1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
4 * Copyright (C) 2008-2009 PetaLogix
5 * Copyright (C) 2006 Atmark Techno, Inc.
6 */
7
8#ifndef _ASM_MICROBLAZE_PGTABLE_H
9#define _ASM_MICROBLAZE_PGTABLE_H
10
11#include <asm/setup.h>
12
13#ifndef __ASSEMBLY__
14extern int mem_init_done;
15#endif
16
17#ifndef CONFIG_MMU
18
19#define pgd_present(pgd)	(1) /* pages are always present on non MMU */
20#define pgd_none(pgd)		(0)
21#define pgd_bad(pgd)		(0)
22#define pgd_clear(pgdp)
23#define kern_addr_valid(addr)	(1)
24
25#define PAGE_NONE		__pgprot(0) /* these mean nothing to non MMU */
26#define PAGE_SHARED		__pgprot(0) /* these mean nothing to non MMU */
27#define PAGE_COPY		__pgprot(0) /* these mean nothing to non MMU */
28#define PAGE_READONLY		__pgprot(0) /* these mean nothing to non MMU */
29#define PAGE_KERNEL		__pgprot(0) /* these mean nothing to non MMU */
30
31#define pgprot_noncached(x)	(x)
32#define pgprot_writecombine	pgprot_noncached
33#define pgprot_device		pgprot_noncached
34
35#define __swp_type(x)		(0)
36#define __swp_offset(x)		(0)
37#define __swp_entry(typ, off)	((swp_entry_t) { ((typ) | ((off) << 7)) })
38#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
39#define __swp_entry_to_pte(x)	((pte_t) { (x).val })
40
41#define ZERO_PAGE(vaddr)	({ BUG(); NULL; })
42
43#define swapper_pg_dir ((pgd_t *) NULL)
44
45#define arch_enter_lazy_cpu_mode()	do {} while (0)
46
47#define pgprot_noncached_wc(prot)	prot
48
49/*
50 * All 32bit addresses are effectively valid for vmalloc...
51 * Sort of meaningless for non-VM targets.
52 */
53#define	VMALLOC_START	0
54#define	VMALLOC_END	0xffffffff
55
56#else /* CONFIG_MMU */
57
58#include <asm-generic/pgtable-nopmd.h>
59
60#ifdef __KERNEL__
61#ifndef __ASSEMBLY__
62
63#include <linux/sched.h>
64#include <linux/threads.h>
65#include <asm/processor.h>		/* For TASK_SIZE */
66#include <asm/mmu.h>
67#include <asm/page.h>
68
69#define FIRST_USER_ADDRESS	0UL
70
71extern unsigned long va_to_phys(unsigned long address);
72extern pte_t *va_to_pte(unsigned long address);
73
74/*
75 * The following only work if pte_present() is true.
76 * Undefined behaviour if not..
77 */
78
79/* Start and end of the vmalloc area. */
80/* Make sure to map the vmalloc area above the pinned kernel memory area
81   of 32Mb.  */
82#define VMALLOC_START	(CONFIG_KERNEL_START + CONFIG_LOWMEM_SIZE)
83#define VMALLOC_END	ioremap_bot
84
85#endif /* __ASSEMBLY__ */
86
87/*
88 * Macro to mark a page protection value as "uncacheable".
89 */
90
91#define _PAGE_CACHE_CTL	(_PAGE_GUARDED | _PAGE_NO_CACHE | \
92							_PAGE_WRITETHRU)
93
94#define pgprot_noncached(prot) \
95			(__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
96					_PAGE_NO_CACHE | _PAGE_GUARDED))
97
98#define pgprot_noncached_wc(prot) \
99			 (__pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | \
100							_PAGE_NO_CACHE))
101
102/*
103 * The MicroBlaze MMU is identical to the PPC-40x MMU, and uses a hash
104 * table containing PTEs, together with a set of 16 segment registers, to
105 * define the virtual to physical address mapping.
106 *
107 * We use the hash table as an extended TLB, i.e. a cache of currently
108 * active mappings.  We maintain a two-level page table tree, much
109 * like that used by the i386, for the sake of the Linux memory
110 * management code.  Low-level assembler code in hashtable.S
111 * (procedure hash_page) is responsible for extracting ptes from the
112 * tree and putting them into the hash table when necessary, and
113 * updating the accessed and modified bits in the page table tree.
