18c2ecf20Sopenharmony_ci|
28c2ecf20Sopenharmony_ci|	bindec.sa 3.4 1/3/91
38c2ecf20Sopenharmony_ci|
48c2ecf20Sopenharmony_ci|	bindec
58c2ecf20Sopenharmony_ci|
68c2ecf20Sopenharmony_ci|	Description:
78c2ecf20Sopenharmony_ci|		Converts an input in extended precision format
88c2ecf20Sopenharmony_ci|		to bcd format.
98c2ecf20Sopenharmony_ci|
108c2ecf20Sopenharmony_ci|	Input:
118c2ecf20Sopenharmony_ci|		a0 points to the input extended precision value
128c2ecf20Sopenharmony_ci|		value in memory; d0 contains the k-factor sign-extended
138c2ecf20Sopenharmony_ci|		to 32-bits.  The input may be either normalized,
148c2ecf20Sopenharmony_ci|		unnormalized, or denormalized.
158c2ecf20Sopenharmony_ci|
168c2ecf20Sopenharmony_ci|	Output:	result in the FP_SCR1 space on the stack.
178c2ecf20Sopenharmony_ci|
188c2ecf20Sopenharmony_ci|	Saves and Modifies: D2-D7,A2,FP2
198c2ecf20Sopenharmony_ci|
208c2ecf20Sopenharmony_ci|	Algorithm:
218c2ecf20Sopenharmony_ci|
228c2ecf20Sopenharmony_ci|	A1.	Set RM and size ext;  Set SIGMA = sign of input.
238c2ecf20Sopenharmony_ci|		The k-factor is saved for use in d7. Clear the
248c2ecf20Sopenharmony_ci|		BINDEC_FLG for separating normalized/denormalized
258c2ecf20Sopenharmony_ci|		input.  If input is unnormalized or denormalized,
268c2ecf20Sopenharmony_ci|		normalize it.
278c2ecf20Sopenharmony_ci|
288c2ecf20Sopenharmony_ci|	A2.	Set X = abs(input).
298c2ecf20Sopenharmony_ci|
308c2ecf20Sopenharmony_ci|	A3.	Compute ILOG.
318c2ecf20Sopenharmony_ci|		ILOG is the log base 10 of the input value.  It is
328c2ecf20Sopenharmony_ci|		approximated by adding e + 0.f when the original
338c2ecf20Sopenharmony_ci|		value is viewed as 2^^e * 1.f in extended precision.
348c2ecf20Sopenharmony_ci|		This value is stored in d6.
358c2ecf20Sopenharmony_ci|
368c2ecf20Sopenharmony_ci|	A4.	Clr INEX bit.
378c2ecf20Sopenharmony_ci|		The operation in A3 above may have set INEX2.
388c2ecf20Sopenharmony_ci|
398c2ecf20Sopenharmony_ci|	A5.	Set ICTR = 0;
408c2ecf20Sopenharmony_ci|		ICTR is a flag used in A13.  It must be set before the
418c2ecf20Sopenharmony_ci|		loop entry A6.
428c2ecf20Sopenharmony_ci|
438c2ecf20Sopenharmony_ci|	A6.	Calculate LEN.
448c2ecf20Sopenharmony_ci|		LEN is the number of digits to be displayed.  The
458c2ecf20Sopenharmony_ci|		k-factor can dictate either the total number of digits,
468c2ecf20Sopenharmony_ci|		if it is a positive number, or the number of digits
478c2ecf20Sopenharmony_ci|		after the decimal point which are to be included as
488c2ecf20Sopenharmony_ci|		significant.  See the 68882 manual for examples.
498c2ecf20Sopenharmony_ci|		If LEN is computed to be greater than 17, set OPERR in
508c2ecf20Sopenharmony_ci|		USER_FPSR.  LEN is stored in d4.
518c2ecf20Sopenharmony_ci|
528c2ecf20Sopenharmony_ci|	A7.	Calculate SCALE.
538c2ecf20Sopenharmony_ci|		SCALE is equal to 10^ISCALE, where ISCALE is the number
548c2ecf20Sopenharmony_ci|		of decimal places needed to insure LEN integer digits
558c2ecf20Sopenharmony_ci|		in the output before conversion to bcd. LAMBDA is the
568c2ecf20Sopenharmony_ci|		sign of ISCALE, used in A9. Fp1 contains
578c2ecf20Sopenharmony_ci|		10^^(abs(ISCALE)) using a rounding mode which is a
588c2ecf20Sopenharmony_ci|		function of the original rounding mode and the signs
598c2ecf20Sopenharmony_ci|		of ISCALE and X.  A table is given in the code.
608c2ecf20Sopenharmony_ci|
618c2ecf20Sopenharmony_ci|	A8.	Clr INEX; Force RZ.
628c2ecf20Sopenharmony_ci|		The operation in A3 above may have set INEX2.
638c2ecf20Sopenharmony_ci|		RZ mode is forced for the scaling operation to insure
648c2ecf20Sopenharmony_ci|		only one rounding error.  The grs bits are collected in
658c2ecf20Sopenharmony_ci|		the INEX flag for use in A10.
668c2ecf20Sopenharmony_ci|
678c2ecf20Sopenharmony_ci|	A9.	Scale X -> Y.
688c2ecf20Sopenharmony_ci|		The mantissa is scaled to the desired number of
698c2ecf20Sopenharmony_ci|		significant digits.  The excess digits are collected
708c2ecf20Sopenharmony_ci|		in INEX2.
718c2ecf20Sopenharmony_ci|
728c2ecf20Sopenharmony_ci|	A10.	Or in INEX.
738c2ecf20Sopenharmony_ci|		If INEX is set, round error occurred.  This is
748c2ecf20Sopenharmony_ci|		compensated for by 'or-ing' in the INEX2 flag to
758c2ecf20Sopenharmony_ci|		the lsb of Y.
768c2ecf20Sopenharmony_ci|
778c2ecf20Sopenharmony_ci|	A11.	Restore original FPCR; set size ext.
788c2ecf20Sopenharmony_ci|		Perform FINT operation in the user's rounding mode.
798c2ecf20Sopenharmony_ci|		Keep the size to extended.
808c2ecf20Sopenharmony_ci|
818c2ecf20Sopenharmony_ci|	A12.	Calculate YINT = FINT(Y) according to user's rounding
828c2ecf20Sopenharmony_ci|		mode.  The FPSP routine sintd0 is used.  The output
838c2ecf20Sopenharmony_ci|		is in fp0.
848c2ecf20Sopenharmony_ci|
858c2ecf20Sopenharmony_ci|	A13.	Check for LEN digits.
868c2ecf20Sopenharmony_ci|		If the int operation results in more than LEN digits,
878c2ecf20Sopenharmony_ci|		or less than LEN -1 digits, adjust ILOG and repeat from
888c2ecf20Sopenharmony_ci|		A6.  This test occurs only on the first pass.  If the
898c2ecf20Sopenharmony_ci|		result is exactly 10^LEN, decrement ILOG and divide
908c2ecf20Sopenharmony_ci|		the mantissa by 10.
918c2ecf20Sopenharmony_ci|
928c2ecf20Sopenharmony_ci|	A14.	Convert the mantissa to bcd.
938c2ecf20Sopenharmony_ci|		The binstr routine is used to convert the LEN digit
948c2ecf20Sopenharmony_ci|		mantissa to bcd in memory.  The input to binstr is
958c2ecf20Sopenharmony_ci|		to be a fraction; i.e. (mantissa)/10^LEN and adjusted
968c2ecf20Sopenharmony_ci|		such that the decimal point is to the left of bit 63.
978c2ecf20Sopenharmony_ci|		The bcd digits are stored in the correct position in
988c2ecf20Sopenharmony_ci|		the final string area in memory.
998c2ecf20Sopenharmony_ci|
1008c2ecf20Sopenharmony_ci|	A15.	Convert the exponent to bcd.
1018c2ecf20Sopenharmony_ci|		As in A14 above, the exp is converted to bcd and the
1028c2ecf20Sopenharmony_ci|		digits are stored in the final string.
1038c2ecf20Sopenharmony_ci|		Test the length of the final exponent string.  If the
1048c2ecf20Sopenharmony_ci|		length is 4, set operr.
1058c2ecf20Sopenharmony_ci|
1068c2ecf20Sopenharmony_ci|	A16.	Write sign bits to final string.
