18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci *  arch/m68k/bvme6000/config.c
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci *  Copyright (C) 1997 Richard Hirst [richard@sleepie.demon.co.uk]
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * Based on:
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci *  linux/amiga/config.c
98c2ecf20Sopenharmony_ci *
108c2ecf20Sopenharmony_ci *  Copyright (C) 1993 Hamish Macdonald
118c2ecf20Sopenharmony_ci *
128c2ecf20Sopenharmony_ci * This file is subject to the terms and conditions of the GNU General Public
138c2ecf20Sopenharmony_ci * License.  See the file README.legal in the main directory of this archive
148c2ecf20Sopenharmony_ci * for more details.
158c2ecf20Sopenharmony_ci */
168c2ecf20Sopenharmony_ci
178c2ecf20Sopenharmony_ci#include <linux/types.h>
188c2ecf20Sopenharmony_ci#include <linux/kernel.h>
198c2ecf20Sopenharmony_ci#include <linux/mm.h>
208c2ecf20Sopenharmony_ci#include <linux/tty.h>
218c2ecf20Sopenharmony_ci#include <linux/clocksource.h>
228c2ecf20Sopenharmony_ci#include <linux/console.h>
238c2ecf20Sopenharmony_ci#include <linux/linkage.h>
248c2ecf20Sopenharmony_ci#include <linux/init.h>
258c2ecf20Sopenharmony_ci#include <linux/major.h>
268c2ecf20Sopenharmony_ci#include <linux/genhd.h>
278c2ecf20Sopenharmony_ci#include <linux/rtc.h>
288c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
298c2ecf20Sopenharmony_ci#include <linux/bcd.h>
308c2ecf20Sopenharmony_ci
318c2ecf20Sopenharmony_ci#include <asm/bootinfo.h>
328c2ecf20Sopenharmony_ci#include <asm/bootinfo-vme.h>
338c2ecf20Sopenharmony_ci#include <asm/byteorder.h>
348c2ecf20Sopenharmony_ci#include <asm/setup.h>
358c2ecf20Sopenharmony_ci#include <asm/irq.h>
368c2ecf20Sopenharmony_ci#include <asm/traps.h>
378c2ecf20Sopenharmony_ci#include <asm/machdep.h>
388c2ecf20Sopenharmony_ci#include <asm/bvme6000hw.h>
398c2ecf20Sopenharmony_ci
408c2ecf20Sopenharmony_cistatic void bvme6000_get_model(char *model);
418c2ecf20Sopenharmony_ciextern void bvme6000_sched_init(irq_handler_t handler);
428c2ecf20Sopenharmony_ciextern int bvme6000_hwclk (int, struct rtc_time *);
438c2ecf20Sopenharmony_ciextern void bvme6000_reset (void);
448c2ecf20Sopenharmony_civoid bvme6000_set_vectors (void);
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_ciint __init bvme6000_parse_bootinfo(const struct bi_record *bi)
488c2ecf20Sopenharmony_ci{
498c2ecf20Sopenharmony_ci	if (be16_to_cpu(bi->tag) == BI_VME_TYPE)
508c2ecf20Sopenharmony_ci		return 0;
518c2ecf20Sopenharmony_ci	else
528c2ecf20Sopenharmony_ci		return 1;
538c2ecf20Sopenharmony_ci}
548c2ecf20Sopenharmony_ci
558c2ecf20Sopenharmony_civoid bvme6000_reset(void)
568c2ecf20Sopenharmony_ci{
578c2ecf20Sopenharmony_ci	volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci	pr_info("\r\n\nCalled bvme6000_reset\r\n"
608c2ecf20Sopenharmony_ci		"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r");
618c2ecf20Sopenharmony_ci	/* The string of returns is to delay the reset until the whole
628c2ecf20Sopenharmony_ci	 * message is output. */
638c2ecf20Sopenharmony_ci	/* Enable the watchdog, via PIT port C bit 4 */
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci	pit->pcddr	|= 0x10;	/* WDOG enable */
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci	while(1)
688c2ecf20Sopenharmony_ci		;
698c2ecf20Sopenharmony_ci}
708c2ecf20Sopenharmony_ci
718c2ecf20Sopenharmony_cistatic void bvme6000_get_model(char *model)
728c2ecf20Sopenharmony_ci{
738c2ecf20Sopenharmony_ci    sprintf(model, "BVME%d000", m68k_cputype == CPU_68060 ? 6 : 4);
748c2ecf20Sopenharmony_ci}
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci/*
778c2ecf20Sopenharmony_ci * This function is called during kernel startup to initialize
788c2ecf20Sopenharmony_ci * the bvme6000 IRQ handling routines.