114 */
115
116/*
117 * The MicroBlaze processor has a TLB architecture identical to PPC-40x. The
118 * instruction and data sides share a unified, 64-entry, semi-associative
119 * TLB which is maintained totally under software control. In addition, the
120 * instruction side has a hardware-managed, 2,4, or 8-entry, fully-associative
121 * TLB which serves as a first level to the shared TLB. These two TLBs are
122 * known as the UTLB and ITLB, respectively (see "mmu.h" for definitions).
123 */
124
125/*
126 * The normal case is that PTEs are 32-bits and we have a 1-page
127 * 1024-entry pgdir pointing to 1-page 1024-entry PTE pages.  -- paulus
128 *
129 */
130
131/* PGDIR_SHIFT determines what a top-level page table entry can map */
132#define PGDIR_SHIFT	(PAGE_SHIFT + PTE_SHIFT)
133#define PGDIR_SIZE	(1UL << PGDIR_SHIFT)
134#define PGDIR_MASK	(~(PGDIR_SIZE-1))
135
136/*
137 * entries per page directory level: our page-table tree is two-level, so
138 * we don't really have any PMD directory.
139 */
140#define PTRS_PER_PTE	(1 << PTE_SHIFT)
141#define PTRS_PER_PMD	1
142#define PTRS_PER_PGD	(1 << (32 - PGDIR_SHIFT))
143
144#define USER_PTRS_PER_PGD	(TASK_SIZE / PGDIR_SIZE)
145#define FIRST_USER_PGD_NR	0
146
147#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
148#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
149
150#define pte_ERROR(e) \
151	printk(KERN_ERR "%s:%d: bad pte "PTE_FMT".\n", \
152		__FILE__, __LINE__, pte_val(e))
153#define pgd_ERROR(e) \
154	printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", \
155		__FILE__, __LINE__, pgd_val(e))
156
157/*
158 * Bits in a linux-style PTE.  These match the bits in the
159 * (hardware-defined) PTE as closely as possible.
160 */
161
162/* There are several potential gotchas here.  The hardware TLBLO
163 * field looks like this:
164 *
165 * 0  1  2  3  4  ... 18 19 20 21 22 23 24 25 26 27 28 29 30 31
166 * RPN.....................  0  0 EX WR ZSEL.......  W  I  M  G
167 *
168 * Where possible we make the Linux PTE bits match up with this
169 *
170 * - bits 20 and 21 must be cleared, because we use 4k pages (4xx can
171 * support down to 1k pages), this is done in the TLBMiss exception
172 * handler.
173 * - We use only zones 0 (for kernel pages) and 1 (for user pages)
174 * of the 16 available.  Bit 24-26 of the TLB are cleared in the TLB
175 * miss handler.  Bit 27 is PAGE_USER, thus selecting the correct
176 * zone.
177 * - PRESENT *must* be in the bottom two bits because swap cache
178 * entries use the top 30 bits.  Because 4xx doesn't support SMP
179 * anyway, M is irrelevant so we borrow it for PAGE_PRESENT.  Bit 30
180 * is cleared in the TLB miss handler before the TLB entry is loaded.
181 * - All other bits of the PTE are loaded into TLBLO without
182 *  * modification, leaving us only the bits 20, 21, 24, 25, 26, 30 for
183 * software PTE bits.  We actually use bits 21, 24, 25, and
184 * 30 respectively for the software bits: ACCESSED, DIRTY, RW, and
185 * PRESENT.
186 */
187
188/* Definitions for MicroBlaze. */
189#define	_PAGE_GUARDED	0x001	/* G: page is guarded from prefetch */
190#define _PAGE_PRESENT	0x002	/* software: PTE contains a translation */
191#define	_PAGE_NO_CACHE	0x004	/* I: caching is inhibited */
192#define	_PAGE_WRITETHRU	0x008	/* W: caching is write-through */
193#define	_PAGE_USER	0x010	/* matches one of the zone permission bits */
194#define	_PAGE_RW	0x040	/* software: Writes permitted */
195#define	_PAGE_DIRTY	0x080	/* software: dirty page */
196#define _PAGE_HWWRITE	0x100	/* hardware: Dirty & RW, set in exception */
197#define _PAGE_HWEXEC	0x200	/* hardware: EX permission */
198#define _PAGE_ACCESSED	0x400	/* software: R: page referenced */
199#define _PMD_PRESENT	PAGE_MASK
200
201/*
202 * Some bits are unused...