1078c2ecf20Sopenharmony_ci|
1088c2ecf20Sopenharmony_ci|	Implementation Notes:
1098c2ecf20Sopenharmony_ci|
1108c2ecf20Sopenharmony_ci|	The registers are used as follows:
1118c2ecf20Sopenharmony_ci|
1128c2ecf20Sopenharmony_ci|		d0: scratch; LEN input to binstr
1138c2ecf20Sopenharmony_ci|		d1: scratch
1148c2ecf20Sopenharmony_ci|		d2: upper 32-bits of mantissa for binstr
1158c2ecf20Sopenharmony_ci|		d3: scratch;lower 32-bits of mantissa for binstr
1168c2ecf20Sopenharmony_ci|		d4: LEN
1178c2ecf20Sopenharmony_ci|		d5: LAMBDA/ICTR
1188c2ecf20Sopenharmony_ci|		d6: ILOG
1198c2ecf20Sopenharmony_ci|		d7: k-factor
1208c2ecf20Sopenharmony_ci|		a0: ptr for original operand/final result
1218c2ecf20Sopenharmony_ci|		a1: scratch pointer
1228c2ecf20Sopenharmony_ci|		a2: pointer to FP_X; abs(original value) in ext
1238c2ecf20Sopenharmony_ci|		fp0: scratch
1248c2ecf20Sopenharmony_ci|		fp1: scratch
1258c2ecf20Sopenharmony_ci|		fp2: scratch
1268c2ecf20Sopenharmony_ci|		F_SCR1:
1278c2ecf20Sopenharmony_ci|		F_SCR2:
1288c2ecf20Sopenharmony_ci|		L_SCR1:
1298c2ecf20Sopenharmony_ci|		L_SCR2:
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_ci|		Copyright (C) Motorola, Inc. 1990
1328c2ecf20Sopenharmony_ci|			All Rights Reserved
1338c2ecf20Sopenharmony_ci|
1348c2ecf20Sopenharmony_ci|       For details on the license for this file, please see the
1358c2ecf20Sopenharmony_ci|       file, README, in this same directory.
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ci|BINDEC    idnt    2,1 | Motorola 040 Floating Point Software Package
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci#include "fpsp.h"
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	|section	8
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_ci| Constants in extended precision
1448c2ecf20Sopenharmony_ciLOG2:	.long	0x3FFD0000,0x9A209A84,0xFBCFF798,0x00000000
1458c2ecf20Sopenharmony_ciLOG2UP1:	.long	0x3FFD0000,0x9A209A84,0xFBCFF799,0x00000000
1468c2ecf20Sopenharmony_ci
1478c2ecf20Sopenharmony_ci| Constants in single precision
1488c2ecf20Sopenharmony_ciFONE:	.long	0x3F800000,0x00000000,0x00000000,0x00000000
1498c2ecf20Sopenharmony_ciFTWO:	.long	0x40000000,0x00000000,0x00000000,0x00000000
1508c2ecf20Sopenharmony_ciFTEN:	.long	0x41200000,0x00000000,0x00000000,0x00000000
1518c2ecf20Sopenharmony_ciF4933:	.long	0x459A2800,0x00000000,0x00000000,0x00000000
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ciRBDTBL:	.byte	0,0,0,0
1548c2ecf20Sopenharmony_ci	.byte	3,3,2,2
1558c2ecf20Sopenharmony_ci	.byte	3,2,2,3
1568c2ecf20Sopenharmony_ci	.byte	2,3,3,2
1578c2ecf20Sopenharmony_ci
1588c2ecf20Sopenharmony_ci	|xref	binstr
1598c2ecf20Sopenharmony_ci	|xref	sintdo
1608c2ecf20Sopenharmony_ci	|xref	ptenrn,ptenrm,ptenrp
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci	.global	bindec
1638c2ecf20Sopenharmony_ci	.global	sc_mul
1648c2ecf20Sopenharmony_cibindec:
1658c2ecf20Sopenharmony_ci	moveml	%d2-%d7/%a2,-(%a7)
1668c2ecf20Sopenharmony_ci	fmovemx %fp0-%fp2,-(%a7)
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci| A1. Set RM and size ext. Set SIGMA = sign input;
1698c2ecf20Sopenharmony_ci|     The k-factor is saved for use in d7.  Clear BINDEC_FLG for
1708c2ecf20Sopenharmony_ci|     separating  normalized/denormalized input.  If the input
1718c2ecf20Sopenharmony_ci|     is a denormalized number, set the BINDEC_FLG memory word
1728c2ecf20Sopenharmony_ci|     to signal denorm.  If the input is unnormalized, normalize
1738c2ecf20Sopenharmony_ci|     the input and test for denormalized result.
1748c2ecf20Sopenharmony_ci|
1758c2ecf20Sopenharmony_ci	fmovel	#rm_mode,%FPCR	|set RM and ext
1768c2ecf20Sopenharmony_ci	movel	(%a0),L_SCR2(%a6)	|save exponent for sign check
1778c2ecf20Sopenharmony_ci	movel	%d0,%d7		|move k-factor to d7
1788c2ecf20Sopenharmony_ci	clrb	BINDEC_FLG(%a6)	|clr norm/denorm flag
1798c2ecf20Sopenharmony_ci	movew	STAG(%a6),%d0	|get stag
1808c2ecf20Sopenharmony_ci	andiw	#0xe000,%d0	|isolate stag bits
1818c2ecf20Sopenharmony_ci	beq	A2_str		|if zero, input is norm
1828c2ecf20Sopenharmony_ci|
1838c2ecf20Sopenharmony_ci| Normalize the denorm
1848c2ecf20Sopenharmony_ci|
1858c2ecf20Sopenharmony_ciun_de_norm:
1868c2ecf20Sopenharmony_ci	movew	(%a0),%d0
1878c2ecf20Sopenharmony_ci	andiw	#0x7fff,%d0	|strip sign of normalized exp
1888c2ecf20Sopenharmony_ci	movel	4(%a0),%d1
1898c2ecf20Sopenharmony_ci	movel	8(%a0),%d2
1908c2ecf20Sopenharmony_cinorm_loop:
1918c2ecf20Sopenharmony_ci	subw	#1,%d0
1928c2ecf20Sopenharmony_ci	lsll	#1,%d2
1938c2ecf20Sopenharmony_ci	roxll	#1,%d1
1948c2ecf20Sopenharmony_ci	tstl	%d1
1958c2ecf20Sopenharmony_ci	bges	norm_loop
1968c2ecf20Sopenharmony_ci|
1978c2ecf20Sopenharmony_ci| Test if the normalized input is denormalized
1988c2ecf20Sopenharmony_ci|
1998c2ecf20Sopenharmony_ci	tstw	%d0
2008c2ecf20Sopenharmony_ci	bgts	pos_exp		|if greater than zero, it is a norm
2018c2ecf20Sopenharmony_ci	st	BINDEC_FLG(%a6)	|set flag for denorm
2028c2ecf20Sopenharmony_cipos_exp:
2038c2ecf20Sopenharmony_ci	andiw	#0x7fff,%d0	|strip sign of normalized exp
2048c2ecf20Sopenharmony_ci	movew	%d0,(%a0)
2058c2ecf20Sopenharmony_ci	movel	%d1,4(%a0)
2068c2ecf20Sopenharmony_ci	movel	%d2,8(%a0)
2078c2ecf20Sopenharmony_ci
2088c2ecf20Sopenharmony_ci| A2. Set X = abs(input).
2098c2ecf20Sopenharmony_ci|
2108c2ecf20Sopenharmony_ciA2_str:
2118c2ecf20Sopenharmony_ci	movel	(%a0),FP_SCR2(%a6) | move input to work space
2128c2ecf20Sopenharmony_ci	movel	4(%a0),FP_SCR2+4(%a6) | move input to work space
2138c2ecf20Sopenharmony_ci	movel	8(%a0),FP_SCR2+8(%a6) | move input to work space
2148c2ecf20Sopenharmony_ci	andil	#0x7fffffff,FP_SCR2(%a6) |create abs(X)
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci| A3. Compute ILOG.
2178c2ecf20Sopenharmony_ci|     ILOG is the log base 10 of the input value.  It is approx-
2188c2ecf20Sopenharmony_ci|     imated by adding e + 0.f when the original value is viewed
2198c2ecf20Sopenharmony_ci|     as 2^^e * 1.f in extended precision.  This value is stored
2208c2ecf20Sopenharmony_ci|     in d6.
2218c2ecf20Sopenharmony_ci|
2228c2ecf20Sopenharmony_ci| Register usage:
2238c2ecf20Sopenharmony_ci|	Input/Output
2248c2ecf20Sopenharmony_ci|	d0: k-factor/exponent
2258c2ecf20Sopenharmony_ci|	d2: x/x
2268c2ecf20Sopenharmony_ci|	d3: x/x
2278c2ecf20Sopenharmony_ci|	d4: x/x
2288c2ecf20Sopenharmony_ci|	d5: x/x
2298c2ecf20Sopenharmony_ci|	d6: x/ILOG
2308c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
2318c2ecf20Sopenharmony_ci|	a0: ptr for original operand/final result
2328c2ecf20Sopenharmony_ci|	a1: x/x
2338c2ecf20Sopenharmony_ci|	a2: x/x
2348c2ecf20Sopenharmony_ci|	fp0: x/float(ILOG)
2358c2ecf20Sopenharmony_ci|	fp1: x/x
2368c2ecf20Sopenharmony_ci|	fp2: x/x
2378c2ecf20Sopenharmony_ci|	F_SCR1:x/x
2388c2ecf20Sopenharmony_ci|	F_SCR2:Abs(X)/Abs(X) with $3fff exponent
2398c2ecf20Sopenharmony_ci|	L_SCR1:x/x
2408c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
2418c2ecf20Sopenharmony_ci
2428c2ecf20Sopenharmony_ci	tstb	BINDEC_FLG(%a6)	|check for denorm
2438c2ecf20Sopenharmony_ci	beqs	A3_cont		|if clr, continue with norm
2448c2ecf20Sopenharmony_ci	movel	#-4933,%d6	|force ILOG = -4933
2458c2ecf20Sopenharmony_ci	bras	A4_str
2468c2ecf20Sopenharmony_ciA3_cont:
2478c2ecf20Sopenharmony_ci	movew	FP_SCR2(%a6),%d0	|move exp to d0
2488c2ecf20Sopenharmony_ci	movew	#0x3fff,FP_SCR2(%a6) |replace exponent with 0x3fff
2498c2ecf20Sopenharmony_ci	fmovex	FP_SCR2(%a6),%fp0	|now fp0 has 1.f
2508c2ecf20Sopenharmony_ci	subw	#0x3fff,%d0	|strip off bias
2518c2ecf20Sopenharmony_ci	faddw	%d0,%fp0		|add in exp
2528c2ecf20Sopenharmony_ci	fsubs	FONE,%fp0	|subtract off 1.0
2538c2ecf20Sopenharmony_ci	fbge	pos_res		|if pos, branch
2548c2ecf20Sopenharmony_ci	fmulx	LOG2UP1,%fp0	|if neg, mul by LOG2UP1
2558c2ecf20Sopenharmony_ci	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
2568c2ecf20Sopenharmony_ci	bras	A4_str		|go move out ILOG
2578c2ecf20Sopenharmony_cipos_res:
2588c2ecf20Sopenharmony_ci	fmulx	LOG2,%fp0	|if pos, mul by LOG2
2598c2ecf20Sopenharmony_ci	fmovel	%fp0,%d6		|put ILOG in d6 as a lword
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci
2628c2ecf20Sopenharmony_ci| A4. Clr INEX bit.