798c2ecf20Sopenharmony_ci */
808c2ecf20Sopenharmony_cistatic void __init bvme6000_init_IRQ(void)
818c2ecf20Sopenharmony_ci{
828c2ecf20Sopenharmony_ci	m68k_setup_user_interrupt(VEC_USER, 192);
838c2ecf20Sopenharmony_ci}
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_civoid __init config_bvme6000(void)
868c2ecf20Sopenharmony_ci{
878c2ecf20Sopenharmony_ci    volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
888c2ecf20Sopenharmony_ci
898c2ecf20Sopenharmony_ci    /* Board type is only set by newer versions of vmelilo/tftplilo */
908c2ecf20Sopenharmony_ci    if (!vme_brdtype) {
918c2ecf20Sopenharmony_ci	if (m68k_cputype == CPU_68060)
928c2ecf20Sopenharmony_ci	    vme_brdtype = VME_TYPE_BVME6000;
938c2ecf20Sopenharmony_ci	else
948c2ecf20Sopenharmony_ci	    vme_brdtype = VME_TYPE_BVME4000;
958c2ecf20Sopenharmony_ci    }
968c2ecf20Sopenharmony_ci#if 0
978c2ecf20Sopenharmony_ci    /* Call bvme6000_set_vectors() so ABORT will work, along with BVMBug
988c2ecf20Sopenharmony_ci     * debugger.  Note trap_init() will splat the abort vector, but
998c2ecf20Sopenharmony_ci     * bvme6000_init_IRQ() will put it back again.  Hopefully. */
1008c2ecf20Sopenharmony_ci
1018c2ecf20Sopenharmony_ci    bvme6000_set_vectors();
1028c2ecf20Sopenharmony_ci#endif
1038c2ecf20Sopenharmony_ci
1048c2ecf20Sopenharmony_ci    mach_max_dma_address = 0xffffffff;
1058c2ecf20Sopenharmony_ci    mach_sched_init      = bvme6000_sched_init;
1068c2ecf20Sopenharmony_ci    mach_init_IRQ        = bvme6000_init_IRQ;
1078c2ecf20Sopenharmony_ci    mach_hwclk           = bvme6000_hwclk;
1088c2ecf20Sopenharmony_ci    mach_reset		 = bvme6000_reset;
1098c2ecf20Sopenharmony_ci    mach_get_model       = bvme6000_get_model;
1108c2ecf20Sopenharmony_ci
1118c2ecf20Sopenharmony_ci    pr_info("Board is %sconfigured as a System Controller\n",
1128c2ecf20Sopenharmony_ci	    *config_reg_ptr & BVME_CONFIG_SW1 ? "" : "not ");
1138c2ecf20Sopenharmony_ci
1148c2ecf20Sopenharmony_ci    /* Now do the PIT configuration */
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci    pit->pgcr	= 0x00;	/* Unidirectional 8 bit, no handshake for now */
1178c2ecf20Sopenharmony_ci    pit->psrr	= 0x18;	/* PIACK and PIRQ functions enabled */
1188c2ecf20Sopenharmony_ci    pit->pacr	= 0x00;	/* Sub Mode 00, H2 i/p, no DMA */
1198c2ecf20Sopenharmony_ci    pit->padr	= 0x00;	/* Just to be tidy! */
1208c2ecf20Sopenharmony_ci    pit->paddr	= 0x00;	/* All inputs for now (safest) */
1218c2ecf20Sopenharmony_ci    pit->pbcr	= 0x80;	/* Sub Mode 1x, H4 i/p, no DMA */
1228c2ecf20Sopenharmony_ci    pit->pbdr	= 0xbc | (*config_reg_ptr & BVME_CONFIG_SW1 ? 0 : 0x40);
1238c2ecf20Sopenharmony_ci			/* PRI, SYSCON?, Level3, SCC clks from xtal */
1248c2ecf20Sopenharmony_ci    pit->pbddr	= 0xf3;	/* Mostly outputs */
1258c2ecf20Sopenharmony_ci    pit->pcdr	= 0x01;	/* PA transceiver disabled */
1268c2ecf20Sopenharmony_ci    pit->pcddr	= 0x03;	/* WDOG disable */
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_ci    /* Disable snooping for Ethernet and VME accesses */
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_ci    bvme_acr_addrctl = 0;