203 */
204#ifndef _PAGE_HASHPTE
205#define _PAGE_HASHPTE	0
206#endif
207#ifndef _PTE_NONE_MASK
208#define _PTE_NONE_MASK	0
209#endif
210#ifndef _PAGE_SHARED
211#define _PAGE_SHARED	0
212#endif
213#ifndef _PAGE_EXEC
214#define _PAGE_EXEC	0
215#endif
216
217#define _PAGE_CHG_MASK	(PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
218
219/*
220 * Note: the _PAGE_COHERENT bit automatically gets set in the hardware
221 * PTE if CONFIG_SMP is defined (hash_page does this); there is no need
222 * to have it in the Linux PTE, and in fact the bit could be reused for
223 * another purpose.  -- paulus.
224 */
225#define _PAGE_BASE	(_PAGE_PRESENT | _PAGE_ACCESSED)
226#define _PAGE_WRENABLE	(_PAGE_RW | _PAGE_DIRTY | _PAGE_HWWRITE)
227
228#define _PAGE_KERNEL \
229	(_PAGE_BASE | _PAGE_WRENABLE | _PAGE_SHARED | _PAGE_HWEXEC)
230
231#define _PAGE_IO	(_PAGE_KERNEL | _PAGE_NO_CACHE | _PAGE_GUARDED)
232
233#define PAGE_NONE	__pgprot(_PAGE_BASE)
234#define PAGE_READONLY	__pgprot(_PAGE_BASE | _PAGE_USER)
235#define PAGE_READONLY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
236#define PAGE_SHARED	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW)
237#define PAGE_SHARED_X \
238		__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_RW | _PAGE_EXEC)
239#define PAGE_COPY	__pgprot(_PAGE_BASE | _PAGE_USER)
240#define PAGE_COPY_X	__pgprot(_PAGE_BASE | _PAGE_USER | _PAGE_EXEC)
241
242#define PAGE_KERNEL	__pgprot(_PAGE_KERNEL)
243#define PAGE_KERNEL_RO	__pgprot(_PAGE_BASE | _PAGE_SHARED)
244#define PAGE_KERNEL_CI	__pgprot(_PAGE_IO)
245
246/*
247 * We consider execute permission the same as read.
248 * Also, write permissions imply read permissions.
249 */
250#define __P000	PAGE_NONE
251#define __P001	PAGE_READONLY_X
252#define __P010	PAGE_COPY
253#define __P011	PAGE_COPY_X
254#define __P100	PAGE_READONLY
255#define __P101	PAGE_READONLY_X
256#define __P110	PAGE_COPY
257#define __P111	PAGE_COPY_X
258
259#define __S000	PAGE_NONE
260#define __S001	PAGE_READONLY_X
261#define __S010	PAGE_SHARED
262#define __S011	PAGE_SHARED_X
263#define __S100	PAGE_READONLY
264#define __S101	PAGE_READONLY_X
265#define __S110	PAGE_SHARED
266#define __S111	PAGE_SHARED_X
267
268#ifndef __ASSEMBLY__
269/*
270 * ZERO_PAGE is a global shared page that is always zero: used
271 * for zero-mapped memory areas etc..
272 */
273extern unsigned long empty_zero_page[1024];
274#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
275
276#endif /* __ASSEMBLY__ */
277
278#define pte_none(pte)		((pte_val(pte) & ~_PTE_NONE_MASK) == 0)
279#define pte_present(pte)	(pte_val(pte) & _PAGE_PRESENT)
280#define pte_clear(mm, addr, ptep) \
281	do { set_pte_at((mm), (addr), (ptep), __pte(0)); } while (0)
282
283#define pmd_none(pmd)		(!pmd_val(pmd))
284#define	pmd_bad(pmd)		((pmd_val(pmd) & _PMD_PRESENT) == 0)
285#define	pmd_present(pmd)	((pmd_val(pmd) & _PMD_PRESENT) != 0)
286#define	pmd_clear(pmdp)		do { pmd_val(*(pmdp)) = 0; } while (0)
287
288#define pte_page(x)		(mem_map + (unsigned long) \
289				((pte_val(x) - memory_start) >> PAGE_SHIFT))
290#define PFN_SHIFT_OFFSET	(PAGE_SHIFT)
291
292#define pte_pfn(x)		(pte_val(x) >> PFN_SHIFT_OFFSET)
293
294#define pfn_pte(pfn, prot) \
295	__pte(((pte_basic_t)(pfn) << PFN_SHIFT_OFFSET) | pgprot_val(prot))
296
297#ifndef __ASSEMBLY__
298/*
299 * The following only work if pte_present() is true.