2638c2ecf20Sopenharmony_ci|     The operation in A3 above may have set INEX2.
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ciA4_str:
2668c2ecf20Sopenharmony_ci	fmovel	#0,%FPSR		|zero all of fpsr - nothing needed
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci
2698c2ecf20Sopenharmony_ci| A5. Set ICTR = 0;
2708c2ecf20Sopenharmony_ci|     ICTR is a flag used in A13.  It must be set before the
2718c2ecf20Sopenharmony_ci|     loop entry A6. The lower word of d5 is used for ICTR.
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci	clrw	%d5		|clear ICTR
2748c2ecf20Sopenharmony_ci
2758c2ecf20Sopenharmony_ci
2768c2ecf20Sopenharmony_ci| A6. Calculate LEN.
2778c2ecf20Sopenharmony_ci|     LEN is the number of digits to be displayed.  The k-factor
2788c2ecf20Sopenharmony_ci|     can dictate either the total number of digits, if it is
2798c2ecf20Sopenharmony_ci|     a positive number, or the number of digits after the
2808c2ecf20Sopenharmony_ci|     original decimal point which are to be included as
2818c2ecf20Sopenharmony_ci|     significant.  See the 68882 manual for examples.
2828c2ecf20Sopenharmony_ci|     If LEN is computed to be greater than 17, set OPERR in
2838c2ecf20Sopenharmony_ci|     USER_FPSR.  LEN is stored in d4.
2848c2ecf20Sopenharmony_ci|
2858c2ecf20Sopenharmony_ci| Register usage:
2868c2ecf20Sopenharmony_ci|	Input/Output
2878c2ecf20Sopenharmony_ci|	d0: exponent/Unchanged
2888c2ecf20Sopenharmony_ci|	d2: x/x/scratch
2898c2ecf20Sopenharmony_ci|	d3: x/x
2908c2ecf20Sopenharmony_ci|	d4: exc picture/LEN
2918c2ecf20Sopenharmony_ci|	d5: ICTR/Unchanged
2928c2ecf20Sopenharmony_ci|	d6: ILOG/Unchanged
2938c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
2948c2ecf20Sopenharmony_ci|	a0: ptr for original operand/final result
2958c2ecf20Sopenharmony_ci|	a1: x/x
2968c2ecf20Sopenharmony_ci|	a2: x/x
2978c2ecf20Sopenharmony_ci|	fp0: float(ILOG)/Unchanged
2988c2ecf20Sopenharmony_ci|	fp1: x/x
2998c2ecf20Sopenharmony_ci|	fp2: x/x
3008c2ecf20Sopenharmony_ci|	F_SCR1:x/x
3018c2ecf20Sopenharmony_ci|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
3028c2ecf20Sopenharmony_ci|	L_SCR1:x/x
3038c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
3048c2ecf20Sopenharmony_ci
3058c2ecf20Sopenharmony_ciA6_str:
3068c2ecf20Sopenharmony_ci	tstl	%d7		|branch on sign of k
3078c2ecf20Sopenharmony_ci	bles	k_neg		|if k <= 0, LEN = ILOG + 1 - k
3088c2ecf20Sopenharmony_ci	movel	%d7,%d4		|if k > 0, LEN = k
3098c2ecf20Sopenharmony_ci	bras	len_ck		|skip to LEN check
3108c2ecf20Sopenharmony_cik_neg:
3118c2ecf20Sopenharmony_ci	movel	%d6,%d4		|first load ILOG to d4
3128c2ecf20Sopenharmony_ci	subl	%d7,%d4		|subtract off k
3138c2ecf20Sopenharmony_ci	addql	#1,%d4		|add in the 1
3148c2ecf20Sopenharmony_cilen_ck:
3158c2ecf20Sopenharmony_ci	tstl	%d4		|LEN check: branch on sign of LEN
3168c2ecf20Sopenharmony_ci	bles	LEN_ng		|if neg, set LEN = 1
3178c2ecf20Sopenharmony_ci	cmpl	#17,%d4		|test if LEN > 17
3188c2ecf20Sopenharmony_ci	bles	A7_str		|if not, forget it
3198c2ecf20Sopenharmony_ci	movel	#17,%d4		|set max LEN = 17
3208c2ecf20Sopenharmony_ci	tstl	%d7		|if negative, never set OPERR
3218c2ecf20Sopenharmony_ci	bles	A7_str		|if positive, continue
3228c2ecf20Sopenharmony_ci	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
3238c2ecf20Sopenharmony_ci	bras	A7_str		|finished here
3248c2ecf20Sopenharmony_ciLEN_ng:
3258c2ecf20Sopenharmony_ci	moveql	#1,%d4		|min LEN is 1
3268c2ecf20Sopenharmony_ci
3278c2ecf20Sopenharmony_ci
3288c2ecf20Sopenharmony_ci| A7. Calculate SCALE.
3298c2ecf20Sopenharmony_ci|     SCALE is equal to 10^ISCALE, where ISCALE is the number
3308c2ecf20Sopenharmony_ci|     of decimal places needed to insure LEN integer digits
3318c2ecf20Sopenharmony_ci|     in the output before conversion to bcd. LAMBDA is the sign
3328c2ecf20Sopenharmony_ci|     of ISCALE, used in A9.  Fp1 contains 10^^(abs(ISCALE)) using
3338c2ecf20Sopenharmony_ci|     the rounding mode as given in the following table (see
3348c2ecf20Sopenharmony_ci|     Coonen, p. 7.23 as ref.; however, the SCALE variable is
3358c2ecf20Sopenharmony_ci|     of opposite sign in bindec.sa from Coonen).
