18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * Optimized version of the standard strlen() function
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci *
78c2ecf20Sopenharmony_ci * Inputs:
88c2ecf20Sopenharmony_ci *	in0	address of string
98c2ecf20Sopenharmony_ci *
108c2ecf20Sopenharmony_ci * Outputs:
118c2ecf20Sopenharmony_ci *	ret0	the number of characters in the string (0 if empty string)
128c2ecf20Sopenharmony_ci *	does not count the \0
138c2ecf20Sopenharmony_ci *
148c2ecf20Sopenharmony_ci * Copyright (C) 1999, 2001 Hewlett-Packard Co
158c2ecf20Sopenharmony_ci *	Stephane Eranian <eranian@hpl.hp.com>
168c2ecf20Sopenharmony_ci *
178c2ecf20Sopenharmony_ci * 09/24/99 S.Eranian add speculation recovery code
188c2ecf20Sopenharmony_ci */
198c2ecf20Sopenharmony_ci
208c2ecf20Sopenharmony_ci#include <asm/asmmacro.h>
218c2ecf20Sopenharmony_ci#include <asm/export.h>
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci//
248c2ecf20Sopenharmony_ci//
258c2ecf20Sopenharmony_ci// This is an enhanced version of the basic strlen. it includes a combination
268c2ecf20Sopenharmony_ci// of compute zero index (czx), parallel comparisons, speculative loads and
278c2ecf20Sopenharmony_ci// loop unroll using rotating registers.
288c2ecf20Sopenharmony_ci//
298c2ecf20Sopenharmony_ci// General Ideas about the algorithm:
308c2ecf20Sopenharmony_ci//	  The goal is to look at the string in chunks of 8 bytes.
318c2ecf20Sopenharmony_ci//	  so we need to do a few extra checks at the beginning because the
328c2ecf20Sopenharmony_ci//	  string may not be 8-byte aligned. In this case we load the 8byte
338c2ecf20Sopenharmony_ci//	  quantity which includes the start of the string and mask the unused
348c2ecf20Sopenharmony_ci//	  bytes with 0xff to avoid confusing czx.
358c2ecf20Sopenharmony_ci//	  We use speculative loads and software pipelining to hide memory
368c2ecf20Sopenharmony_ci//	  latency and do read ahead safely. This way we defer any exception.
378c2ecf20Sopenharmony_ci//
388c2ecf20Sopenharmony_ci//	  Because we don't want the kernel to be relying on particular
398c2ecf20Sopenharmony_ci//	  settings of the DCR register, we provide recovery code in case
408c2ecf20Sopenharmony_ci//	  speculation fails. The recovery code is going to "redo" the work using
418c2ecf20Sopenharmony_ci//	  only normal loads. If we still get a fault then we generate a
428c2ecf20Sopenharmony_ci//	  kernel panic. Otherwise we return the strlen as usual.
438c2ecf20Sopenharmony_ci//
448c2ecf20Sopenharmony_ci//	  The fact that speculation may fail can be caused, for instance, by
458c2ecf20Sopenharmony_ci//	  the DCR.dm bit being set. In this case TLB misses are deferred, i.e.,
468c2ecf20Sopenharmony_ci//	  a NaT bit will be set if the translation is not present. The normal
478c2ecf20Sopenharmony_ci//	  load, on the other hand, will cause the translation to be inserted
488c2ecf20Sopenharmony_ci//	  if the mapping exists.
498c2ecf20Sopenharmony_ci//
508c2ecf20Sopenharmony_ci//	  It should be noted that we execute recovery code only when we need
518c2ecf20Sopenharmony_ci//	  to use the data that has been speculatively loaded: we don't execute
528c2ecf20Sopenharmony_ci//	  recovery code on pure read ahead data.
538c2ecf20Sopenharmony_ci//
548c2ecf20Sopenharmony_ci// Remarks:
558c2ecf20Sopenharmony_ci//	- the cmp r0,r0 is used as a fast way to initialize a predicate
568c2ecf20Sopenharmony_ci//	  register to 1. This is required to make sure that we get the parallel
578c2ecf20Sopenharmony_ci//	  compare correct.
588c2ecf20Sopenharmony_ci//
598c2ecf20Sopenharmony_ci//	- we don't use the epilogue counter to exit the loop but we need to set
608c2ecf20Sopenharmony_ci//	  it to zero beforehand.
618c2ecf20Sopenharmony_ci//
628c2ecf20Sopenharmony_ci//	- after the loop we must test for Nat values because neither the
638c2ecf20Sopenharmony_ci//	  czx nor cmp instruction raise a NaT consumption fault. We must be
648c2ecf20Sopenharmony_ci//	  careful not to look too far for a Nat for which we don't care.
658c2ecf20Sopenharmony_ci//	  For instance we don't need to look at a NaT in val2 if the zero byte
668c2ecf20Sopenharmony_ci//	  was in val1.
678c2ecf20Sopenharmony_ci//
688c2ecf20Sopenharmony_ci//	- Clearly performance tuning is required.
