL is already set\n");
2815		er = EMULATE_FAIL;
2816	}
2817
2818	return er;
2819}
2820
2821enum emulation_result kvm_mips_emulate_msadis_exc(u32 cause,
2822						  u32 *opc,
2823						  struct kvm_vcpu *vcpu)
2824{
2825	struct mips_coproc *cop0 = vcpu->arch.cop0;
2826	struct kvm_vcpu_arch *arch = &vcpu->arch;
2827	enum emulation_result er = EMULATE_DONE;
2828
2829	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
2830		/* save old pc */
2831		kvm_write_c0_guest_epc(cop0, arch->pc);
2832		kvm_set_c0_guest_status(cop0, ST0_EXL);
2833
2834		if (cause & CAUSEF_BD)
2835			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
2836		else
2837			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
2838
2839		kvm_debug("Delivering MSADIS @ pc %#lx\n", arch->pc);
2840
2841		kvm_change_c0_guest_cause(cop0, (0xff),
2842					  (EXCCODE_MSADIS << CAUSEB_EXCCODE));
2843
2844		/* Set PC to the exception entry point */
2845		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
2846
2847	} else {
2848		kvm_err("Trying to deliver MSADIS when EXL is already set\n");
2849		er = EMULATE_FAIL;
2850	}
2851
2852	return er;
2853}
2854
2855enum emulation_result kvm_mips_handle_ri(u32 cause, u32 *opc,
2856					 struct kvm_vcpu *vcpu)
2857{
2858	struct mips_coproc *cop0 = vcpu->arch.cop0;
2859	struct kvm_vcpu_arch *arch = &vcpu->arch;
2860	enum emulation_result er = EMULATE_DONE;
2861	unsigned long curr_pc;
2862	union mips_instruction inst;
2863	int err;
2864
2865	/*
2866	 * Update PC and hold onto current PC in case there is
2867	 * an error and we want to rollback the PC
2868	 */
2869	curr_pc = vcpu->arch.pc;
2870	er = update_pc(vcpu, cause);
2871	if (er == EMULATE_FAIL)
2872		return er;
2873
2874	/* Fetch the instruction. */
2875	if (cause & CAUSEF_BD)
2876		opc += 1;
2877	err = kvm_get_badinstr(opc, vcpu, &inst.word);
2878	if (err) {
2879		kvm_err("%s: Cannot get inst @ %p (%d)\n", __func__, opc, err);
2880		return EMULATE_FAIL;
2881	}
2882
2883	if (inst.r_format.opcode == spec3_op &&
2884	    inst.r_format.func == rdhwr_op &&
2885	    inst.r_format.rs == 0 &&
2886	    (inst.r_format.re >> 3) == 0) {
2887		int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
2888		int rd = inst.r_format.rd;
2889		int rt = inst.r_format.rt;
2890		int sel = inst.r_format.re & 0x7;
2891
2892		/* If usermode, check RDHWR rd is allowed by guest HWREna */
2893		if (usermode && !(kvm_read_c0_guest_hwrena(cop0) & BIT(rd))) {
2894			kvm_debug("RDHWR %#x disallowed by HWREna @ %p\n",
2895				  rd, opc);
2896			goto emulate_ri;
2897		}
2898		switch (rd) {
2899		case MIPS_HWR_CPUNUM:		/* CPU number */
2900			arch->gprs[rt] = vcpu->vcpu_id;
2901			break;
2902		case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
2903			arch->gprs[rt] = min(current_cpu_data.dcache.linesz,
2904					     current_cpu_data.icache.linesz);
2905			break;
2906		case MIPS_HWR_CC:		/* Read count register */
2907			arch->gprs[rt] = (s32)kvm_mips_read_count(vcpu);
2908			break;
2909		case MIPS_HWR_CCRES:		/* Count register resolution */
2910			switch (current_cpu_data.cputype) {
2911			case CPU_20KC:
2912			case CPU_25KF:
2913				arch->gprs[rt] = 1;
2914				break;
2915			default:
2916				arch->gprs[rt] = 2;
2917			}
2918			break;
2919		case MIPS_HWR_ULR:		/* Read UserLocal register */
2920			arch->gprs[rt] = kvm_read_c0_guest_userlocal(cop0);
2921			break;
2922
2923		default:
2924			kvm_debug("RDHWR %#x not supported @ %p\n", rd, opc);
2925			goto emulate_ri;
2926		}
2927
2928		trace_kvm_hwr(vcpu, KVM_TRACE_RDHWR, KVM_TRACE_HWR(rd, sel),
2929			      vcpu->arch.gprs[rt]);
2930	} else {
2931		kvm_debug("Emulate RI not supported @ %p: %#x\n",
2932			  opc, inst.word);
2933		goto emulate_ri;
2934	}
2935
2936	return EMULATE_DONE;
2937
2938emulate_ri:
2939	/*
2940	 * Rollback PC (if in branch delay slot then the PC already points to
2941	 * branch target), and pass the RI exception to the guest OS.