3368c2ecf20Sopenharmony_ci|
3378c2ecf20Sopenharmony_ci|	Initial					USE
3388c2ecf20Sopenharmony_ci|	FPCR[6:5]	LAMBDA	SIGN(X)		FPCR[6:5]
3398c2ecf20Sopenharmony_ci|	----------------------------------------------
3408c2ecf20Sopenharmony_ci|	 RN	00	   0	   0		00/0	RN
3418c2ecf20Sopenharmony_ci|	 RN	00	   0	   1		00/0	RN
3428c2ecf20Sopenharmony_ci|	 RN	00	   1	   0		00/0	RN
3438c2ecf20Sopenharmony_ci|	 RN	00	   1	   1		00/0	RN
3448c2ecf20Sopenharmony_ci|	 RZ	01	   0	   0		11/3	RP
3458c2ecf20Sopenharmony_ci|	 RZ	01	   0	   1		11/3	RP
3468c2ecf20Sopenharmony_ci|	 RZ	01	   1	   0		10/2	RM
3478c2ecf20Sopenharmony_ci|	 RZ	01	   1	   1		10/2	RM
3488c2ecf20Sopenharmony_ci|	 RM	10	   0	   0		11/3	RP
3498c2ecf20Sopenharmony_ci|	 RM	10	   0	   1		10/2	RM
3508c2ecf20Sopenharmony_ci|	 RM	10	   1	   0		10/2	RM
3518c2ecf20Sopenharmony_ci|	 RM	10	   1	   1		11/3	RP
3528c2ecf20Sopenharmony_ci|	 RP	11	   0	   0		10/2	RM
3538c2ecf20Sopenharmony_ci|	 RP	11	   0	   1		11/3	RP
3548c2ecf20Sopenharmony_ci|	 RP	11	   1	   0		11/3	RP
3558c2ecf20Sopenharmony_ci|	 RP	11	   1	   1		10/2	RM
3568c2ecf20Sopenharmony_ci|
3578c2ecf20Sopenharmony_ci| Register usage:
3588c2ecf20Sopenharmony_ci|	Input/Output
3598c2ecf20Sopenharmony_ci|	d0: exponent/scratch - final is 0
3608c2ecf20Sopenharmony_ci|	d2: x/0 or 24 for A9
3618c2ecf20Sopenharmony_ci|	d3: x/scratch - offset ptr into PTENRM array
3628c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
3638c2ecf20Sopenharmony_ci|	d5: 0/ICTR:LAMBDA
3648c2ecf20Sopenharmony_ci|	d6: ILOG/ILOG or k if ((k<=0)&(ILOG<k))
3658c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
3668c2ecf20Sopenharmony_ci|	a0: ptr for original operand/final result
3678c2ecf20Sopenharmony_ci|	a1: x/ptr to PTENRM array
3688c2ecf20Sopenharmony_ci|	a2: x/x
3698c2ecf20Sopenharmony_ci|	fp0: float(ILOG)/Unchanged
3708c2ecf20Sopenharmony_ci|	fp1: x/10^ISCALE
3718c2ecf20Sopenharmony_ci|	fp2: x/x
3728c2ecf20Sopenharmony_ci|	F_SCR1:x/x
3738c2ecf20Sopenharmony_ci|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
3748c2ecf20Sopenharmony_ci|	L_SCR1:x/x
3758c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_ciA7_str:
3788c2ecf20Sopenharmony_ci	tstl	%d7		|test sign of k
3798c2ecf20Sopenharmony_ci	bgts	k_pos		|if pos and > 0, skip this
3808c2ecf20Sopenharmony_ci	cmpl	%d6,%d7		|test k - ILOG
3818c2ecf20Sopenharmony_ci	blts	k_pos		|if ILOG >= k, skip this
3828c2ecf20Sopenharmony_ci	movel	%d7,%d6		|if ((k<0) & (ILOG < k)) ILOG = k
3838c2ecf20Sopenharmony_cik_pos:
3848c2ecf20Sopenharmony_ci	movel	%d6,%d0		|calc ILOG + 1 - LEN in d0
3858c2ecf20Sopenharmony_ci	addql	#1,%d0		|add the 1
3868c2ecf20Sopenharmony_ci	subl	%d4,%d0		|sub off LEN
3878c2ecf20Sopenharmony_ci	swap	%d5		|use upper word of d5 for LAMBDA
3888c2ecf20Sopenharmony_ci	clrw	%d5		|set it zero initially
3898c2ecf20Sopenharmony_ci	clrw	%d2		|set up d2 for very small case
3908c2ecf20Sopenharmony_ci	tstl	%d0		|test sign of ISCALE
3918c2ecf20Sopenharmony_ci	bges	iscale		|if pos, skip next inst
3928c2ecf20Sopenharmony_ci	addqw	#1,%d5		|if neg, set LAMBDA true
3938c2ecf20Sopenharmony_ci	cmpl	#0xffffecd4,%d0	|test iscale <= -4908
3948c2ecf20Sopenharmony_ci	bgts	no_inf		|if false, skip rest
3958c2ecf20Sopenharmony_ci	addil	#24,%d0		|add in 24 to iscale
3968c2ecf20Sopenharmony_ci	movel	#24,%d2		|put 24 in d2 for A9
3978c2ecf20Sopenharmony_cino_inf:
3988c2ecf20Sopenharmony_ci	negl	%d0		|and take abs of ISCALE
3998c2ecf20Sopenharmony_ciiscale:
4008c2ecf20Sopenharmony_ci	fmoves	FONE,%fp1	|init fp1 to 1
4018c2ecf20Sopenharmony_ci	bfextu	USER_FPCR(%a6){#26:#2},%d1 |get initial rmode bits
4028c2ecf20Sopenharmony_ci	lslw	#1,%d1		|put them in bits 2:1
4038c2ecf20Sopenharmony_ci	addw	%d5,%d1		|add in LAMBDA
4048c2ecf20Sopenharmony_ci	lslw	#1,%d1		|put them in bits 3:1
4058c2ecf20Sopenharmony_ci	tstl	L_SCR2(%a6)	|test sign of original x
4068c2ecf20Sopenharmony_ci	bges	x_pos		|if pos, don't set bit 0
4078c2ecf20Sopenharmony_ci	addql	#1,%d1		|if neg, set bit 0
4088c2ecf20Sopenharmony_cix_pos:
4098c2ecf20Sopenharmony_ci	leal	RBDTBL,%a2	|load rbdtbl base
4108c2ecf20Sopenharmony_ci	moveb	(%a2,%d1),%d3	|load d3 with new rmode
4118c2ecf20Sopenharmony_ci	lsll	#4,%d3		|put bits in proper position
4128c2ecf20Sopenharmony_ci	fmovel	%d3,%fpcr		|load bits into fpu
4138c2ecf20Sopenharmony_ci	lsrl	#4,%d3		|put bits in proper position
4148c2ecf20Sopenharmony_ci	tstb	%d3		|decode new rmode for pten table
4158c2ecf20Sopenharmony_ci	bnes	not_rn		|if zero, it is RN
4168c2ecf20Sopenharmony_ci	leal	PTENRN,%a1	|load a1 with RN table base
4178c2ecf20Sopenharmony_ci	bras	rmode		|exit decode
4188c2ecf20Sopenharmony_cinot_rn:
4198c2ecf20Sopenharmony_ci	lsrb	#1,%d3		|get lsb in carry
4208c2ecf20Sopenharmony_ci	bccs	not_rp		|if carry clear, it is RM
4218c2ecf20Sopenharmony_ci	leal	PTENRP,%a1	|load a1 with RP table base
4228c2ecf20Sopenharmony_ci	bras	rmode		|exit decode
4238c2ecf20Sopenharmony_cinot_rp:
4248c2ecf20Sopenharmony_ci	leal	PTENRM,%a1	|load a1 with RM table base
4258c2ecf20Sopenharmony_cirmode:
4268c2ecf20Sopenharmony_ci	clrl	%d3		|clr table index
4278c2ecf20Sopenharmony_cie_loop:
4288c2ecf20Sopenharmony_ci	lsrl	#1,%d0		|shift next bit into carry
4298c2ecf20Sopenharmony_ci	bccs	e_next		|if zero, skip the mul
4308c2ecf20Sopenharmony_ci	fmulx	(%a1,%d3),%fp1	|mul by 10**(d3_bit_no)
4318c2ecf20Sopenharmony_cie_next:
4328c2ecf20Sopenharmony_ci	addl	#12,%d3		|inc d3 to next pwrten table entry
4338c2ecf20Sopenharmony_ci	tstl	%d0		|test if ISCALE is zero
4348c2ecf20Sopenharmony_ci	bnes	e_loop		|if not, loop
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci
4378c2ecf20Sopenharmony_ci| A8. Clr INEX; Force RZ.
4388c2ecf20Sopenharmony_ci|     The operation in A3 above may have set INEX2.
4398c2ecf20Sopenharmony_ci|     RZ mode is forced for the scaling operation to insure
4408c2ecf20Sopenharmony_ci|     only one rounding error.  The grs bits are collected in
4418c2ecf20Sopenharmony_ci|     the INEX flag for use in A10.
4428c2ecf20Sopenharmony_ci|
4438c2ecf20Sopenharmony_ci| Register usage:
4448c2ecf20Sopenharmony_ci|	Input/Output
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci	fmovel	#0,%FPSR		|clr INEX
4478c2ecf20Sopenharmony_ci	fmovel	#rz_mode,%FPCR	|set RZ rounding mode
4488c2ecf20Sopenharmony_ci
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci| A9. Scale X -> Y.
4518c2ecf20Sopenharmony_ci|     The mantissa is scaled to the desired number of significant
4528c2ecf20Sopenharmony_ci|     digits.  The excess digits are collected in INEX2. If mul,
4538c2ecf20Sopenharmony_ci|     Check d2 for excess 10 exponential value.  If not zero,
4548c2ecf20Sopenharmony_ci|     the iscale value would have caused the pwrten calculation
4558c2ecf20Sopenharmony_ci|     to overflow.  Only a negative iscale can cause this, so
4568c2ecf20Sopenharmony_ci|     multiply by 10^(d2), which is now only allowed to be 24,
4578c2ecf20Sopenharmony_ci|     with a multiply by 10^8 and 10^16, which is exact since
4588c2ecf20Sopenharmony_ci|     10^24 is exact.  If the input was denormalized, we must
4598c2ecf20Sopenharmony_ci|     create a busy stack frame with the mul command and the
4608c2ecf20Sopenharmony_ci|     two operands, and allow the fpu to complete the multiply.