1318c2ecf20Sopenharmony_ci}
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci
1348c2ecf20Sopenharmony_ciirqreturn_t bvme6000_abort_int (int irq, void *dev_id)
1358c2ecf20Sopenharmony_ci{
1368c2ecf20Sopenharmony_ci        unsigned long *new = (unsigned long *)vectors;
1378c2ecf20Sopenharmony_ci        unsigned long *old = (unsigned long *)0xf8000000;
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_ci        /* Wait for button release */
1408c2ecf20Sopenharmony_ci        while (*(volatile unsigned char *)BVME_LOCAL_IRQ_STAT & BVME_ABORT_STATUS)
1418c2ecf20Sopenharmony_ci                ;
1428c2ecf20Sopenharmony_ci
1438c2ecf20Sopenharmony_ci        *(new+4) = *(old+4);            /* Illegal instruction */
1448c2ecf20Sopenharmony_ci        *(new+9) = *(old+9);            /* Trace */
1458c2ecf20Sopenharmony_ci        *(new+47) = *(old+47);          /* Trap #15 */
1468c2ecf20Sopenharmony_ci        *(new+0x1f) = *(old+0x1f);      /* ABORT switch */
1478c2ecf20Sopenharmony_ci	return IRQ_HANDLED;
1488c2ecf20Sopenharmony_ci}
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_cistatic u64 bvme6000_read_clk(struct clocksource *cs);
1518c2ecf20Sopenharmony_ci
1528c2ecf20Sopenharmony_cistatic struct clocksource bvme6000_clk = {
1538c2ecf20Sopenharmony_ci	.name   = "rtc",
1548c2ecf20Sopenharmony_ci	.rating = 250,
1558c2ecf20Sopenharmony_ci	.read   = bvme6000_read_clk,
1568c2ecf20Sopenharmony_ci	.mask   = CLOCKSOURCE_MASK(32),
1578c2ecf20Sopenharmony_ci	.flags  = CLOCK_SOURCE_IS_CONTINUOUS,
1588c2ecf20Sopenharmony_ci};
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_cistatic u32 clk_total, clk_offset;
1618c2ecf20Sopenharmony_ci
1628c2ecf20Sopenharmony_ci#define RTC_TIMER_CLOCK_FREQ 8000000
1638c2ecf20Sopenharmony_ci#define RTC_TIMER_CYCLES     (RTC_TIMER_CLOCK_FREQ / HZ)
1648c2ecf20Sopenharmony_ci#define RTC_TIMER_COUNT      ((RTC_TIMER_CYCLES / 2) - 1)
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_cistatic irqreturn_t bvme6000_timer_int (int irq, void *dev_id)
1678c2ecf20Sopenharmony_ci{
1688c2ecf20Sopenharmony_ci    irq_handler_t timer_routine = dev_id;
1698c2ecf20Sopenharmony_ci    unsigned long flags;
1708c2ecf20Sopenharmony_ci    volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
1718c2ecf20Sopenharmony_ci    unsigned char msr;
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci    local_irq_save(flags);
1748c2ecf20Sopenharmony_ci    msr = rtc->msr & 0xc0;
1758c2ecf20Sopenharmony_ci    rtc->msr = msr | 0x20;		/* Ack the interrupt */
1768c2ecf20Sopenharmony_ci    clk_total += RTC_TIMER_CYCLES;
1778c2ecf20Sopenharmony_ci    clk_offset = 0;
1788c2ecf20Sopenharmony_ci    timer_routine(0, NULL);
1798c2ecf20Sopenharmony_ci    local_irq_restore(flags);
1808c2ecf20Sopenharmony_ci
1818c2ecf20Sopenharmony_ci    return IRQ_HANDLED;
1828c2ecf20Sopenharmony_ci}
1838c2ecf20Sopenharmony_ci
1848c2ecf20Sopenharmony_ci/*
1858c2ecf20Sopenharmony_ci * Set up the RTC timer 1 to mode 2, so T1 output toggles every 5ms
1868c2ecf20Sopenharmony_ci * (40000 x 125ns).  It will interrupt every 10ms, when T1 goes low.