2942	 */
2943	vcpu->arch.pc = curr_pc;
2944	return kvm_mips_emulate_ri_exc(cause, opc, vcpu);
2945}
2946
2947enum emulation_result kvm_mips_complete_mmio_load(struct kvm_vcpu *vcpu)
2948{
2949	struct kvm_run *run = vcpu->run;
2950	unsigned long *gpr = &vcpu->arch.gprs[vcpu->arch.io_gpr];
2951	enum emulation_result er = EMULATE_DONE;
2952
2953	if (run->mmio.len > sizeof(*gpr)) {
2954		kvm_err("Bad MMIO length: %d", run->mmio.len);
2955		er = EMULATE_FAIL;
2956		goto done;
2957	}
2958
2959	/* Restore saved resume PC */
2960	vcpu->arch.pc = vcpu->arch.io_pc;
2961
2962	switch (run->mmio.len) {
2963	case 8:
2964		switch (vcpu->mmio_needed) {
2965		case 11:
2966			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff) |
2967				(((*(s64 *)run->mmio.data) & 0xff) << 56);
2968			break;
2969		case 12:
2970			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff) |
2971				(((*(s64 *)run->mmio.data) & 0xffff) << 48);
2972			break;
2973		case 13:
2974			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff) |
2975				(((*(s64 *)run->mmio.data) & 0xffffff) << 40);
2976			break;
2977		case 14:
2978			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff) |
2979				(((*(s64 *)run->mmio.data) & 0xffffffff) << 32);
2980			break;
2981		case 15:
2982			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
2983				(((*(s64 *)run->mmio.data) & 0xffffffffff) << 24);
2984			break;
2985		case 16:
2986			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
2987				(((*(s64 *)run->mmio.data) & 0xffffffffffff) << 16);
2988			break;
2989		case 17:
2990			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
2991				(((*(s64 *)run->mmio.data) & 0xffffffffffffff) << 8);
2992			break;
2993		case 18:
2994		case 19:
2995			*gpr = *(s64 *)run->mmio.data;
2996			break;
2997		case 20:
2998			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff00000000000000) |
2999				((((*(s64 *)run->mmio.data)) >> 8) & 0xffffffffffffff);
3000			break;
3001		case 21:
3002			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff000000000000) |
3003				((((*(s64 *)run->mmio.data)) >> 16) & 0xffffffffffff);
3004			break;
3005		case 22:
3006			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff0000000000) |
3007				((((*(s64 *)run->mmio.data)) >> 24) & 0xffffffffff);
3008			break;
3009		case 23:
3010			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffff00000000) |
3011				((((*(s64 *)run->mmio.data)) >> 32) & 0xffffffff);
3012			break;
3013		case 24:
3014			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffff000000) |
3015				((((*(s64 *)run->mmio.data)) >> 40) & 0xffffff);
3016			break;
3017		case 25:
3018			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffff0000) |
3019				((((*(s64 *)run->mmio.data)) >> 48) & 0xffff);
3020			break;
3021		case 26:
3022			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffffffffffff00) |
3023				((((*(s64 *)run->mmio.data)) >> 56) & 0xff);
3024			break;
3025		default:
3026			*gpr = *(s64 *)run->mmio.data;
3027		}
3028		break;
3029
3030	case 4:
3031		switch (vcpu->mmio_needed) {
3032		case 1:
3033			*gpr = *(u32 *)run->mmio.data;
3034			break;
3035		case 2:
3036			*gpr = *(s32 *)run->mmio.data;
3037			break;
3038		case 3:
3039			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff) |
3040				(((*(s32 *)run->mmio.data) & 0xff) << 24);
3041			break;
3042		case 4:
3043			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff) |
3044				(((*(s32 *)run->mmio.data) & 0xffff) << 16);
3045			break;
3046		case 5:
3047			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff) |
3048				(((*(s32 *)run->mmio.data) & 0xffffff) << 8);
3049			break;
3050		case 6:
3051		case 7:
3052			*gpr = *(s32 *)run->mmio.data;
3053			break;
3054		case 8:
3055			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xff000000) |
3056				((((*(s32 *)run->mmio.data)) >> 8) & 0xffffff);
3057			break;
3058		case 9:
3059			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffff0000) |
3060				((((*(s32 *)run->mmio.data)) >> 16) & 0xffff);
3061			break;
3062		case 10:
3063			*gpr = (vcpu->arch.gprs[vcpu->arch.io_gpr] & 0xffffff00) |
3064				((((*(s32 *)run->mmio.data)) >> 24) & 0xff);
3065			break;
3066		default:
3067			*gpr = *(s32 *)run->mmio.data;
3068		}
3069		break;