4618c2ecf20Sopenharmony_ci|
4628c2ecf20Sopenharmony_ci| Register usage:
4638c2ecf20Sopenharmony_ci|	Input/Output
4648c2ecf20Sopenharmony_ci|	d0: FPCR with RZ mode/Unchanged
4658c2ecf20Sopenharmony_ci|	d2: 0 or 24/unchanged
4668c2ecf20Sopenharmony_ci|	d3: x/x
4678c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
4688c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA
4698c2ecf20Sopenharmony_ci|	d6: ILOG/Unchanged
4708c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
4718c2ecf20Sopenharmony_ci|	a0: ptr for original operand/final result
4728c2ecf20Sopenharmony_ci|	a1: ptr to PTENRM array/Unchanged
4738c2ecf20Sopenharmony_ci|	a2: x/x
4748c2ecf20Sopenharmony_ci|	fp0: float(ILOG)/X adjusted for SCALE (Y)
4758c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
4768c2ecf20Sopenharmony_ci|	fp2: x/x
4778c2ecf20Sopenharmony_ci|	F_SCR1:x/x
4788c2ecf20Sopenharmony_ci|	F_SCR2:Abs(X) with $3fff exponent/Unchanged
4798c2ecf20Sopenharmony_ci|	L_SCR1:x/x
4808c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ciA9_str:
4838c2ecf20Sopenharmony_ci	fmovex	(%a0),%fp0	|load X from memory
4848c2ecf20Sopenharmony_ci	fabsx	%fp0		|use abs(X)
4858c2ecf20Sopenharmony_ci	tstw	%d5		|LAMBDA is in lower word of d5
4868c2ecf20Sopenharmony_ci	bne	sc_mul		|if neg (LAMBDA = 1), scale by mul
4878c2ecf20Sopenharmony_ci	fdivx	%fp1,%fp0		|calculate X / SCALE -> Y to fp0
4888c2ecf20Sopenharmony_ci	bras	A10_st		|branch to A10
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_cisc_mul:
4918c2ecf20Sopenharmony_ci	tstb	BINDEC_FLG(%a6)	|check for denorm
4928c2ecf20Sopenharmony_ci	beqs	A9_norm		|if norm, continue with mul
4938c2ecf20Sopenharmony_ci	fmovemx %fp1-%fp1,-(%a7)	|load ETEMP with 10^ISCALE
4948c2ecf20Sopenharmony_ci	movel	8(%a0),-(%a7)	|load FPTEMP with input arg
4958c2ecf20Sopenharmony_ci	movel	4(%a0),-(%a7)
4968c2ecf20Sopenharmony_ci	movel	(%a0),-(%a7)
4978c2ecf20Sopenharmony_ci	movel	#18,%d3		|load count for busy stack
4988c2ecf20Sopenharmony_ciA9_loop:
4998c2ecf20Sopenharmony_ci	clrl	-(%a7)		|clear lword on stack
5008c2ecf20Sopenharmony_ci	dbf	%d3,A9_loop
5018c2ecf20Sopenharmony_ci	moveb	VER_TMP(%a6),(%a7) |write current version number
5028c2ecf20Sopenharmony_ci	moveb	#BUSY_SIZE-4,1(%a7) |write current busy size
5038c2ecf20Sopenharmony_ci	moveb	#0x10,0x44(%a7)	|set fcefpte[15] bit
5048c2ecf20Sopenharmony_ci	movew	#0x0023,0x40(%a7)	|load cmdreg1b with mul command
5058c2ecf20Sopenharmony_ci	moveb	#0xfe,0x8(%a7)	|load all 1s to cu savepc
5068c2ecf20Sopenharmony_ci	frestore (%a7)+		|restore frame to fpu for completion
5078c2ecf20Sopenharmony_ci	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
5088c2ecf20Sopenharmony_ci	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
5098c2ecf20Sopenharmony_ci	bras	A10_st
5108c2ecf20Sopenharmony_ciA9_norm:
5118c2ecf20Sopenharmony_ci	tstw	%d2		|test for small exp case
5128c2ecf20Sopenharmony_ci	beqs	A9_con		|if zero, continue as normal
5138c2ecf20Sopenharmony_ci	fmulx	36(%a1),%fp0	|multiply fp0 by 10^8
5148c2ecf20Sopenharmony_ci	fmulx	48(%a1),%fp0	|multiply fp0 by 10^16
5158c2ecf20Sopenharmony_ciA9_con:
5168c2ecf20Sopenharmony_ci	fmulx	%fp1,%fp0		|calculate X * SCALE -> Y to fp0
5178c2ecf20Sopenharmony_ci
5188c2ecf20Sopenharmony_ci
5198c2ecf20Sopenharmony_ci| A10. Or in INEX.
5208c2ecf20Sopenharmony_ci|      If INEX is set, round error occurred.  This is compensated
5218c2ecf20Sopenharmony_ci|      for by 'or-ing' in the INEX2 flag to the lsb of Y.
5228c2ecf20Sopenharmony_ci|
5238c2ecf20Sopenharmony_ci| Register usage:
5248c2ecf20Sopenharmony_ci|	Input/Output
5258c2ecf20Sopenharmony_ci|	d0: FPCR with RZ mode/FPSR with INEX2 isolated
5268c2ecf20Sopenharmony_ci|	d2: x/x
5278c2ecf20Sopenharmony_ci|	d3: x/x
5288c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
5298c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA
5308c2ecf20Sopenharmony_ci|	d6: ILOG/Unchanged
5318c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
5328c2ecf20Sopenharmony_ci|	a0: ptr for original operand/final result
5338c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
5348c2ecf20Sopenharmony_ci|	a2: x/ptr to FP_SCR2(a6)
5358c2ecf20Sopenharmony_ci|	fp0: Y/Y with lsb adjusted
5368c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
5378c2ecf20Sopenharmony_ci|	fp2: x/x
5388c2ecf20Sopenharmony_ci
5398c2ecf20Sopenharmony_ciA10_st:
5408c2ecf20Sopenharmony_ci	fmovel	%FPSR,%d0		|get FPSR
5418c2ecf20Sopenharmony_ci	fmovex	%fp0,FP_SCR2(%a6)	|move Y to memory
5428c2ecf20Sopenharmony_ci	leal	FP_SCR2(%a6),%a2	|load a2 with ptr to FP_SCR2
5438c2ecf20Sopenharmony_ci	btstl	#9,%d0		|check if INEX2 set
5448c2ecf20Sopenharmony_ci	beqs	A11_st		|if clear, skip rest
5458c2ecf20Sopenharmony_ci	oril	#1,8(%a2)	|or in 1 to lsb of mantissa
5468c2ecf20Sopenharmony_ci	fmovex	FP_SCR2(%a6),%fp0	|write adjusted Y back to fpu
5478c2ecf20Sopenharmony_ci
5488c2ecf20Sopenharmony_ci
5498c2ecf20Sopenharmony_ci| A11. Restore original FPCR; set size ext.
5508c2ecf20Sopenharmony_ci|      Perform FINT operation in the user's rounding mode.  Keep
5518c2ecf20Sopenharmony_ci|      the size to extended.  The sintdo entry point in the sint
5528c2ecf20Sopenharmony_ci|      routine expects the FPCR value to be in USER_FPCR for
5538c2ecf20Sopenharmony_ci|      mode and precision.  The original FPCR is saved in L_SCR1.
5548c2ecf20Sopenharmony_ci
5558c2ecf20Sopenharmony_ciA11_st:
5568c2ecf20Sopenharmony_ci	movel	USER_FPCR(%a6),L_SCR1(%a6) |save it for later
5578c2ecf20Sopenharmony_ci	andil	#0x00000030,USER_FPCR(%a6) |set size to ext,
5588c2ecf20Sopenharmony_ci|					;block exceptions
5598c2ecf20Sopenharmony_ci
5608c2ecf20Sopenharmony_ci
5618c2ecf20Sopenharmony_ci| A12. Calculate YINT = FINT(Y) according to user's rounding mode.
5628c2ecf20Sopenharmony_ci|      The FPSP routine sintd0 is used.  The output is in fp0.
5638c2ecf20Sopenharmony_ci|
5648c2ecf20Sopenharmony_ci| Register usage:
5658c2ecf20Sopenharmony_ci|	Input/Output
5668c2ecf20Sopenharmony_ci|	d0: FPSR with AINEX cleared/FPCR with size set to ext
5678c2ecf20Sopenharmony_ci|	d2: x/x/scratch
5688c2ecf20Sopenharmony_ci|	d3: x/x
5698c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
5708c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA/Unchanged
5718c2ecf20Sopenharmony_ci|	d6: ILOG/Unchanged
5728c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
5738c2ecf20Sopenharmony_ci|	a0: ptr for original operand/src ptr for sintdo
5748c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
5758c2ecf20Sopenharmony_ci|	a2: ptr to FP_SCR2(a6)/Unchanged
5768c2ecf20Sopenharmony_ci|	a6: temp pointer to FP_SCR2(a6) - orig value saved and restored
5778c2ecf20Sopenharmony_ci|	fp0: Y/YINT
5788c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
5798c2ecf20Sopenharmony_ci|	fp2: x/x
5808c2ecf20Sopenharmony_ci|	F_SCR1:x/x
5818c2ecf20Sopenharmony_ci|	F_SCR2:Y adjusted for inex/Y with original exponent
5828c2ecf20Sopenharmony_ci|	L_SCR1:x/original USER_FPCR
5838c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
5848c2ecf20Sopenharmony_ci
5858c2ecf20Sopenharmony_ciA12_st:
5868c2ecf20Sopenharmony_ci	moveml	%d0-%d1/%a0-%a1,-(%a7)	|save regs used by sintd0
5878c2ecf20Sopenharmony_ci	movel	L_SCR1(%a6),-(%a7)
5888c2ecf20Sopenharmony_ci	movel	L_SCR2(%a6),-(%a7)
5898c2ecf20Sopenharmony_ci	leal	FP_SCR2(%a6),%a0		|a0 is ptr to F_SCR2(a6)
5908c2ecf20Sopenharmony_ci	fmovex	%fp0,(%a0)		|move Y to memory at FP_SCR2(a6)
5918c2ecf20Sopenharmony_ci	tstl	L_SCR2(%a6)		|test sign of original operand
5928c2ecf20Sopenharmony_ci	bges	do_fint			|if pos, use Y
5938c2ecf20Sopenharmony_ci	orl	#0x80000000,(%a0)		|if neg, use -Y
5948c2ecf20Sopenharmony_cido_fint:
5958c2ecf20Sopenharmony_ci	movel	USER_FPSR(%a6),-(%a7)
5968c2ecf20Sopenharmony_ci	bsr	sintdo			|sint routine returns int in fp0
5978c2ecf20Sopenharmony_ci	moveb	(%a7),USER_FPSR(%a6)
5988c2ecf20Sopenharmony_ci	addl	#4,%a7
5998c2ecf20Sopenharmony_ci	movel	(%a7)+,L_SCR2(%a6)
6008c2ecf20Sopenharmony_ci	movel	(%a7)+,L_SCR1(%a6)
6018c2ecf20Sopenharmony_ci	moveml	(%a7)+,%d0-%d1/%a0-%a1	|restore regs used by sint
6028c2ecf20Sopenharmony_ci	movel	L_SCR2(%a6),FP_SCR2(%a6)	|restore original exponent
6038c2ecf20Sopenharmony_ci	movel	L_SCR1(%a6),USER_FPCR(%a6) |restore user's FPCR
6048c2ecf20Sopenharmony_ci
6058c2ecf20Sopenharmony_ci
6068c2ecf20Sopenharmony_ci| A13. Check for LEN digits.