1878c2ecf20Sopenharmony_ci * So, when reading the elapsed time, you should read timer1,
1888c2ecf20Sopenharmony_ci * subtract it from 39999, and then add 40000 if T1 is high.
1898c2ecf20Sopenharmony_ci * That gives you the number of 125ns ticks in to the 10ms period,
1908c2ecf20Sopenharmony_ci * so divide by 8 to get the microsecond result.
1918c2ecf20Sopenharmony_ci */
1928c2ecf20Sopenharmony_ci
1938c2ecf20Sopenharmony_civoid bvme6000_sched_init (irq_handler_t timer_routine)
1948c2ecf20Sopenharmony_ci{
1958c2ecf20Sopenharmony_ci    volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
1968c2ecf20Sopenharmony_ci    unsigned char msr = rtc->msr & 0xc0;
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci    rtc->msr = 0;	/* Ensure timer registers accessible */
1998c2ecf20Sopenharmony_ci
2008c2ecf20Sopenharmony_ci    if (request_irq(BVME_IRQ_RTC, bvme6000_timer_int, IRQF_TIMER, "timer",
2018c2ecf20Sopenharmony_ci                    timer_routine))
2028c2ecf20Sopenharmony_ci	panic ("Couldn't register timer int");
2038c2ecf20Sopenharmony_ci
2048c2ecf20Sopenharmony_ci    rtc->t1cr_omr = 0x04;	/* Mode 2, ext clk */
2058c2ecf20Sopenharmony_ci    rtc->t1msb = RTC_TIMER_COUNT >> 8;
2068c2ecf20Sopenharmony_ci    rtc->t1lsb = RTC_TIMER_COUNT & 0xff;
2078c2ecf20Sopenharmony_ci    rtc->irr_icr1 &= 0xef;	/* Route timer 1 to INTR pin */
2088c2ecf20Sopenharmony_ci    rtc->msr = 0x40;		/* Access int.cntrl, etc */
2098c2ecf20Sopenharmony_ci    rtc->pfr_icr0 = 0x80;	/* Just timer 1 ints enabled */
2108c2ecf20Sopenharmony_ci    rtc->irr_icr1 = 0;
2118c2ecf20Sopenharmony_ci    rtc->t1cr_omr = 0x0a;	/* INTR+T1 active lo, push-pull */
2128c2ecf20Sopenharmony_ci    rtc->t0cr_rtmr &= 0xdf;	/* Stop timers in standby */
2138c2ecf20Sopenharmony_ci    rtc->msr = 0;		/* Access timer 1 control */
2148c2ecf20Sopenharmony_ci    rtc->t1cr_omr = 0x05;	/* Mode 2, ext clk, GO */
2158c2ecf20Sopenharmony_ci
2168c2ecf20Sopenharmony_ci    rtc->msr = msr;
2178c2ecf20Sopenharmony_ci
2188c2ecf20Sopenharmony_ci    clocksource_register_hz(&bvme6000_clk, RTC_TIMER_CLOCK_FREQ);
2198c2ecf20Sopenharmony_ci
2208c2ecf20Sopenharmony_ci    if (request_irq(BVME_IRQ_ABORT, bvme6000_abort_int, 0,
2218c2ecf20Sopenharmony_ci				"abort", bvme6000_abort_int))
2228c2ecf20Sopenharmony_ci	panic ("Couldn't register abort int");
2238c2ecf20Sopenharmony_ci}
2248c2ecf20Sopenharmony_ci
2258c2ecf20Sopenharmony_ci
2268c2ecf20Sopenharmony_ci/*
2278c2ecf20Sopenharmony_ci * NOTE:  Don't accept any readings within 5us of rollover, as
2288c2ecf20Sopenharmony_ci * the T1INT bit may be a little slow getting set.  There is also
2298c2ecf20Sopenharmony_ci * a fault in the chip, meaning that reads may produce invalid
2308c2ecf20Sopenharmony_ci * results...