300 * Undefined behaviour if not..
301 */
302static inline int pte_read(pte_t pte)  { return pte_val(pte) & _PAGE_USER; }
303static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
304static inline int pte_exec(pte_t pte)  { return pte_val(pte) & _PAGE_EXEC; }
305static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
306static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
307
308static inline void pte_uncache(pte_t pte) { pte_val(pte) |= _PAGE_NO_CACHE; }
309static inline void pte_cache(pte_t pte)   { pte_val(pte) &= ~_PAGE_NO_CACHE; }
310
311static inline pte_t pte_rdprotect(pte_t pte) \
312		{ pte_val(pte) &= ~_PAGE_USER; return pte; }
313static inline pte_t pte_wrprotect(pte_t pte) \
314	{ pte_val(pte) &= ~(_PAGE_RW | _PAGE_HWWRITE); return pte; }
315static inline pte_t pte_exprotect(pte_t pte) \
316	{ pte_val(pte) &= ~_PAGE_EXEC; return pte; }
317static inline pte_t pte_mkclean(pte_t pte) \
318	{ pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HWWRITE); return pte; }
319static inline pte_t pte_mkold(pte_t pte) \
320	{ pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
321
322static inline pte_t pte_mkread(pte_t pte) \
323	{ pte_val(pte) |= _PAGE_USER; return pte; }
324static inline pte_t pte_mkexec(pte_t pte) \
325	{ pte_val(pte) |= _PAGE_USER | _PAGE_EXEC; return pte; }
326static inline pte_t pte_mkwrite(pte_t pte) \
327	{ pte_val(pte) |= _PAGE_RW; return pte; }
328static inline pte_t pte_mkdirty(pte_t pte) \
329	{ pte_val(pte) |= _PAGE_DIRTY; return pte; }
330static inline pte_t pte_mkyoung(pte_t pte) \
331	{ pte_val(pte) |= _PAGE_ACCESSED; return pte; }
332
333/*
334 * Conversion functions: convert a page and protection to a page entry,
335 * and a page entry and page directory to the page they refer to.
336 */
337
338static inline pte_t mk_pte_phys(phys_addr_t physpage, pgprot_t pgprot)
339{
340	pte_t pte;
341	pte_val(pte) = physpage | pgprot_val(pgprot);
342	return pte;
343}
344
345#define mk_pte(page, pgprot) \
346({									   \
347	pte_t pte;							   \
348	pte_val(pte) = (((page - mem_map) << PAGE_SHIFT) + memory_start) |  \
349			pgprot_val(pgprot);				   \
350	pte;								   \
351})
352
353static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
354{
355	pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot);
356	return pte;
357}
358
359/*
360 * Atomic PTE updates.
361 *
362 * pte_update clears and sets bit atomically, and returns
363 * the old pte value.
364 * The ((unsigned long)(p+1) - 4) hack is to get to the least-significant
365 * 32 bits of the PTE regardless of whether PTEs are 32 or 64 bits.
366 */
367static inline unsigned long pte_update(pte_t *p, unsigned long clr,
368				unsigned long set)
369{
370	unsigned long flags, old, tmp;
371
372	raw_local_irq_save(flags);
373
374	__asm__ __volatile__(	"lw	%0, %2, r0	\n"
375				"andn	%1, %0, %3	\n"
376				"or	%1, %1, %4	\n"
377				"sw	%1, %2, r0	\n"
378			: "=&r" (old), "=&r" (tmp)
379			: "r" ((unsigned long)(p + 1) - 4), "r" (clr), "r" (set)
380			: "cc");
381
382	raw_local_irq_restore(flags);
383
384	return old;
385}
386
387/*
388 * set_pte stores a linux PTE into the linux page table.