6078c2ecf20Sopenharmony_ci|      If the int operation results in more than LEN digits,
6088c2ecf20Sopenharmony_ci|      or less than LEN -1 digits, adjust ILOG and repeat from
6098c2ecf20Sopenharmony_ci|      A6.  This test occurs only on the first pass.  If the
6108c2ecf20Sopenharmony_ci|      result is exactly 10^LEN, decrement ILOG and divide
6118c2ecf20Sopenharmony_ci|      the mantissa by 10.  The calculation of 10^LEN cannot
6128c2ecf20Sopenharmony_ci|      be inexact, since all powers of ten up to 10^27 are exact
6138c2ecf20Sopenharmony_ci|      in extended precision, so the use of a previous power-of-ten
6148c2ecf20Sopenharmony_ci|      table will introduce no error.
6158c2ecf20Sopenharmony_ci|
6168c2ecf20Sopenharmony_ci|
6178c2ecf20Sopenharmony_ci| Register usage:
6188c2ecf20Sopenharmony_ci|	Input/Output
6198c2ecf20Sopenharmony_ci|	d0: FPCR with size set to ext/scratch final = 0
6208c2ecf20Sopenharmony_ci|	d2: x/x
6218c2ecf20Sopenharmony_ci|	d3: x/scratch final = x
6228c2ecf20Sopenharmony_ci|	d4: LEN/LEN adjusted
6238c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA/LAMBDA:ICTR
6248c2ecf20Sopenharmony_ci|	d6: ILOG/ILOG adjusted
6258c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
6268c2ecf20Sopenharmony_ci|	a0: pointer into memory for packed bcd string formation
6278c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
6288c2ecf20Sopenharmony_ci|	a2: ptr to FP_SCR2(a6)/Unchanged
6298c2ecf20Sopenharmony_ci|	fp0: int portion of Y/abs(YINT) adjusted
6308c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
6318c2ecf20Sopenharmony_ci|	fp2: x/10^LEN
6328c2ecf20Sopenharmony_ci|	F_SCR1:x/x
6338c2ecf20Sopenharmony_ci|	F_SCR2:Y with original exponent/Unchanged
6348c2ecf20Sopenharmony_ci|	L_SCR1:original USER_FPCR/Unchanged
6358c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
6368c2ecf20Sopenharmony_ci
6378c2ecf20Sopenharmony_ciA13_st:
6388c2ecf20Sopenharmony_ci	swap	%d5		|put ICTR in lower word of d5
6398c2ecf20Sopenharmony_ci	tstw	%d5		|check if ICTR = 0
6408c2ecf20Sopenharmony_ci	bne	not_zr		|if non-zero, go to second test
6418c2ecf20Sopenharmony_ci|
6428c2ecf20Sopenharmony_ci| Compute 10^(LEN-1)
6438c2ecf20Sopenharmony_ci|
6448c2ecf20Sopenharmony_ci	fmoves	FONE,%fp2	|init fp2 to 1.0
6458c2ecf20Sopenharmony_ci	movel	%d4,%d0		|put LEN in d0
6468c2ecf20Sopenharmony_ci	subql	#1,%d0		|d0 = LEN -1
6478c2ecf20Sopenharmony_ci	clrl	%d3		|clr table index
6488c2ecf20Sopenharmony_cil_loop:
6498c2ecf20Sopenharmony_ci	lsrl	#1,%d0		|shift next bit into carry
6508c2ecf20Sopenharmony_ci	bccs	l_next		|if zero, skip the mul
6518c2ecf20Sopenharmony_ci	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
6528c2ecf20Sopenharmony_cil_next:
6538c2ecf20Sopenharmony_ci	addl	#12,%d3		|inc d3 to next pwrten table entry
6548c2ecf20Sopenharmony_ci	tstl	%d0		|test if LEN is zero
6558c2ecf20Sopenharmony_ci	bnes	l_loop		|if not, loop
6568c2ecf20Sopenharmony_ci|
6578c2ecf20Sopenharmony_ci| 10^LEN-1 is computed for this test and A14.  If the input was
6588c2ecf20Sopenharmony_ci| denormalized, check only the case in which YINT > 10^LEN.
6598c2ecf20Sopenharmony_ci|
6608c2ecf20Sopenharmony_ci	tstb	BINDEC_FLG(%a6)	|check if input was norm
6618c2ecf20Sopenharmony_ci	beqs	A13_con		|if norm, continue with checking
6628c2ecf20Sopenharmony_ci	fabsx	%fp0		|take abs of YINT
6638c2ecf20Sopenharmony_ci	bra	test_2
6648c2ecf20Sopenharmony_ci|
6658c2ecf20Sopenharmony_ci| Compare abs(YINT) to 10^(LEN-1) and 10^LEN
6668c2ecf20Sopenharmony_ci|
6678c2ecf20Sopenharmony_ciA13_con:
6688c2ecf20Sopenharmony_ci	fabsx	%fp0		|take abs of YINT
6698c2ecf20Sopenharmony_ci	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^(LEN-1)
6708c2ecf20Sopenharmony_ci	fbge	test_2		|if greater, do next test
6718c2ecf20Sopenharmony_ci	subql	#1,%d6		|subtract 1 from ILOG
6728c2ecf20Sopenharmony_ci	movew	#1,%d5		|set ICTR
6738c2ecf20Sopenharmony_ci	fmovel	#rm_mode,%FPCR	|set rmode to RM
6748c2ecf20Sopenharmony_ci	fmuls	FTEN,%fp2	|compute 10^LEN
6758c2ecf20Sopenharmony_ci	bra	A6_str		|return to A6 and recompute YINT
6768c2ecf20Sopenharmony_citest_2:
6778c2ecf20Sopenharmony_ci	fmuls	FTEN,%fp2	|compute 10^LEN
6788c2ecf20Sopenharmony_ci	fcmpx	%fp2,%fp0		|compare abs(YINT) with 10^LEN
6798c2ecf20Sopenharmony_ci	fblt	A14_st		|if less, all is ok, go to A14
6808c2ecf20Sopenharmony_ci	fbgt	fix_ex		|if greater, fix and redo
6818c2ecf20Sopenharmony_ci	fdivs	FTEN,%fp0	|if equal, divide by 10
6828c2ecf20Sopenharmony_ci	addql	#1,%d6		| and inc ILOG
6838c2ecf20Sopenharmony_ci	bras	A14_st		| and continue elsewhere
6848c2ecf20Sopenharmony_cifix_ex:
6858c2ecf20Sopenharmony_ci	addql	#1,%d6		|increment ILOG by 1
6868c2ecf20Sopenharmony_ci	movew	#1,%d5		|set ICTR
6878c2ecf20Sopenharmony_ci	fmovel	#rm_mode,%FPCR	|set rmode to RM
6888c2ecf20Sopenharmony_ci	bra	A6_str		|return to A6 and recompute YINT
6898c2ecf20Sopenharmony_ci|
6908c2ecf20Sopenharmony_ci| Since ICTR <> 0, we have already been through one adjustment,
6918c2ecf20Sopenharmony_ci| and shouldn't have another; this is to check if abs(YINT) = 10^LEN
6928c2ecf20Sopenharmony_ci| 10^LEN is again computed using whatever table is in a1 since the
6938c2ecf20Sopenharmony_ci| value calculated cannot be inexact.