2318c2ecf20Sopenharmony_ci */
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_cistatic u64 bvme6000_read_clk(struct clocksource *cs)
2348c2ecf20Sopenharmony_ci{
2358c2ecf20Sopenharmony_ci    unsigned long flags;
2368c2ecf20Sopenharmony_ci    volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
2378c2ecf20Sopenharmony_ci    volatile PitRegsPtr pit = (PitRegsPtr)BVME_PIT_BASE;
2388c2ecf20Sopenharmony_ci    unsigned char msr, msb;
2398c2ecf20Sopenharmony_ci    unsigned char t1int, t1op;
2408c2ecf20Sopenharmony_ci    u32 v = 800000, ov;
2418c2ecf20Sopenharmony_ci
2428c2ecf20Sopenharmony_ci    local_irq_save(flags);
2438c2ecf20Sopenharmony_ci
2448c2ecf20Sopenharmony_ci    msr = rtc->msr & 0xc0;
2458c2ecf20Sopenharmony_ci    rtc->msr = 0;	/* Ensure timer registers accessible */
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci    do {
2488c2ecf20Sopenharmony_ci	ov = v;
2498c2ecf20Sopenharmony_ci	t1int = rtc->msr & 0x20;
2508c2ecf20Sopenharmony_ci	t1op  = pit->pcdr & 0x04;
2518c2ecf20Sopenharmony_ci	rtc->t1cr_omr |= 0x40;		/* Latch timer1 */
2528c2ecf20Sopenharmony_ci	msb = rtc->t1msb;		/* Read timer1 */
2538c2ecf20Sopenharmony_ci	v = (msb << 8) | rtc->t1lsb;	/* Read timer1 */
2548c2ecf20Sopenharmony_ci    } while (t1int != (rtc->msr & 0x20) ||
2558c2ecf20Sopenharmony_ci		t1op != (pit->pcdr & 0x04) ||
2568c2ecf20Sopenharmony_ci			abs(ov-v) > 80 ||
2578c2ecf20Sopenharmony_ci				v > RTC_TIMER_COUNT - (RTC_TIMER_COUNT / 100));
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_ci    v = RTC_TIMER_COUNT - v;
2608c2ecf20Sopenharmony_ci    if (!t1op)				/* If in second half cycle.. */
2618c2ecf20Sopenharmony_ci	v += RTC_TIMER_CYCLES / 2;
2628c2ecf20Sopenharmony_ci    if (msb > 0 && t1int)
2638c2ecf20Sopenharmony_ci	clk_offset = RTC_TIMER_CYCLES;
2648c2ecf20Sopenharmony_ci    rtc->msr = msr;
2658c2ecf20Sopenharmony_ci
2668c2ecf20Sopenharmony_ci    v += clk_offset + clk_total;
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_ci    local_irq_restore(flags);
2698c2ecf20Sopenharmony_ci
2708c2ecf20Sopenharmony_ci    return v;
2718c2ecf20Sopenharmony_ci}
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_ci/*
2748c2ecf20Sopenharmony_ci * Looks like op is non-zero for setting the clock, and zero for
2758c2ecf20Sopenharmony_ci * reading the clock.