3070
3071	case 2:
3072		if (vcpu->mmio_needed == 1)
3073			*gpr = *(u16 *)run->mmio.data;
3074		else
3075			*gpr = *(s16 *)run->mmio.data;
3076
3077		break;
3078	case 1:
3079		if (vcpu->mmio_needed == 1)
3080			*gpr = *(u8 *)run->mmio.data;
3081		else
3082			*gpr = *(s8 *)run->mmio.data;
3083		break;
3084	}
3085
3086done:
3087	return er;
3088}
3089
3090static enum emulation_result kvm_mips_emulate_exc(u32 cause,
3091						  u32 *opc,
3092						  struct kvm_vcpu *vcpu)
3093{
3094	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3095	struct mips_coproc *cop0 = vcpu->arch.cop0;
3096	struct kvm_vcpu_arch *arch = &vcpu->arch;
3097	enum emulation_result er = EMULATE_DONE;
3098
3099	if ((kvm_read_c0_guest_status(cop0) & ST0_EXL) == 0) {
3100		/* save old pc */
3101		kvm_write_c0_guest_epc(cop0, arch->pc);
3102		kvm_set_c0_guest_status(cop0, ST0_EXL);
3103
3104		if (cause & CAUSEF_BD)
3105			kvm_set_c0_guest_cause(cop0, CAUSEF_BD);
3106		else
3107			kvm_clear_c0_guest_cause(cop0, CAUSEF_BD);
3108
3109		kvm_change_c0_guest_cause(cop0, (0xff),
3110					  (exccode << CAUSEB_EXCCODE));
3111
3112		/* Set PC to the exception entry point */
3113		arch->pc = kvm_mips_guest_exception_base(vcpu) + 0x180;
3114		kvm_write_c0_guest_badvaddr(cop0, vcpu->arch.host_cp0_badvaddr);
3115
3116		kvm_debug("Delivering EXC %d @ pc %#lx, badVaddr: %#lx\n",
3117			  exccode, kvm_read_c0_guest_epc(cop0),
3118			  kvm_read_c0_guest_badvaddr(cop0));
3119	} else {
3120		kvm_err("Trying to deliver EXC when EXL is already set\n");
3121		er = EMULATE_FAIL;
3122	}
3123
3124	return er;
3125}
3126
3127enum emulation_result kvm_mips_check_privilege(u32 cause,
3128					       u32 *opc,
3129					       struct kvm_vcpu *vcpu)
3130{
3131	enum emulation_result er = EMULATE_DONE;
3132	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3133	unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
3134
3135	int usermode = !KVM_GUEST_KERNEL_MODE(vcpu);
3136
3137	if (usermode) {
3138		switch (exccode) {
3139		case EXCCODE_INT:
3140		case EXCCODE_SYS:
3141		case EXCCODE_BP:
3142		case EXCCODE_RI:
3143		case EXCCODE_TR:
3144		case EXCCODE_MSAFPE:
3145		case EXCCODE_FPE:
3146		case EXCCODE_MSADIS:
3147			break;
3148
3149		case EXCCODE_CPU:
3150			if (((cause & CAUSEF_CE) >> CAUSEB_CE) == 0)
3151				er = EMULATE_PRIV_FAIL;
3152			break;
3153
3154		case EXCCODE_MOD:
3155			break;
3156
3157		case EXCCODE_TLBL:
3158			/*
3159			 * We we are accessing Guest kernel space, then send an
3160			 * address error exception to the guest
3161			 */
3162			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3163				kvm_debug("%s: LD MISS @ %#lx\n", __func__,
3164					  badvaddr);
3165				cause &= ~0xff;
3166				cause |= (EXCCODE_ADEL << CAUSEB_EXCCODE);
3167				er = EMULATE_PRIV_FAIL;
3168			}
3169			break;
3170
3171		case EXCCODE_TLBS:
3172			/*
3173			 * We we are accessing Guest kernel space, then send an
3174			 * address error exception to the guest
3175			 */
3176			if (badvaddr >= (unsigned long) KVM_GUEST_KSEG0) {
3177				kvm_debug("%s: ST MISS @ %#lx\n", __func__,
3178					  badvaddr);
3179				cause &= ~0xff;
3180				cause |= (EXCCODE_ADES << CAUSEB_EXCCODE);
3181				er = EMULATE_PRIV_FAIL;
3182			}
3183			break;
3184
3185		case EXCCODE_ADES:
3186			kvm_debug("%s: address error ST @ %#lx\n", __func__,
3187				  badvaddr);
3188			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3189				cause &= ~0xff;
3190				cause |= (EXCCODE_TLBS << CAUSEB_EXCCODE);
3191			}
3192			er = EMULATE_PRIV_FAIL;
3193			break;
3194		case EXCCODE_ADEL:
3195			kvm_debug("%s: address error LD @ %#lx\n", __func__,
3196				  badvaddr);
3197			if ((badvaddr & PAGE_MASK) == KVM_GUEST_COMMPAGE_ADDR) {
3198				cause &= ~0xff;
3199				cause |= (EXCCODE_TLBL << CAUSEB_EXCCODE);
3200			}
3201			er = EMULATE_PRIV_FAIL;
3202			break;
3203		default:
3204			er = EMULATE_PRIV_FAIL;
3205			break;
3206		}
3207	}
3208
3209	if (er == EMULATE_PRIV_FAIL)
3210		kvm_mips_emulate_exc(cause, opc, vcpu);
3211
3212	return er;
3213}
3214
3215/*
3216 * User Address (UA) fault, this could happen if
3217 * (1) TLB entry not present/valid in both Guest and shadow host TLBs, in this
3218 *     case we pass on the fault to the guest kernel and let it handle it.
