18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * Optmized version of the standard do_csum() function
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * Return: a 64bit quantity containing the 16bit Internet checksum
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * Inputs:
98c2ecf20Sopenharmony_ci *	in0: address of buffer to checksum (char *)
108c2ecf20Sopenharmony_ci *	in1: length of the buffer (int)
118c2ecf20Sopenharmony_ci *
128c2ecf20Sopenharmony_ci * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
138c2ecf20Sopenharmony_ci *	Stephane Eranian <eranian@hpl.hp.com>
148c2ecf20Sopenharmony_ci *
158c2ecf20Sopenharmony_ci * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
168c2ecf20Sopenharmony_ci *		Data locality study on the checksum buffer.
178c2ecf20Sopenharmony_ci *		More optimization cleanup - remove excessive stop bits.
188c2ecf20Sopenharmony_ci * 02/04/08	David Mosberger <davidm@hpl.hp.com>
198c2ecf20Sopenharmony_ci *		More cleanup and tuning.
208c2ecf20Sopenharmony_ci * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
218c2ecf20Sopenharmony_ci *		Clean up and optimize and the software pipeline, loading two
228c2ecf20Sopenharmony_ci *		back-to-back 8-byte words per loop. Clean up the initialization
238c2ecf20Sopenharmony_ci *		for the loop. Support the cases where load latency = 1 or 2.
248c2ecf20Sopenharmony_ci *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
258c2ecf20Sopenharmony_ci */
268c2ecf20Sopenharmony_ci
278c2ecf20Sopenharmony_ci#include <asm/asmmacro.h>
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci//
308c2ecf20Sopenharmony_ci// Theory of operations:
318c2ecf20Sopenharmony_ci//	The goal is to go as quickly as possible to the point where
328c2ecf20Sopenharmony_ci//	we can checksum 16 bytes/loop. Before reaching that point we must
338c2ecf20Sopenharmony_ci//	take care of incorrect alignment of first byte.
348c2ecf20Sopenharmony_ci//
358c2ecf20Sopenharmony_ci//	The code hereafter also takes care of the "tail" part of the buffer
368c2ecf20Sopenharmony_ci//	before entering the core loop, if any. The checksum is a sum so it
378c2ecf20Sopenharmony_ci//	allows us to commute operations. So we do the "head" and "tail"
388c2ecf20Sopenharmony_ci//	first to finish at full speed in the body. Once we get the head and
398c2ecf20Sopenharmony_ci//	tail values, we feed them into the pipeline, very handy initialization.
408c2ecf20Sopenharmony_ci//
418c2ecf20Sopenharmony_ci//	Of course we deal with the special case where the whole buffer fits
428c2ecf20Sopenharmony_ci//	into one 8 byte word. In this case we have only one entry in the pipeline.
438c2ecf20Sopenharmony_ci//
448c2ecf20Sopenharmony_ci//	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
458c2ecf20Sopenharmony_ci//	possible load latency and also to accommodate for head and tail.
468c2ecf20Sopenharmony_ci//
478c2ecf20Sopenharmony_ci//	The end of the function deals with folding the checksum from 64bits
488c2ecf20Sopenharmony_ci//	down to 16bits taking care of the carry.
498c2ecf20Sopenharmony_ci//
508c2ecf20Sopenharmony_ci//	This version avoids synchronization in the core loop by also using a
518c2ecf20Sopenharmony_ci//	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
528c2ecf20Sopenharmony_ci//
538c2ecf20Sopenharmony_ci//	 wordx[] (x=1,2)
548c2ecf20Sopenharmony_ci//	|---|
558c2ecf20Sopenharmony_ci//      |   | 0			: new value loaded in pipeline
568c2ecf20Sopenharmony_ci//	|---|
578c2ecf20Sopenharmony_ci//      |   | -			: in transit data
588c2ecf20Sopenharmony_ci//	|---|
598c2ecf20Sopenharmony_ci//      |   | LOAD_LATENCY	: current value to add to checksum
608c2ecf20Sopenharmony_ci//	|---|
618c2ecf20Sopenharmony_ci//      |   | LOAD_LATENCY+1	: previous value added to checksum
628c2ecf20Sopenharmony_ci//      |---|			(previous iteration)
638c2ecf20Sopenharmony_ci//
648c2ecf20Sopenharmony_ci//	resultx[] (x=1,2)
658c2ecf20Sopenharmony_ci//	|---|
668c2ecf20Sopenharmony_ci//      |   | 0			: initial value
678c2ecf20Sopenharmony_ci//	|---|
688c2ecf20Sopenharmony_ci//      |   | LOAD_LATENCY-1	: new checksum
698c2ecf20Sopenharmony_ci//	|---|
708c2ecf20Sopenharmony_ci//      |   | LOAD_LATENCY	: previous value of checksum
718c2ecf20Sopenharmony_ci//	|---|
728c2ecf20Sopenharmony_ci//      |   | LOAD_LATENCY+1	: final checksum when out of the loop
738c2ecf20Sopenharmony_ci//      |---|
748c2ecf20Sopenharmony_ci//
758c2ecf20Sopenharmony_ci//
768c2ecf20Sopenharmony_ci//	See RFC1071 "Computing the Internet Checksum" for various techniques for
778c2ecf20Sopenharmony_ci//	calculating the Internet checksum.