6948c2ecf20Sopenharmony_ci|
6958c2ecf20Sopenharmony_cinot_zr:
6968c2ecf20Sopenharmony_ci	fmoves	FONE,%fp2	|init fp2 to 1.0
6978c2ecf20Sopenharmony_ci	movel	%d4,%d0		|put LEN in d0
6988c2ecf20Sopenharmony_ci	clrl	%d3		|clr table index
6998c2ecf20Sopenharmony_ciz_loop:
7008c2ecf20Sopenharmony_ci	lsrl	#1,%d0		|shift next bit into carry
7018c2ecf20Sopenharmony_ci	bccs	z_next		|if zero, skip the mul
7028c2ecf20Sopenharmony_ci	fmulx	(%a1,%d3),%fp2	|mul by 10**(d3_bit_no)
7038c2ecf20Sopenharmony_ciz_next:
7048c2ecf20Sopenharmony_ci	addl	#12,%d3		|inc d3 to next pwrten table entry
7058c2ecf20Sopenharmony_ci	tstl	%d0		|test if LEN is zero
7068c2ecf20Sopenharmony_ci	bnes	z_loop		|if not, loop
7078c2ecf20Sopenharmony_ci	fabsx	%fp0		|get abs(YINT)
7088c2ecf20Sopenharmony_ci	fcmpx	%fp2,%fp0		|check if abs(YINT) = 10^LEN
7098c2ecf20Sopenharmony_ci	fbne	A14_st		|if not, skip this
7108c2ecf20Sopenharmony_ci	fdivs	FTEN,%fp0	|divide abs(YINT) by 10
7118c2ecf20Sopenharmony_ci	addql	#1,%d6		|and inc ILOG by 1
7128c2ecf20Sopenharmony_ci	addql	#1,%d4		| and inc LEN
7138c2ecf20Sopenharmony_ci	fmuls	FTEN,%fp2	| if LEN++, the get 10^^LEN
7148c2ecf20Sopenharmony_ci
7158c2ecf20Sopenharmony_ci
7168c2ecf20Sopenharmony_ci| A14. Convert the mantissa to bcd.
7178c2ecf20Sopenharmony_ci|      The binstr routine is used to convert the LEN digit
7188c2ecf20Sopenharmony_ci|      mantissa to bcd in memory.  The input to binstr is
7198c2ecf20Sopenharmony_ci|      to be a fraction; i.e. (mantissa)/10^LEN and adjusted
7208c2ecf20Sopenharmony_ci|      such that the decimal point is to the left of bit 63.
7218c2ecf20Sopenharmony_ci|      The bcd digits are stored in the correct position in
7228c2ecf20Sopenharmony_ci|      the final string area in memory.
7238c2ecf20Sopenharmony_ci|
7248c2ecf20Sopenharmony_ci|
7258c2ecf20Sopenharmony_ci| Register usage:
7268c2ecf20Sopenharmony_ci|	Input/Output
7278c2ecf20Sopenharmony_ci|	d0: x/LEN call to binstr - final is 0
7288c2ecf20Sopenharmony_ci|	d1: x/0
7298c2ecf20Sopenharmony_ci|	d2: x/ms 32-bits of mant of abs(YINT)
7308c2ecf20Sopenharmony_ci|	d3: x/ls 32-bits of mant of abs(YINT)
7318c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
7328c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA/LAMBDA:ICTR
7338c2ecf20Sopenharmony_ci|	d6: ILOG
7348c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
7358c2ecf20Sopenharmony_ci|	a0: pointer into memory for packed bcd string formation
7368c2ecf20Sopenharmony_ci|	    /ptr to first mantissa byte in result string
7378c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
7388c2ecf20Sopenharmony_ci|	a2: ptr to FP_SCR2(a6)/Unchanged
7398c2ecf20Sopenharmony_ci|	fp0: int portion of Y/abs(YINT) adjusted
7408c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
7418c2ecf20Sopenharmony_ci|	fp2: 10^LEN/Unchanged
7428c2ecf20Sopenharmony_ci|	F_SCR1:x/Work area for final result
7438c2ecf20Sopenharmony_ci|	F_SCR2:Y with original exponent/Unchanged
7448c2ecf20Sopenharmony_ci|	L_SCR1:original USER_FPCR/Unchanged
7458c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
7468c2ecf20Sopenharmony_ci
7478c2ecf20Sopenharmony_ciA14_st:
7488c2ecf20Sopenharmony_ci	fmovel	#rz_mode,%FPCR	|force rz for conversion
7498c2ecf20Sopenharmony_ci	fdivx	%fp2,%fp0		|divide abs(YINT) by 10^LEN
7508c2ecf20Sopenharmony_ci	leal	FP_SCR1(%a6),%a0
7518c2ecf20Sopenharmony_ci	fmovex	%fp0,(%a0)	|move abs(YINT)/10^LEN to memory
7528c2ecf20Sopenharmony_ci	movel	4(%a0),%d2	|move 2nd word of FP_RES to d2
7538c2ecf20Sopenharmony_ci	movel	8(%a0),%d3	|move 3rd word of FP_RES to d3
7548c2ecf20Sopenharmony_ci	clrl	4(%a0)		|zero word 2 of FP_RES
7558c2ecf20Sopenharmony_ci	clrl	8(%a0)		|zero word 3 of FP_RES
7568c2ecf20Sopenharmony_ci	movel	(%a0),%d0		|move exponent to d0
7578c2ecf20Sopenharmony_ci	swap	%d0		|put exponent in lower word
7588c2ecf20Sopenharmony_ci	beqs	no_sft		|if zero, don't shift
7598c2ecf20Sopenharmony_ci	subil	#0x3ffd,%d0	|sub bias less 2 to make fract
7608c2ecf20Sopenharmony_ci	tstl	%d0		|check if > 1
7618c2ecf20Sopenharmony_ci	bgts	no_sft		|if so, don't shift
7628c2ecf20Sopenharmony_ci	negl	%d0		|make exp positive
7638c2ecf20Sopenharmony_cim_loop:
7648c2ecf20Sopenharmony_ci	lsrl	#1,%d2		|shift d2:d3 right, add 0s
7658c2ecf20Sopenharmony_ci	roxrl	#1,%d3		|the number of places
7668c2ecf20Sopenharmony_ci	dbf	%d0,m_loop	|given in d0
7678c2ecf20Sopenharmony_cino_sft:
7688c2ecf20Sopenharmony_ci	tstl	%d2		|check for mantissa of zero
7698c2ecf20Sopenharmony_ci	bnes	no_zr		|if not, go on
7708c2ecf20Sopenharmony_ci	tstl	%d3		|continue zero check
7718c2ecf20Sopenharmony_ci	beqs	zer_m		|if zero, go directly to binstr
7728c2ecf20Sopenharmony_cino_zr:
7738c2ecf20Sopenharmony_ci	clrl	%d1		|put zero in d1 for addx
7748c2ecf20Sopenharmony_ci	addil	#0x00000080,%d3	|inc at bit 7
7758c2ecf20Sopenharmony_ci	addxl	%d1,%d2		|continue inc
7768c2ecf20Sopenharmony_ci	andil	#0xffffff80,%d3	|strip off lsb not used by 882
7778c2ecf20Sopenharmony_cizer_m:
7788c2ecf20Sopenharmony_ci	movel	%d4,%d0		|put LEN in d0 for binstr call
7798c2ecf20Sopenharmony_ci	addql	#3,%a0		|a0 points to M16 byte in result
7808c2ecf20Sopenharmony_ci	bsr	binstr		|call binstr to convert mant
7818c2ecf20Sopenharmony_ci
7828c2ecf20Sopenharmony_ci
7838c2ecf20Sopenharmony_ci| A15. Convert the exponent to bcd.
7848c2ecf20Sopenharmony_ci|      As in A14 above, the exp is converted to bcd and the
7858c2ecf20Sopenharmony_ci|      digits are stored in the final string.
7868c2ecf20Sopenharmony_ci|
7878c2ecf20Sopenharmony_ci|      Digits are stored in L_SCR1(a6) on return from BINDEC as:
7888c2ecf20Sopenharmony_ci|
7898c2ecf20Sopenharmony_ci|	 32               16 15                0
7908c2ecf20Sopenharmony_ci|	-----------------------------------------
7918c2ecf20Sopenharmony_ci|	|  0 | e3 | e2 | e1 | e4 |  X |  X |  X |
7928c2ecf20Sopenharmony_ci|	-----------------------------------------
7938c2ecf20Sopenharmony_ci|
7948c2ecf20Sopenharmony_ci| And are moved into their proper places in FP_SCR1.  If digit e4
7958c2ecf20Sopenharmony_ci| is non-zero, OPERR is signaled.  In all cases, all 4 digits are
7968c2ecf20Sopenharmony_ci| written as specified in the 881/882 manual for packed decimal.