3219 * (2) TLB entry is present in the Guest TLB but not in the shadow, in this
3220 *     case we inject the TLB from the Guest TLB into the shadow host TLB
3221 */
3222enum emulation_result kvm_mips_handle_tlbmiss(u32 cause,
3223					      u32 *opc,
3224					      struct kvm_vcpu *vcpu,
3225					      bool write_fault)
3226{
3227	enum emulation_result er = EMULATE_DONE;
3228	u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
3229	unsigned long va = vcpu->arch.host_cp0_badvaddr;
3230	int index;
3231
3232	kvm_debug("kvm_mips_handle_tlbmiss: badvaddr: %#lx\n",
3233		  vcpu->arch.host_cp0_badvaddr);
3234
3235	/*
3236	 * KVM would not have got the exception if this entry was valid in the
3237	 * shadow host TLB. Check the Guest TLB, if the entry is not there then
3238	 * send the guest an exception. The guest exc handler should then inject
3239	 * an entry into the guest TLB.
3240	 */
3241	index = kvm_mips_guest_tlb_lookup(vcpu,
3242		      (va & VPN2_MASK) |
3243		      (kvm_read_c0_guest_entryhi(vcpu->arch.cop0) &
3244		       KVM_ENTRYHI_ASID));
3245	if (index < 0) {
3246		if (exccode == EXCCODE_TLBL) {
3247			er = kvm_mips_emulate_tlbmiss_ld(cause, opc, vcpu);
3248		} else if (exccode == EXCCODE_TLBS) {
3249			er = kvm_mips_emulate_tlbmiss_st(cause, opc, vcpu);
3250		} else {
3251			kvm_err("%s: invalid exc code: %d\n", __func__,
3252				exccode);
3253			er = EMULATE_FAIL;
3254		}
3255	} else {
3256		struct kvm_mips_tlb *tlb = &vcpu->arch.guest_tlb[index];
3257
3258		/*
3259		 * Check if the entry is valid, if not then setup a TLB invalid
3260		 * exception to the guest
3261		 */
3262		if (!TLB_IS_VALID(*tlb, va)) {
3263			if (exccode == EXCCODE_TLBL) {
3264				er = kvm_mips_emulate_tlbinv_ld(cause, opc,
3265								vcpu);
3266			} else if (exccode == EXCCODE_TLBS) {
3267				er = kvm_mips_emulate_tlbinv_st(cause, opc,
3268								vcpu);
3269			} else {
3270				kvm_err("%s: invalid exc code: %d\n", __func__,
3271					exccode);
3272				er = EMULATE_FAIL;
3273			}
3274		} else {
3275			kvm_debug("Injecting hi: %#lx, lo0: %#lx, lo1: %#lx into shadow host TLB\n",
3276				  tlb->tlb_hi, tlb->tlb_lo[0], tlb->tlb_lo[1]);
3277			/*
3278			 * OK we have a Guest TLB entry, now inject it into the
3279			 * shadow host TLB
3280			 */
3281			if (kvm_mips_handle_mapped_seg_tlb_fault(vcpu, tlb, va,
3282								 write_fault)) {
3283				kvm_err("%s: handling mapped seg tlb fault for %lx, index: %u, vcpu: %p, ASID: %#lx\n",
3284					__func__, va, index, vcpu,
3285					read_c0_entryhi());
3286				er = EMULATE_FAIL;
3287			}
3288		}
3289	}
3290
3291	return er;
3292}
3293