2768c2ecf20Sopenharmony_ci *
2778c2ecf20Sopenharmony_ci *  struct hwclk_time {
2788c2ecf20Sopenharmony_ci *         unsigned        sec;       0..59
2798c2ecf20Sopenharmony_ci *         unsigned        min;       0..59
2808c2ecf20Sopenharmony_ci *         unsigned        hour;      0..23
2818c2ecf20Sopenharmony_ci *         unsigned        day;       1..31
2828c2ecf20Sopenharmony_ci *         unsigned        mon;       0..11
2838c2ecf20Sopenharmony_ci *         unsigned        year;      00...
2848c2ecf20Sopenharmony_ci *         int             wday;      0..6, 0 is Sunday, -1 means unknown/don't set
2858c2ecf20Sopenharmony_ci * };
2868c2ecf20Sopenharmony_ci */
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ciint bvme6000_hwclk(int op, struct rtc_time *t)
2898c2ecf20Sopenharmony_ci{
2908c2ecf20Sopenharmony_ci	volatile RtcPtr_t rtc = (RtcPtr_t)BVME_RTC_BASE;
2918c2ecf20Sopenharmony_ci	unsigned char msr = rtc->msr & 0xc0;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci	rtc->msr = 0x40;	/* Ensure clock and real-time-mode-register
2948c2ecf20Sopenharmony_ci				 * are accessible */
2958c2ecf20Sopenharmony_ci	if (op)
2968c2ecf20Sopenharmony_ci	{	/* Write.... */
2978c2ecf20Sopenharmony_ci		rtc->t0cr_rtmr = t->tm_year%4;
2988c2ecf20Sopenharmony_ci		rtc->bcd_tenms = 0;
2998c2ecf20Sopenharmony_ci		rtc->bcd_sec = bin2bcd(t->tm_sec);
3008c2ecf20Sopenharmony_ci		rtc->bcd_min = bin2bcd(t->tm_min);
3018c2ecf20Sopenharmony_ci		rtc->bcd_hr  = bin2bcd(t->tm_hour);
3028c2ecf20Sopenharmony_ci		rtc->bcd_dom = bin2bcd(t->tm_mday);
3038c2ecf20Sopenharmony_ci		rtc->bcd_mth = bin2bcd(t->tm_mon + 1);
3048c2ecf20Sopenharmony_ci		rtc->bcd_year = bin2bcd(t->tm_year%100);
3058c2ecf20Sopenharmony_ci		if (t->tm_wday >= 0)
3068c2ecf20Sopenharmony_ci			rtc->bcd_dow = bin2bcd(t->tm_wday+1);
3078c2ecf20Sopenharmony_ci		rtc->t0cr_rtmr = t->tm_year%4 | 0x08;
3088c2ecf20Sopenharmony_ci	}
3098c2ecf20Sopenharmony_ci	else
3108c2ecf20Sopenharmony_ci	{	/* Read....  */
3118c2ecf20Sopenharmony_ci		do {
3128c2ecf20Sopenharmony_ci			t->tm_sec  = bcd2bin(rtc->bcd_sec);
3138c2ecf20Sopenharmony_ci			t->tm_min  = bcd2bin(rtc->bcd_min);
3148c2ecf20Sopenharmony_ci			t->tm_hour = bcd2bin(rtc->bcd_hr);
3158c2ecf20Sopenharmony_ci			t->tm_mday = bcd2bin(rtc->bcd_dom);
3168c2ecf20Sopenharmony_ci			t->tm_mon  = bcd2bin(rtc->bcd_mth)-1;
3178c2ecf20Sopenharmony_ci			t->tm_year = bcd2bin(rtc->bcd_year);
3188c2ecf20Sopenharmony_ci			if (t->tm_year < 70)
3198c2ecf20Sopenharmony_ci				t->tm_year += 100;
3208c2ecf20Sopenharmony_ci			t->tm_wday = bcd2bin(rtc->bcd_dow)-1;
3218c2ecf20Sopenharmony_ci		} while (t->tm_sec != bcd2bin(rtc->bcd_sec));
3228c2ecf20Sopenharmony_ci	}
3238c2ecf20Sopenharmony_ci
3248c2ecf20Sopenharmony_ci	rtc->msr = msr;
3258c2ecf20Sopenharmony_ci
3268c2ecf20Sopenharmony_ci	return 0;
3278c2ecf20Sopenharmony_ci}
328