18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright (C) 2008-2009 Michal Simek <monstr@monstr.eu>
48c2ecf20Sopenharmony_ci * Copyright (C) 2008-2009 PetaLogix
58c2ecf20Sopenharmony_ci * Copyright (C) 2006 Atmark Techno, Inc.
68c2ecf20Sopenharmony_ci */
78c2ecf20Sopenharmony_ci
88c2ecf20Sopenharmony_ci#ifndef _ASM_MICROBLAZE_MMU_CONTEXT_H
98c2ecf20Sopenharmony_ci#define _ASM_MICROBLAZE_MMU_CONTEXT_H
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#include <linux/atomic.h>
128c2ecf20Sopenharmony_ci#include <linux/mm_types.h>
138c2ecf20Sopenharmony_ci#include <linux/sched.h>
148c2ecf20Sopenharmony_ci
158c2ecf20Sopenharmony_ci#include <asm/bitops.h>
168c2ecf20Sopenharmony_ci#include <asm/mmu.h>
178c2ecf20Sopenharmony_ci#include <asm-generic/mm_hooks.h>
188c2ecf20Sopenharmony_ci
198c2ecf20Sopenharmony_ci# ifdef __KERNEL__
208c2ecf20Sopenharmony_ci/*
218c2ecf20Sopenharmony_ci * This function defines the mapping from contexts to VSIDs (virtual
228c2ecf20Sopenharmony_ci * segment IDs).  We use a skew on both the context and the high 4 bits
238c2ecf20Sopenharmony_ci * of the 32-bit virtual address (the "effective segment ID") in order
248c2ecf20Sopenharmony_ci * to spread out the entries in the MMU hash table.
258c2ecf20Sopenharmony_ci */
268c2ecf20Sopenharmony_ci# define CTX_TO_VSID(ctx, va)	(((ctx) * (897 * 16) + ((va) >> 28) * 0x111) \
278c2ecf20Sopenharmony_ci				 & 0xffffff)
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci/*
308c2ecf20Sopenharmony_ci   MicroBlaze has 256 contexts, so we can just rotate through these
318c2ecf20Sopenharmony_ci   as a way of "switching" contexts.  If the TID of the TLB is zero,
328c2ecf20Sopenharmony_ci   the PID/TID comparison is disabled, so we can use a TID of zero
338c2ecf20Sopenharmony_ci   to represent all kernel pages as shared among all contexts.
348c2ecf20Sopenharmony_ci */
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_cistatic inline void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
378c2ecf20Sopenharmony_ci{
388c2ecf20Sopenharmony_ci}
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_ci# define NO_CONTEXT	256
418c2ecf20Sopenharmony_ci# define LAST_CONTEXT	255
428c2ecf20Sopenharmony_ci# define FIRST_CONTEXT	1
438c2ecf20Sopenharmony_ci
448c2ecf20Sopenharmony_ci/*
458c2ecf20Sopenharmony_ci * Set the current MMU context.
468c2ecf20Sopenharmony_ci * This is done byloading up the segment registers for the user part of the
478c2ecf20Sopenharmony_ci * address space.
488c2ecf20Sopenharmony_ci *
498c2ecf20Sopenharmony_ci * Since the PGD is immediately available, it is much faster to simply
508c2ecf20Sopenharmony_ci * pass this along as a second parameter, which is required for 8xx and
518c2ecf20Sopenharmony_ci * can be used for debugging on all processors (if you happen to have
528c2ecf20Sopenharmony_ci * an Abatron).
538c2ecf20Sopenharmony_ci */
548c2ecf20Sopenharmony_ciextern void set_context(mm_context_t context, pgd_t *pgd);
558c2ecf20Sopenharmony_ci
568c2ecf20Sopenharmony_ci/*
578c2ecf20Sopenharmony_ci * Bitmap of contexts in use.
588c2ecf20Sopenharmony_ci * The size of this bitmap is LAST_CONTEXT + 1 bits.
598c2ecf20Sopenharmony_ci */
608c2ecf20Sopenharmony_ciextern unsigned long context_map[];
618c2ecf20Sopenharmony_ci
628c2ecf20Sopenharmony_ci/*
638c2ecf20Sopenharmony_ci * This caches the next context number that we expect to be free.
648c2ecf20Sopenharmony_ci * Its use is an optimization only, we can't rely on this context
658c2ecf20Sopenharmony_ci * number to be free, but it usually will be.
668c2ecf20Sopenharmony_ci */
678c2ecf20Sopenharmony_ciextern mm_context_t next_mmu_context;
688c2ecf20Sopenharmony_ci
698c2ecf20Sopenharmony_ci/*
708c2ecf20Sopenharmony_ci * Since we don't have sufficient contexts to give one to every task
718c2ecf20Sopenharmony_ci * that could be in the system, we need to be able to steal contexts.