788c2ecf20Sopenharmony_ci//
798c2ecf20Sopenharmony_ci// NOT YET DONE:
808c2ecf20Sopenharmony_ci//	- Maybe another algorithm which would take care of the folding at the
818c2ecf20Sopenharmony_ci//	  end in a different manner
828c2ecf20Sopenharmony_ci//	- Work with people more knowledgeable than me on the network stack
838c2ecf20Sopenharmony_ci//	  to figure out if we could not split the function depending on the
848c2ecf20Sopenharmony_ci//	  type of packet or alignment we get. Like the ip_fast_csum() routine
858c2ecf20Sopenharmony_ci//	  where we know we have at least 20bytes worth of data to checksum.
868c2ecf20Sopenharmony_ci//	- Do a better job of handling small packets.
878c2ecf20Sopenharmony_ci//	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
888c2ecf20Sopenharmony_ci//	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
898c2ecf20Sopenharmony_ci//	  on the data that buffer points to (partly because the checksum is often preceded by
908c2ecf20Sopenharmony_ci//	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
918c2ecf20Sopenharmony_ci//	  the data is already in the cache.
928c2ecf20Sopenharmony_ci//
938c2ecf20Sopenharmony_ci
948c2ecf20Sopenharmony_ci#define saved_pfs	r11
958c2ecf20Sopenharmony_ci#define hmask		r16
968c2ecf20Sopenharmony_ci#define tmask		r17
978c2ecf20Sopenharmony_ci#define first1		r18
988c2ecf20Sopenharmony_ci#define firstval	r19
998c2ecf20Sopenharmony_ci#define firstoff	r20
1008c2ecf20Sopenharmony_ci#define last		r21
1018c2ecf20Sopenharmony_ci#define lastval		r22
1028c2ecf20Sopenharmony_ci#define lastoff		r23
1038c2ecf20Sopenharmony_ci#define saved_lc	r24
1048c2ecf20Sopenharmony_ci#define saved_pr	r25
1058c2ecf20Sopenharmony_ci#define tmp1		r26
1068c2ecf20Sopenharmony_ci#define tmp2		r27
1078c2ecf20Sopenharmony_ci#define tmp3		r28
1088c2ecf20Sopenharmony_ci#define carry1		r29
1098c2ecf20Sopenharmony_ci#define carry2		r30
1108c2ecf20Sopenharmony_ci#define first2		r31
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci#define buf		in0
1138c2ecf20Sopenharmony_ci#define len		in1
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci#define LOAD_LATENCY	2	// XXX fix me
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_ci#if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
1188c2ecf20Sopenharmony_ci# error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
1198c2ecf20Sopenharmony_ci#endif
1208c2ecf20Sopenharmony_ci
1218c2ecf20Sopenharmony_ci#define PIPE_DEPTH			(LOAD_LATENCY+2)
1228c2ecf20Sopenharmony_ci#define ELD	p[LOAD_LATENCY]		// end of load
1238c2ecf20Sopenharmony_ci#define ELD_1	p[LOAD_LATENCY+1]	// and next stage
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci// unsigned long do_csum(unsigned char *buf,long len)
1268c2ecf20Sopenharmony_ci
1278c2ecf20Sopenharmony_ciGLOBAL_ENTRY(do_csum)
1288c2ecf20Sopenharmony_ci	.prologue
1298c2ecf20Sopenharmony_ci	.save ar.pfs, saved_pfs
1308c2ecf20Sopenharmony_ci	alloc saved_pfs=ar.pfs,2,16,0,16
1318c2ecf20Sopenharmony_ci	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
1328c2ecf20Sopenharmony_ci	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
1338c2ecf20Sopenharmony_ci	mov ret0=r0		// in case we have zero length
1348c2ecf20Sopenharmony_ci	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
1358c2ecf20Sopenharmony_ci	;;
1368c2ecf20Sopenharmony_ci	add tmp1=buf,len	// last byte's address
1378c2ecf20Sopenharmony_ci	.save pr, saved_pr
1388c2ecf20Sopenharmony_ci	mov saved_pr=pr		// preserve predicates (rotation)
1398c2ecf20Sopenharmony_ci(p6)	br.ret.spnt.many rp	// return if zero or negative length
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_ci	mov hmask=-1		// initialize head mask
1428c2ecf20Sopenharmony_ci	tbit.nz p15,p0=buf,0	// is buf an odd address?
