18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci * intc.c  -- support for the old ColdFire interrupt controller
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * (C) Copyright 2009, Greg Ungerer <gerg@snapgear.com>
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * This file is subject to the terms and conditions of the GNU General Public
78c2ecf20Sopenharmony_ci * License.  See the file COPYING in the main directory of this archive
88c2ecf20Sopenharmony_ci * for more details.
98c2ecf20Sopenharmony_ci */
108c2ecf20Sopenharmony_ci
118c2ecf20Sopenharmony_ci#include <linux/types.h>
128c2ecf20Sopenharmony_ci#include <linux/init.h>
138c2ecf20Sopenharmony_ci#include <linux/kernel.h>
148c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
158c2ecf20Sopenharmony_ci#include <linux/irq.h>
168c2ecf20Sopenharmony_ci#include <linux/io.h>
178c2ecf20Sopenharmony_ci#include <asm/traps.h>
188c2ecf20Sopenharmony_ci#include <asm/coldfire.h>
198c2ecf20Sopenharmony_ci#include <asm/mcfsim.h>
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci/*
228c2ecf20Sopenharmony_ci * The mapping of irq number to a mask register bit is not one-to-one.
238c2ecf20Sopenharmony_ci * The irq numbers are either based on "level" of interrupt or fixed
248c2ecf20Sopenharmony_ci * for an autovector-able interrupt. So we keep a local data structure
258c2ecf20Sopenharmony_ci * that maps from irq to mask register. Not all interrupts will have
268c2ecf20Sopenharmony_ci * an IMR bit.
278c2ecf20Sopenharmony_ci */
288c2ecf20Sopenharmony_ciunsigned char mcf_irq2imr[NR_IRQS];
298c2ecf20Sopenharmony_ci
308c2ecf20Sopenharmony_ci/*
318c2ecf20Sopenharmony_ci * Define the miniumun and maximum external interrupt numbers.
328c2ecf20Sopenharmony_ci * This is also used as the "level" interrupt numbers.
338c2ecf20Sopenharmony_ci */
348c2ecf20Sopenharmony_ci#define	EIRQ1	25
358c2ecf20Sopenharmony_ci#define	EIRQ7	31
368c2ecf20Sopenharmony_ci
378c2ecf20Sopenharmony_ci/*
388c2ecf20Sopenharmony_ci * In the early version 2 core ColdFire parts the IMR register was 16 bits
398c2ecf20Sopenharmony_ci * in size. Version 3 (and later version 2) core parts have a 32 bit
408c2ecf20Sopenharmony_ci * sized IMR register. Provide some size independent methods to access the
418c2ecf20Sopenharmony_ci * IMR register.
428c2ecf20Sopenharmony_ci */
438c2ecf20Sopenharmony_ci#ifdef MCFSIM_IMR_IS_16BITS
448c2ecf20Sopenharmony_ci
458c2ecf20Sopenharmony_civoid mcf_setimr(int index)
468c2ecf20Sopenharmony_ci{
478c2ecf20Sopenharmony_ci	u16 imr;
488c2ecf20Sopenharmony_ci	imr = __raw_readw(MCFSIM_IMR);
498c2ecf20Sopenharmony_ci	__raw_writew(imr | (0x1 << index), MCFSIM_IMR);
508c2ecf20Sopenharmony_ci}
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_civoid mcf_clrimr(int index)
538c2ecf20Sopenharmony_ci{
548c2ecf20Sopenharmony_ci	u16 imr;
558c2ecf20Sopenharmony_ci	imr = __raw_readw(MCFSIM_IMR);
568c2ecf20Sopenharmony_ci	__raw_writew(imr & ~(0x1 << index), MCFSIM_IMR);
578c2ecf20Sopenharmony_ci}
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_civoid mcf_maskimr(unsigned int mask)
608c2ecf20Sopenharmony_ci{
618c2ecf20Sopenharmony_ci	u16 imr;
628c2ecf20Sopenharmony_ci	imr = __raw_readw(MCFSIM_IMR);
638c2ecf20Sopenharmony_ci	imr |= mask;
648c2ecf20Sopenharmony_ci	__raw_writew(imr, MCFSIM_IMR);
658c2ecf20Sopenharmony_ci}
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci#else
688c2ecf20Sopenharmony_ci
698c2ecf20Sopenharmony_civoid mcf_setimr(int index)
708c2ecf20Sopenharmony_ci{
718c2ecf20Sopenharmony_ci	u32 imr;
728c2ecf20Sopenharmony_ci	imr = __raw_readl(MCFSIM_IMR);
738c2ecf20Sopenharmony_ci	__raw_writel(imr | (0x1 << index), MCFSIM_IMR);
748c2ecf20Sopenharmony_ci}
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_civoid mcf_clrimr(int index)
778c2ecf20Sopenharmony_ci{
788c2ecf20Sopenharmony_ci	u32 imr;
798c2ecf20Sopenharmony_ci	imr = __raw_readl(MCFSIM_IMR);
808c2ecf20Sopenharmony_ci	__raw_writel(imr & ~(0x1 << index), MCFSIM_IMR);
818c2ecf20Sopenharmony_ci}
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_civoid mcf_maskimr(unsigned int mask)
848c2ecf20Sopenharmony_ci{
858c2ecf20Sopenharmony_ci	u32 imr;
868c2ecf20Sopenharmony_ci	imr = __raw_readl(MCFSIM_IMR);
878c2ecf20Sopenharmony_ci	imr |= mask;
888c2ecf20Sopenharmony_ci	__raw_writel(imr, MCFSIM_IMR);
898c2ecf20Sopenharmony_ci}
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_ci#endif
928c2ecf20Sopenharmony_ci
938c2ecf20Sopenharmony_ci/*
948c2ecf20Sopenharmony_ci * Interrupts can be "vectored" on the ColdFire cores that support this old
958c2ecf20Sopenharmony_ci * interrupt controller. That is, the device raising the interrupt can also
968c2ecf20Sopenharmony_ci * supply the vector number to interrupt through. The AVR register of the
978c2ecf20Sopenharmony_ci * interrupt controller enables or disables this for each external interrupt,
988c2ecf20Sopenharmony_ci * so provide generic support for this. Setting this up is out-of-band for
998c2ecf20Sopenharmony_ci * the interrupt system API's, and needs to be done by the driver that
1008c2ecf20Sopenharmony_ci * supports this device. Very few devices actually use this.