728c2ecf20Sopenharmony_ci * These variables support that.
738c2ecf20Sopenharmony_ci */
748c2ecf20Sopenharmony_ciextern atomic_t nr_free_contexts;
758c2ecf20Sopenharmony_ciextern struct mm_struct *context_mm[LAST_CONTEXT+1];
768c2ecf20Sopenharmony_ciextern void steal_context(void);
778c2ecf20Sopenharmony_ci
788c2ecf20Sopenharmony_ci/*
798c2ecf20Sopenharmony_ci * Get a new mmu context for the address space described by `mm'.
808c2ecf20Sopenharmony_ci */
818c2ecf20Sopenharmony_cistatic inline void get_mmu_context(struct mm_struct *mm)
828c2ecf20Sopenharmony_ci{
838c2ecf20Sopenharmony_ci	mm_context_t ctx;
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci	if (mm->context != NO_CONTEXT)
868c2ecf20Sopenharmony_ci		return;
878c2ecf20Sopenharmony_ci	while (atomic_dec_if_positive(&nr_free_contexts) < 0)
888c2ecf20Sopenharmony_ci		steal_context();
898c2ecf20Sopenharmony_ci	ctx = next_mmu_context;
908c2ecf20Sopenharmony_ci	while (test_and_set_bit(ctx, context_map)) {
918c2ecf20Sopenharmony_ci		ctx = find_next_zero_bit(context_map, LAST_CONTEXT+1, ctx);
928c2ecf20Sopenharmony_ci		if (ctx > LAST_CONTEXT)
938c2ecf20Sopenharmony_ci			ctx = 0;
948c2ecf20Sopenharmony_ci	}
958c2ecf20Sopenharmony_ci	next_mmu_context = (ctx + 1) & LAST_CONTEXT;
968c2ecf20Sopenharmony_ci	mm->context = ctx;
978c2ecf20Sopenharmony_ci	context_mm[ctx] = mm;
988c2ecf20Sopenharmony_ci}
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci/*
1018c2ecf20Sopenharmony_ci * Set up the context for a new address space.
1028c2ecf20Sopenharmony_ci */
1038c2ecf20Sopenharmony_ci# define init_new_context(tsk, mm)	(((mm)->context = NO_CONTEXT), 0)
1048c2ecf20Sopenharmony_ci
1058c2ecf20Sopenharmony_ci/*
1068c2ecf20Sopenharmony_ci * We're finished using the context for an address space.
1078c2ecf20Sopenharmony_ci */
1088c2ecf20Sopenharmony_cistatic inline void destroy_context(struct mm_struct *mm)
1098c2ecf20Sopenharmony_ci{
1108c2ecf20Sopenharmony_ci	if (mm->context != NO_CONTEXT) {
1118c2ecf20Sopenharmony_ci		clear_bit(mm->context, context_map);
1128c2ecf20Sopenharmony_ci		mm->context = NO_CONTEXT;
1138c2ecf20Sopenharmony_ci		atomic_inc(&nr_free_contexts);
1148c2ecf20Sopenharmony_ci	}
1158c2ecf20Sopenharmony_ci}
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic inline void switch_mm(struct mm_struct *prev, struct mm_struct *next,
1188c2ecf20Sopenharmony_ci			     struct task_struct *tsk)
1198c2ecf20Sopenharmony_ci{
1208c2ecf20Sopenharmony_ci	tsk->thread.pgdir = next->pgd;
1218c2ecf20Sopenharmony_ci	get_mmu_context(next);
1228c2ecf20Sopenharmony_ci	set_context(next->context, next->pgd);
1238c2ecf20Sopenharmony_ci}
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci/*
1268c2ecf20Sopenharmony_ci * After we have set current->mm to a new value, this activates
1278c2ecf20Sopenharmony_ci * the context for the new mm so we see the new mappings.
1288c2ecf20Sopenharmony_ci */
1298c2ecf20Sopenharmony_cistatic inline void activate_mm(struct mm_struct *active_mm,
1308c2ecf20Sopenharmony_ci			struct mm_struct *mm)
1318c2ecf20Sopenharmony_ci{
1328c2ecf20Sopenharmony_ci	current->thread.pgdir = mm->pgd;
1338c2ecf20Sopenharmony_ci	get_mmu_context(mm);
1348c2ecf20Sopenharmony_ci	set_context(mm->context, mm->pgd);
1358c2ecf20Sopenharmony_ci}
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ciextern void mmu_context_init(void);
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci# endif /* __KERNEL__ */
1408c2ecf20Sopenharmony_ci#endif /* _ASM_MICROBLAZE_MMU_CONTEXT_H */
141