1438c2ecf20Sopenharmony_ci	and first1=-8,buf	// 8-byte align down address of first1 element
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci	and firstoff=7,buf	// how many bytes off for first1 element
1468c2ecf20Sopenharmony_ci	mov tmask=-1		// initialize tail mask
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci	;;
1498c2ecf20Sopenharmony_ci	adds tmp2=-1,tmp1	// last-1
1508c2ecf20Sopenharmony_ci	and lastoff=7,tmp1	// how many bytes off for last element
1518c2ecf20Sopenharmony_ci	;;
1528c2ecf20Sopenharmony_ci	sub tmp1=8,lastoff	// complement to lastoff
1538c2ecf20Sopenharmony_ci	and last=-8,tmp2	// address of word containing last byte
1548c2ecf20Sopenharmony_ci	;;
1558c2ecf20Sopenharmony_ci	sub tmp3=last,first1	// tmp3=distance from first1 to last
1568c2ecf20Sopenharmony_ci	.save ar.lc, saved_lc
1578c2ecf20Sopenharmony_ci	mov saved_lc=ar.lc	// save lc
1588c2ecf20Sopenharmony_ci	cmp.eq p8,p9=last,first1	// everything fits in one word ?
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
1618c2ecf20Sopenharmony_ci	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
1628c2ecf20Sopenharmony_ci	shl tmp2=firstoff,3	// number of bits
1638c2ecf20Sopenharmony_ci	;;
1648c2ecf20Sopenharmony_ci(p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
1658c2ecf20Sopenharmony_ci	shl tmp1=tmp1,3		// number of bits
1668c2ecf20Sopenharmony_ci(p9)	adds tmp3=-8,tmp3	// effectively loaded
1678c2ecf20Sopenharmony_ci	;;
1688c2ecf20Sopenharmony_ci(p8)	mov lastval=r0		// we don't need lastval if first1==last
1698c2ecf20Sopenharmony_ci	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
1708c2ecf20Sopenharmony_ci	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
1718c2ecf20Sopenharmony_ci	;;
1728c2ecf20Sopenharmony_ci	.body
1738c2ecf20Sopenharmony_ci#define count tmp3
1748c2ecf20Sopenharmony_ci
1758c2ecf20Sopenharmony_ci(p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
1768c2ecf20Sopenharmony_ci(p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
1778c2ecf20Sopenharmony_ci	shr.u count=count,3	// how many 8-byte?
1788c2ecf20Sopenharmony_ci	;;
1798c2ecf20Sopenharmony_ci	// If count is odd, finish this 8-byte word so that we can
1808c2ecf20Sopenharmony_ci	// load two back-to-back 8-byte words per loop thereafter.
1818c2ecf20Sopenharmony_ci	and word1[0]=firstval,hmask	// and mask it as appropriate
1828c2ecf20Sopenharmony_ci	tbit.nz p10,p11=count,0		// if (count is odd)
1838c2ecf20Sopenharmony_ci	;;
1848c2ecf20Sopenharmony_ci(p8)	mov result1[0]=word1[0]
1858c2ecf20Sopenharmony_ci(p9)	add result1[0]=word1[0],word2[0]
1868c2ecf20Sopenharmony_ci	;;
1878c2ecf20Sopenharmony_ci	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
1888c2ecf20Sopenharmony_ci	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
1898c2ecf20Sopenharmony_ci	;;
1908c2ecf20Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
1918c2ecf20Sopenharmony_ci(p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
1928c2ecf20Sopenharmony_ci(p11)	br.cond.dptk .do_csum16		// if (count is even)
1938c2ecf20Sopenharmony_ci
1948c2ecf20Sopenharmony_ci	// Here count is odd.