7978c2ecf20Sopenharmony_ci|
7988c2ecf20Sopenharmony_ci| Register usage:
7998c2ecf20Sopenharmony_ci|	Input/Output
8008c2ecf20Sopenharmony_ci|	d0: x/LEN call to binstr - final is 0
8018c2ecf20Sopenharmony_ci|	d1: x/scratch (0);shift count for final exponent packing
8028c2ecf20Sopenharmony_ci|	d2: x/ms 32-bits of exp fraction/scratch
8038c2ecf20Sopenharmony_ci|	d3: x/ls 32-bits of exp fraction
8048c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
8058c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA/LAMBDA:ICTR
8068c2ecf20Sopenharmony_ci|	d6: ILOG
8078c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
8088c2ecf20Sopenharmony_ci|	a0: ptr to result string/ptr to L_SCR1(a6)
8098c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
8108c2ecf20Sopenharmony_ci|	a2: ptr to FP_SCR2(a6)/Unchanged
8118c2ecf20Sopenharmony_ci|	fp0: abs(YINT) adjusted/float(ILOG)
8128c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
8138c2ecf20Sopenharmony_ci|	fp2: 10^LEN/Unchanged
8148c2ecf20Sopenharmony_ci|	F_SCR1:Work area for final result/BCD result
8158c2ecf20Sopenharmony_ci|	F_SCR2:Y with original exponent/ILOG/10^4
8168c2ecf20Sopenharmony_ci|	L_SCR1:original USER_FPCR/Exponent digits on return from binstr
8178c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
8188c2ecf20Sopenharmony_ci
8198c2ecf20Sopenharmony_ciA15_st:
8208c2ecf20Sopenharmony_ci	tstb	BINDEC_FLG(%a6)	|check for denorm
8218c2ecf20Sopenharmony_ci	beqs	not_denorm
8228c2ecf20Sopenharmony_ci	ftstx	%fp0		|test for zero
8238c2ecf20Sopenharmony_ci	fbeq	den_zero	|if zero, use k-factor or 4933
8248c2ecf20Sopenharmony_ci	fmovel	%d6,%fp0		|float ILOG
8258c2ecf20Sopenharmony_ci	fabsx	%fp0		|get abs of ILOG
8268c2ecf20Sopenharmony_ci	bras	convrt
8278c2ecf20Sopenharmony_ciden_zero:
8288c2ecf20Sopenharmony_ci	tstl	%d7		|check sign of the k-factor
8298c2ecf20Sopenharmony_ci	blts	use_ilog	|if negative, use ILOG
8308c2ecf20Sopenharmony_ci	fmoves	F4933,%fp0	|force exponent to 4933
8318c2ecf20Sopenharmony_ci	bras	convrt		|do it
8328c2ecf20Sopenharmony_ciuse_ilog:
8338c2ecf20Sopenharmony_ci	fmovel	%d6,%fp0		|float ILOG
8348c2ecf20Sopenharmony_ci	fabsx	%fp0		|get abs of ILOG
8358c2ecf20Sopenharmony_ci	bras	convrt
8368c2ecf20Sopenharmony_cinot_denorm:
8378c2ecf20Sopenharmony_ci	ftstx	%fp0		|test for zero
8388c2ecf20Sopenharmony_ci	fbne	not_zero	|if zero, force exponent
8398c2ecf20Sopenharmony_ci	fmoves	FONE,%fp0	|force exponent to 1
8408c2ecf20Sopenharmony_ci	bras	convrt		|do it
8418c2ecf20Sopenharmony_cinot_zero:
8428c2ecf20Sopenharmony_ci	fmovel	%d6,%fp0		|float ILOG
8438c2ecf20Sopenharmony_ci	fabsx	%fp0		|get abs of ILOG
8448c2ecf20Sopenharmony_ciconvrt:
8458c2ecf20Sopenharmony_ci	fdivx	24(%a1),%fp0	|compute ILOG/10^4
8468c2ecf20Sopenharmony_ci	fmovex	%fp0,FP_SCR2(%a6)	|store fp0 in memory
8478c2ecf20Sopenharmony_ci	movel	4(%a2),%d2	|move word 2 to d2
8488c2ecf20Sopenharmony_ci	movel	8(%a2),%d3	|move word 3 to d3
8498c2ecf20Sopenharmony_ci	movew	(%a2),%d0		|move exp to d0
8508c2ecf20Sopenharmony_ci	beqs	x_loop_fin	|if zero, skip the shift
8518c2ecf20Sopenharmony_ci	subiw	#0x3ffd,%d0	|subtract off bias
8528c2ecf20Sopenharmony_ci	negw	%d0		|make exp positive
8538c2ecf20Sopenharmony_cix_loop:
8548c2ecf20Sopenharmony_ci	lsrl	#1,%d2		|shift d2:d3 right
8558c2ecf20Sopenharmony_ci	roxrl	#1,%d3		|the number of places
8568c2ecf20Sopenharmony_ci	dbf	%d0,x_loop	|given in d0
8578c2ecf20Sopenharmony_cix_loop_fin:
8588c2ecf20Sopenharmony_ci	clrl	%d1		|put zero in d1 for addx
8598c2ecf20Sopenharmony_ci	addil	#0x00000080,%d3	|inc at bit 6
8608c2ecf20Sopenharmony_ci	addxl	%d1,%d2		|continue inc
8618c2ecf20Sopenharmony_ci	andil	#0xffffff80,%d3	|strip off lsb not used by 882
8628c2ecf20Sopenharmony_ci	movel	#4,%d0		|put 4 in d0 for binstr call
8638c2ecf20Sopenharmony_ci	leal	L_SCR1(%a6),%a0	|a0 is ptr to L_SCR1 for exp digits
8648c2ecf20Sopenharmony_ci	bsr	binstr		|call binstr to convert exp
8658c2ecf20Sopenharmony_ci	movel	L_SCR1(%a6),%d0	|load L_SCR1 lword to d0
8668c2ecf20Sopenharmony_ci	movel	#12,%d1		|use d1 for shift count
8678c2ecf20Sopenharmony_ci	lsrl	%d1,%d0		|shift d0 right by 12
8688c2ecf20Sopenharmony_ci	bfins	%d0,FP_SCR1(%a6){#4:#12} |put e3:e2:e1 in FP_SCR1
8698c2ecf20Sopenharmony_ci	lsrl	%d1,%d0		|shift d0 right by 12
8708c2ecf20Sopenharmony_ci	bfins	%d0,FP_SCR1(%a6){#16:#4} |put e4 in FP_SCR1
8718c2ecf20Sopenharmony_ci	tstb	%d0		|check if e4 is zero
8728c2ecf20Sopenharmony_ci	beqs	A16_st		|if zero, skip rest
8738c2ecf20Sopenharmony_ci	orl	#opaop_mask,USER_FPSR(%a6) |set OPERR & AIOP in USER_FPSR
8748c2ecf20Sopenharmony_ci
8758c2ecf20Sopenharmony_ci
8768c2ecf20Sopenharmony_ci| A16. Write sign bits to final string.
8778c2ecf20Sopenharmony_ci|	   Sigma is bit 31 of initial value; RHO is bit 31 of d6 (ILOG).
8788c2ecf20Sopenharmony_ci|
8798c2ecf20Sopenharmony_ci| Register usage:
8808c2ecf20Sopenharmony_ci|	Input/Output
8818c2ecf20Sopenharmony_ci|	d0: x/scratch - final is x
8828c2ecf20Sopenharmony_ci|	d2: x/x
8838c2ecf20Sopenharmony_ci|	d3: x/x
8848c2ecf20Sopenharmony_ci|	d4: LEN/Unchanged
8858c2ecf20Sopenharmony_ci|	d5: ICTR:LAMBDA/LAMBDA:ICTR
8868c2ecf20Sopenharmony_ci|	d6: ILOG/ILOG adjusted
8878c2ecf20Sopenharmony_ci|	d7: k-factor/Unchanged
8888c2ecf20Sopenharmony_ci|	a0: ptr to L_SCR1(a6)/Unchanged
8898c2ecf20Sopenharmony_ci|	a1: ptr to PTENxx array/Unchanged
8908c2ecf20Sopenharmony_ci|	a2: ptr to FP_SCR2(a6)/Unchanged
8918c2ecf20Sopenharmony_ci|	fp0: float(ILOG)/Unchanged
8928c2ecf20Sopenharmony_ci|	fp1: 10^ISCALE/Unchanged
8938c2ecf20Sopenharmony_ci|	fp2: 10^LEN/Unchanged
8948c2ecf20Sopenharmony_ci|	F_SCR1:BCD result with correct signs
8958c2ecf20Sopenharmony_ci|	F_SCR2:ILOG/10^4
8968c2ecf20Sopenharmony_ci|	L_SCR1:Exponent digits on return from binstr
8978c2ecf20Sopenharmony_ci|	L_SCR2:first word of X packed/Unchanged
8988c2ecf20Sopenharmony_ci
8998c2ecf20Sopenharmony_ciA16_st:
9008c2ecf20Sopenharmony_ci	clrl	%d0		|clr d0 for collection of signs
9018c2ecf20Sopenharmony_ci	andib	#0x0f,FP_SCR1(%a6) |clear first nibble of FP_SCR1
9028c2ecf20Sopenharmony_ci	tstl	L_SCR2(%a6)	|check sign of original mantissa
9038c2ecf20Sopenharmony_ci	bges	mant_p		|if pos, don't set SM
9048c2ecf20Sopenharmony_ci	moveql	#2,%d0		|move 2 in to d0 for SM
9058c2ecf20Sopenharmony_cimant_p:
9068c2ecf20Sopenharmony_ci	tstl	%d6		|check sign of ILOG
9078c2ecf20Sopenharmony_ci	bges	wr_sgn		|if pos, don't set SE
9088c2ecf20Sopenharmony_ci	addql	#1,%d0		|set bit 0 in d0 for SE
9098c2ecf20Sopenharmony_ciwr_sgn:
9108c2ecf20Sopenharmony_ci	bfins	%d0,FP_SCR1(%a6){#0:#2} |insert SM and SE into FP_SCR1
9118c2ecf20Sopenharmony_ci
9128c2ecf20Sopenharmony_ci| Clean up and restore all registers used.
9138c2ecf20Sopenharmony_ci
9148c2ecf20Sopenharmony_ci	fmovel	#0,%FPSR		|clear possible inex2/ainex bits
9158c2ecf20Sopenharmony_ci	fmovemx (%a7)+,%fp0-%fp2
9168c2ecf20Sopenharmony_ci	moveml	(%a7)+,%d2-%d7/%a2
9178c2ecf20Sopenharmony_ci	rts
9188c2ecf20Sopenharmony_ci
9198c2ecf20Sopenharmony_ci	|end
920