698c2ecf20Sopenharmony_ci//
708c2ecf20Sopenharmony_ci//
718c2ecf20Sopenharmony_ci//
728c2ecf20Sopenharmony_ci#define saved_pfs	r11
738c2ecf20Sopenharmony_ci#define	tmp		r10
748c2ecf20Sopenharmony_ci#define base		r16
758c2ecf20Sopenharmony_ci#define orig		r17
768c2ecf20Sopenharmony_ci#define saved_pr	r18
778c2ecf20Sopenharmony_ci#define src		r19
788c2ecf20Sopenharmony_ci#define mask		r20
798c2ecf20Sopenharmony_ci#define val		r21
808c2ecf20Sopenharmony_ci#define val1		r22
818c2ecf20Sopenharmony_ci#define val2		r23
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_ciGLOBAL_ENTRY(strlen)
848c2ecf20Sopenharmony_ci	.prologue
858c2ecf20Sopenharmony_ci	.save ar.pfs, saved_pfs
868c2ecf20Sopenharmony_ci	alloc saved_pfs=ar.pfs,11,0,0,8 // rotating must be multiple of 8
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci	.rotr v[2], w[2]	// declares our 4 aliases
898c2ecf20Sopenharmony_ci
908c2ecf20Sopenharmony_ci	extr.u tmp=in0,0,3	// tmp=least significant 3 bits
918c2ecf20Sopenharmony_ci	mov orig=in0		// keep trackof initial byte address
928c2ecf20Sopenharmony_ci	dep src=0,in0,0,3	// src=8byte-aligned in0 address
938c2ecf20Sopenharmony_ci	.save pr, saved_pr
948c2ecf20Sopenharmony_ci	mov saved_pr=pr		// preserve predicates (rotation)
958c2ecf20Sopenharmony_ci	;;
968c2ecf20Sopenharmony_ci
978c2ecf20Sopenharmony_ci	.body
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci	ld8 v[1]=[src],8	// must not speculate: can fail here
1008c2ecf20Sopenharmony_ci	shl tmp=tmp,3		// multiply by 8bits/byte
1018c2ecf20Sopenharmony_ci	mov mask=-1		// our mask
1028c2ecf20Sopenharmony_ci	;;
1038c2ecf20Sopenharmony_ci	ld8.s w[1]=[src],8	// speculatively load next
1048c2ecf20Sopenharmony_ci	cmp.eq p6,p0=r0,r0	// sets p6 to true for cmp.and
1058c2ecf20Sopenharmony_ci	sub tmp=64,tmp		// how many bits to shift our mask on the right
1068c2ecf20Sopenharmony_ci	;;
1078c2ecf20Sopenharmony_ci	shr.u	mask=mask,tmp	// zero enough bits to hold v[1] valuable part
1088c2ecf20Sopenharmony_ci	mov ar.ec=r0		// clear epilogue counter (saved in ar.pfs)
1098c2ecf20Sopenharmony_ci	;;
1108c2ecf20Sopenharmony_ci	add base=-16,src	// keep track of aligned base
1118c2ecf20Sopenharmony_ci	or v[1]=v[1],mask	// now we have a safe initial byte pattern
1128c2ecf20Sopenharmony_ci	;;
1138c2ecf20Sopenharmony_ci1:
1148c2ecf20Sopenharmony_ci	ld8.s v[0]=[src],8	// speculatively load next
1158c2ecf20Sopenharmony_ci	czx1.r val1=v[1]	// search 0 byte from right
1168c2ecf20Sopenharmony_ci	czx1.r val2=w[1]	// search 0 byte from right following 8bytes
1178c2ecf20Sopenharmony_ci	;;
1188c2ecf20Sopenharmony_ci	ld8.s w[0]=[src],8	// speculatively load next to next
1198c2ecf20Sopenharmony_ci	cmp.eq.and p6,p0=8,val1	// p6 = p6 and val1==8
1208c2ecf20Sopenharmony_ci	cmp.eq.and p6,p0=8,val2	// p6 = p6 and mask==8
1218c2ecf20Sopenharmony_ci(p6)	br.wtop.dptk 1b		// loop until p6 == 0
1228c2ecf20Sopenharmony_ci	;;
1238c2ecf20Sopenharmony_ci	//
1248c2ecf20Sopenharmony_ci	// We must return try the recovery code iff
1258c2ecf20Sopenharmony_ci	// val1_is_nat || (val1==8 && val2_is_nat)
1268c2ecf20Sopenharmony_ci	//
1278c2ecf20Sopenharmony_ci	// XXX Fixme
1288c2ecf20Sopenharmony_ci	//	- there must be a better way of doing the test
1298c2ecf20Sopenharmony_ci	//
1308c2ecf20Sopenharmony_ci	cmp.eq  p8,p9=8,val1	// p6 = val1 had zero (disambiguate)
1318c2ecf20Sopenharmony_ci	tnat.nz p6,p7=val1	// test NaT on val1
1328c2ecf20Sopenharmony_ci(p6)	br.cond.spnt .recover	// jump to recovery if val1 is NaT
1338c2ecf20Sopenharmony_ci	;;
1348c2ecf20Sopenharmony_ci	//
1358c2ecf20Sopenharmony_ci	// if we come here p7 is true, i.e., initialized for // cmp
1368c2ecf20Sopenharmony_ci	//
1378c2ecf20Sopenharmony_ci	cmp.eq.and  p7,p0=8,val1// val1==8?