1958c2ecf20Sopenharmony_ci	ld8 word1[1]=[first1],8		// load an 8-byte word
1968c2ecf20Sopenharmony_ci	cmp.eq p9,p10=1,count		// if (count == 1)
1978c2ecf20Sopenharmony_ci	adds count=-1,count		// loaded an 8-byte word
1988c2ecf20Sopenharmony_ci	;;
1998c2ecf20Sopenharmony_ci	add result1[0]=result1[0],word1[1]
2008c2ecf20Sopenharmony_ci	;;
2018c2ecf20Sopenharmony_ci	cmp.ltu p6,p0=result1[0],word1[1]
2028c2ecf20Sopenharmony_ci	;;
2038c2ecf20Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
2048c2ecf20Sopenharmony_ci(p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
2058c2ecf20Sopenharmony_ci	// Fall through to calculate the checksum, feeding result1[0] as
2068c2ecf20Sopenharmony_ci	// the initial value in result1[0].
2078c2ecf20Sopenharmony_ci	//
2088c2ecf20Sopenharmony_ci	// Calculate the checksum loading two 8-byte words per loop.
2098c2ecf20Sopenharmony_ci	//
2108c2ecf20Sopenharmony_ci.do_csum16:
2118c2ecf20Sopenharmony_ci	add first2=8,first1
2128c2ecf20Sopenharmony_ci	shr.u count=count,1	// we do 16 bytes per loop
2138c2ecf20Sopenharmony_ci	;;
2148c2ecf20Sopenharmony_ci	adds count=-1,count
2158c2ecf20Sopenharmony_ci	mov carry1=r0
2168c2ecf20Sopenharmony_ci	mov carry2=r0
2178c2ecf20Sopenharmony_ci	brp.loop.imp 1f,2f
2188c2ecf20Sopenharmony_ci	;;
2198c2ecf20Sopenharmony_ci	mov ar.ec=PIPE_DEPTH
2208c2ecf20Sopenharmony_ci	mov ar.lc=count	// set lc
2218c2ecf20Sopenharmony_ci	mov pr.rot=1<<16
2228c2ecf20Sopenharmony_ci	// result1[0] must be initialized in advance.
2238c2ecf20Sopenharmony_ci	mov result2[0]=r0
2248c2ecf20Sopenharmony_ci	;;
2258c2ecf20Sopenharmony_ci	.align 32
2268c2ecf20Sopenharmony_ci1:
2278c2ecf20Sopenharmony_ci(ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
2288c2ecf20Sopenharmony_ci(pC1[1])adds carry1=1,carry1
2298c2ecf20Sopenharmony_ci(ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
2308c2ecf20Sopenharmony_ci(pC2[1])adds carry2=1,carry2
2318c2ecf20Sopenharmony_ci(ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
2328c2ecf20Sopenharmony_ci(ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
2338c2ecf20Sopenharmony_ci2:
2348c2ecf20Sopenharmony_ci(p[0])	ld8 word1[0]=[first1],16
2358c2ecf20Sopenharmony_ci(p[0])	ld8 word2[0]=[first2],16
2368c2ecf20Sopenharmony_ci	br.ctop.sptk 1b
2378c2ecf20Sopenharmony_ci	;;
2388c2ecf20Sopenharmony_ci	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
2398c2ecf20Sopenharmony_ci(pC1[1])adds carry1=1,carry1	// since we miss the last one
2408c2ecf20Sopenharmony_ci(pC2[1])adds carry2=1,carry2
2418c2ecf20Sopenharmony_ci	;;
2428c2ecf20Sopenharmony_ci	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
2438c2ecf20Sopenharmony_ci	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
2448c2ecf20Sopenharmony_ci	;;
2458c2ecf20Sopenharmony_ci	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
2468c2ecf20Sopenharmony_ci	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
2478c2ecf20Sopenharmony_ci	;;
2488c2ecf20Sopenharmony_ci(p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
2498c2ecf20Sopenharmony_ci(p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
2508c2ecf20Sopenharmony_ci	;;
2518c2ecf20Sopenharmony_ci	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
2528c2ecf20Sopenharmony_ci	;;
2538c2ecf20Sopenharmony_ci	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
2548c2ecf20Sopenharmony_ci	;;
2558c2ecf20Sopenharmony_ci(p6)	adds result1[0]=1,result1[0]