1018c2ecf20Sopenharmony_ci */
1028c2ecf20Sopenharmony_civoid mcf_autovector(int irq)
1038c2ecf20Sopenharmony_ci{
1048c2ecf20Sopenharmony_ci#ifdef MCFSIM_AVR
1058c2ecf20Sopenharmony_ci	if ((irq >= EIRQ1) && (irq <= EIRQ7)) {
1068c2ecf20Sopenharmony_ci		u8 avec;
1078c2ecf20Sopenharmony_ci		avec = __raw_readb(MCFSIM_AVR);
1088c2ecf20Sopenharmony_ci		avec |= (0x1 << (irq - EIRQ1 + 1));
1098c2ecf20Sopenharmony_ci		__raw_writeb(avec, MCFSIM_AVR);
1108c2ecf20Sopenharmony_ci	}
1118c2ecf20Sopenharmony_ci#endif
1128c2ecf20Sopenharmony_ci}
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_cistatic void intc_irq_mask(struct irq_data *d)
1158c2ecf20Sopenharmony_ci{
1168c2ecf20Sopenharmony_ci	if (mcf_irq2imr[d->irq])
1178c2ecf20Sopenharmony_ci		mcf_setimr(mcf_irq2imr[d->irq]);
1188c2ecf20Sopenharmony_ci}
1198c2ecf20Sopenharmony_ci
1208c2ecf20Sopenharmony_cistatic void intc_irq_unmask(struct irq_data *d)
1218c2ecf20Sopenharmony_ci{
1228c2ecf20Sopenharmony_ci	if (mcf_irq2imr[d->irq])
1238c2ecf20Sopenharmony_ci		mcf_clrimr(mcf_irq2imr[d->irq]);
1248c2ecf20Sopenharmony_ci}
1258c2ecf20Sopenharmony_ci
1268c2ecf20Sopenharmony_cistatic int intc_irq_set_type(struct irq_data *d, unsigned int type)
1278c2ecf20Sopenharmony_ci{
1288c2ecf20Sopenharmony_ci	return 0;
1298c2ecf20Sopenharmony_ci}
1308c2ecf20Sopenharmony_ci
1318c2ecf20Sopenharmony_cistatic struct irq_chip intc_irq_chip = {
1328c2ecf20Sopenharmony_ci	.name		= "CF-INTC",
1338c2ecf20Sopenharmony_ci	.irq_mask	= intc_irq_mask,
1348c2ecf20Sopenharmony_ci	.irq_unmask	= intc_irq_unmask,
1358c2ecf20Sopenharmony_ci	.irq_set_type	= intc_irq_set_type,
1368c2ecf20Sopenharmony_ci};
1378c2ecf20Sopenharmony_ci
1388c2ecf20Sopenharmony_civoid __init init_IRQ(void)
1398c2ecf20Sopenharmony_ci{
1408c2ecf20Sopenharmony_ci	int irq;
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	mcf_maskimr(0xffffffff);
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci	for (irq = 0; (irq < NR_IRQS); irq++) {
1458c2ecf20Sopenharmony_ci		irq_set_chip(irq, &intc_irq_chip);
1468c2ecf20Sopenharmony_ci		irq_set_irq_type(irq, IRQ_TYPE_LEVEL_HIGH);
1478c2ecf20Sopenharmony_ci		irq_set_handler(irq, handle_level_irq);
1488c2ecf20Sopenharmony_ci	}
1498c2ecf20Sopenharmony_ci}
1508c2ecf20Sopenharmony_ci
151