1388c2ecf20Sopenharmony_ci	tnat.nz.and p7,p0=val2	// test NaT if val2
1398c2ecf20Sopenharmony_ci(p7)	br.cond.spnt .recover	// jump to recovery if val2 is NaT
1408c2ecf20Sopenharmony_ci	;;
1418c2ecf20Sopenharmony_ci(p8)	mov val1=val2		// the other test got us out of the loop
1428c2ecf20Sopenharmony_ci(p8)	adds src=-16,src	// correct position when 3 ahead
1438c2ecf20Sopenharmony_ci(p9)	adds src=-24,src	// correct position when 4 ahead
1448c2ecf20Sopenharmony_ci	;;
1458c2ecf20Sopenharmony_ci	sub ret0=src,orig	// distance from base
1468c2ecf20Sopenharmony_ci	sub tmp=8,val1		// which byte in word
1478c2ecf20Sopenharmony_ci	mov pr=saved_pr,0xffffffffffff0000
1488c2ecf20Sopenharmony_ci	;;
1498c2ecf20Sopenharmony_ci	sub ret0=ret0,tmp	// adjust
1508c2ecf20Sopenharmony_ci	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
1518c2ecf20Sopenharmony_ci	br.ret.sptk.many rp	// end of normal execution
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci	//
1548c2ecf20Sopenharmony_ci	// Outlined recovery code when speculation failed
1558c2ecf20Sopenharmony_ci	//
1568c2ecf20Sopenharmony_ci	// This time we don't use speculation and rely on the normal exception
1578c2ecf20Sopenharmony_ci	// mechanism. that's why the loop is not as good as the previous one
1588c2ecf20Sopenharmony_ci	// because read ahead is not possible
1598c2ecf20Sopenharmony_ci	//
1608c2ecf20Sopenharmony_ci	// IMPORTANT:
1618c2ecf20Sopenharmony_ci	// Please note that in the case of strlen() as opposed to strlen_user()
1628c2ecf20Sopenharmony_ci	// we don't use the exception mechanism, as this function is not
1638c2ecf20Sopenharmony_ci	// supposed to fail. If that happens it means we have a bug and the
1648c2ecf20Sopenharmony_ci	// code will cause of kernel fault.
1658c2ecf20Sopenharmony_ci	//
1668c2ecf20Sopenharmony_ci	// XXX Fixme
1678c2ecf20Sopenharmony_ci	//	- today we restart from the beginning of the string instead
1688c2ecf20Sopenharmony_ci	//	  of trying to continue where we left off.
1698c2ecf20Sopenharmony_ci	//
1708c2ecf20Sopenharmony_ci.recover:
1718c2ecf20Sopenharmony_ci	ld8 val=[base],8	// will fail if unrecoverable fault
1728c2ecf20Sopenharmony_ci	;;
1738c2ecf20Sopenharmony_ci	or val=val,mask		// remask first bytes
1748c2ecf20Sopenharmony_ci	cmp.eq p0,p6=r0,r0	// nullify first ld8 in loop
1758c2ecf20Sopenharmony_ci	;;
1768c2ecf20Sopenharmony_ci	//
1778c2ecf20Sopenharmony_ci	// ar.ec is still zero here
1788c2ecf20Sopenharmony_ci	//
1798c2ecf20Sopenharmony_ci2:
1808c2ecf20Sopenharmony_ci(p6)	ld8 val=[base],8	// will fail if unrecoverable fault
1818c2ecf20Sopenharmony_ci	;;
1828c2ecf20Sopenharmony_ci	czx1.r val1=val		// search 0 byte from right
1838c2ecf20Sopenharmony_ci	;;
1848c2ecf20Sopenharmony_ci	cmp.eq p6,p0=8,val1	// val1==8 ?
1858c2ecf20Sopenharmony_ci(p6)	br.wtop.dptk 2b		// loop until p6 == 0
1868c2ecf20Sopenharmony_ci	;;			// (avoid WAW on p63)
1878c2ecf20Sopenharmony_ci	sub ret0=base,orig	// distance from base
1888c2ecf20Sopenharmony_ci	sub tmp=8,val1
1898c2ecf20Sopenharmony_ci	mov pr=saved_pr,0xffffffffffff0000
1908c2ecf20Sopenharmony_ci	;;
1918c2ecf20Sopenharmony_ci	sub ret0=ret0,tmp	// length=now - back -1
1928c2ecf20Sopenharmony_ci	mov ar.pfs=saved_pfs	// because of ar.ec, restore no matter what
1938c2ecf20Sopenharmony_ci	br.ret.sptk.many rp	// end of successful recovery code
1948c2ecf20Sopenharmony_ciEND(strlen)
1958c2ecf20Sopenharmony_ciEXPORT_SYMBOL(strlen)
196