2568c2ecf20Sopenharmony_ci	;;
2578c2ecf20Sopenharmony_ci.do_csum_exit:
2588c2ecf20Sopenharmony_ci	//
2598c2ecf20Sopenharmony_ci	// now fold 64 into 16 bits taking care of carry
2608c2ecf20Sopenharmony_ci	// that's not very good because it has lots of sequentiality
2618c2ecf20Sopenharmony_ci	//
2628c2ecf20Sopenharmony_ci	mov tmp3=0xffff
2638c2ecf20Sopenharmony_ci	zxt4 tmp1=result1[0]
2648c2ecf20Sopenharmony_ci	shr.u tmp2=result1[0],32
2658c2ecf20Sopenharmony_ci	;;
2668c2ecf20Sopenharmony_ci	add result1[0]=tmp1,tmp2
2678c2ecf20Sopenharmony_ci	;;
2688c2ecf20Sopenharmony_ci	and tmp1=result1[0],tmp3
2698c2ecf20Sopenharmony_ci	shr.u tmp2=result1[0],16
2708c2ecf20Sopenharmony_ci	;;
2718c2ecf20Sopenharmony_ci	add result1[0]=tmp1,tmp2
2728c2ecf20Sopenharmony_ci	;;
2738c2ecf20Sopenharmony_ci	and tmp1=result1[0],tmp3
2748c2ecf20Sopenharmony_ci	shr.u tmp2=result1[0],16
2758c2ecf20Sopenharmony_ci	;;
2768c2ecf20Sopenharmony_ci	add result1[0]=tmp1,tmp2
2778c2ecf20Sopenharmony_ci	;;
2788c2ecf20Sopenharmony_ci	and tmp1=result1[0],tmp3
2798c2ecf20Sopenharmony_ci	shr.u tmp2=result1[0],16
2808c2ecf20Sopenharmony_ci	;;
2818c2ecf20Sopenharmony_ci	add ret0=tmp1,tmp2
2828c2ecf20Sopenharmony_ci	mov pr=saved_pr,0xffffffffffff0000
2838c2ecf20Sopenharmony_ci	;;
2848c2ecf20Sopenharmony_ci	// if buf was odd then swap bytes
2858c2ecf20Sopenharmony_ci	mov ar.pfs=saved_pfs		// restore ar.ec
2868c2ecf20Sopenharmony_ci(p15)	mux1 ret0=ret0,@rev		// reverse word
2878c2ecf20Sopenharmony_ci	;;
2888c2ecf20Sopenharmony_ci	mov ar.lc=saved_lc
2898c2ecf20Sopenharmony_ci(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
2908c2ecf20Sopenharmony_ci	br.ret.sptk.many rp
2918c2ecf20Sopenharmony_ci
2928c2ecf20Sopenharmony_ci//	I (Jun Nakajima) wrote an equivalent code (see below), but it was
2938c2ecf20Sopenharmony_ci//	not much better than the original. So keep the original there so that
2948c2ecf20Sopenharmony_ci//	someone else can challenge.
2958c2ecf20Sopenharmony_ci//
2968c2ecf20Sopenharmony_ci//	shr.u word1[0]=result1[0],32
2978c2ecf20Sopenharmony_ci//	zxt4 result1[0]=result1[0]
2988c2ecf20Sopenharmony_ci//	;;
2998c2ecf20Sopenharmony_ci//	add result1[0]=result1[0],word1[0]
3008c2ecf20Sopenharmony_ci//	;;
3018c2ecf20Sopenharmony_ci//	zxt2 result2[0]=result1[0]
3028c2ecf20Sopenharmony_ci//	extr.u word1[0]=result1[0],16,16
3038c2ecf20Sopenharmony_ci//	shr.u carry1=result1[0],32
3048c2ecf20Sopenharmony_ci//	;;
3058c2ecf20Sopenharmony_ci//	add result2[0]=result2[0],word1[0]
3068c2ecf20Sopenharmony_ci//	;;
3078c2ecf20Sopenharmony_ci//	add result2[0]=result2[0],carry1
3088c2ecf20Sopenharmony_ci//	;;
3098c2ecf20Sopenharmony_ci//	extr.u ret0=result2[0],16,16
3108c2ecf20Sopenharmony_ci//	;;
3118c2ecf20Sopenharmony_ci//	add ret0=ret0,result2[0]
3128c2ecf20Sopenharmony_ci//	;;
3138c2ecf20Sopenharmony_ci//	zxt2 ret0=ret0
3148c2ecf20Sopenharmony_ci//	mov ar.pfs=saved_pfs		 // restore ar.ec
3158c2ecf20Sopenharmony_ci//	mov pr=saved_pr,0xffffffffffff0000
3168c2ecf20Sopenharmony_ci//	;;
3178c2ecf20Sopenharmony_ci//	// if buf was odd then swap bytes
3188c2ecf20Sopenharmony_ci//	mov ar.lc=saved_lc
3198c2ecf20Sopenharmony_ci//(p15)	mux1 ret0=ret0,@rev		// reverse word
3208c2ecf20Sopenharmony_ci//	;;
3218c2ecf20Sopenharmony_ci//(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
3228c2ecf20Sopenharmony_ci//	br.ret.sptk.many rp
3238c2ecf20Sopenharmony_ci
3248c2ecf20Sopenharmony_ciEND(do_csum)
325