389 */
390static inline void set_pte(struct mm_struct *mm, unsigned long addr,
391		pte_t *ptep, pte_t pte)
392{
393	*ptep = pte;
394}
395
396static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
397		pte_t *ptep, pte_t pte)
398{
399	*ptep = pte;
400}
401
402#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
403static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
404		unsigned long address, pte_t *ptep)
405{
406	return (pte_update(ptep, _PAGE_ACCESSED, 0) & _PAGE_ACCESSED) != 0;
407}
408
409static inline int ptep_test_and_clear_dirty(struct mm_struct *mm,
410		unsigned long addr, pte_t *ptep)
411{
412	return (pte_update(ptep, \
413		(_PAGE_DIRTY | _PAGE_HWWRITE), 0) & _PAGE_DIRTY) != 0;
414}
415
416#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
417static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
418		unsigned long addr, pte_t *ptep)
419{
420	return __pte(pte_update(ptep, ~_PAGE_HASHPTE, 0));
421}
422
423/*static inline void ptep_set_wrprotect(struct mm_struct *mm,
424		unsigned long addr, pte_t *ptep)
425{
426	pte_update(ptep, (_PAGE_RW | _PAGE_HWWRITE), 0);
427}*/
428
429static inline void ptep_mkdirty(struct mm_struct *mm,
430		unsigned long addr, pte_t *ptep)
431{
432	pte_update(ptep, 0, _PAGE_DIRTY);
433}
434
435/*#define pte_same(A,B)	(((pte_val(A) ^ pte_val(B)) & ~_PAGE_HASHPTE) == 0)*/
436
437/* Convert pmd entry to page */
438/* our pmd entry is an effective address of pte table*/
439/* returns effective address of the pmd entry*/
440static inline unsigned long pmd_page_vaddr(pmd_t pmd)
441{
442	return ((unsigned long) (pmd_val(pmd) & PAGE_MASK));
443}
444
445/* returns struct *page of the pmd entry*/
446#define pmd_page(pmd)	(pfn_to_page(__pa(pmd_val(pmd)) >> PAGE_SHIFT))
447
448/* Find an entry in the third-level page table.. */
449
450extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
451
452/*
453 * Encode and decode a swap entry.
454 * Note that the bits we use in a PTE for representing a swap entry
455 * must not include the _PAGE_PRESENT bit, or the _PAGE_HASHPTE bit
456 * (if used).  -- paulus
457 */
458#define __swp_type(entry)		((entry).val & 0x3f)
459#define __swp_offset(entry)	((entry).val >> 6)
460#define __swp_entry(type, offset) \
461		((swp_entry_t) { (type) | ((offset) << 6) })
462#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) >> 2 })
463#define __swp_entry_to_pte(x)	((pte_t) { (x).val << 2 })
464
465extern unsigned long iopa(unsigned long addr);
466
467/* Values for nocacheflag and cmode */
468/* These are not used by the APUS kernel_map, but prevents
469 * compilation errors.
470 */
471#define	IOMAP_FULL_CACHING	0
472#define	IOMAP_NOCACHE_SER	1
473#define	IOMAP_NOCACHE_NONSER	2
474#define	IOMAP_NO_COPYBACK	3
475
476/* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
477#define kern_addr_valid(addr)	(1)
478
479void do_page_fault(struct pt_regs *regs, unsigned long address,
480		   unsigned long error_code);
481
482void mapin_ram(void);
483int map_page(unsigned long va, phys_addr_t pa, int flags);
484
485extern int mem_init_done;
486
487asmlinkage void __init mmu_init(void);
488
489void __init *early_get_page(void);
490
491#endif /* __ASSEMBLY__ */
492#endif /* __KERNEL__ */
493
494#endif /* CONFIG_MMU */
495
496#ifndef __ASSEMBLY__
497extern unsigned long ioremap_bot, ioremap_base;
498
499void setup_memory(void);
500#endif /* __ASSEMBLY__ */
501
502#endif /* _ASM_MICROBLAZE_PGTABLE_H */
503