18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * 48c2ecf20Sopenharmony_ci * Optimized version of the copy_user() routine. 58c2ecf20Sopenharmony_ci * It is used to copy date across the kernel/user boundary. 68c2ecf20Sopenharmony_ci * 78c2ecf20Sopenharmony_ci * The source and destination are always on opposite side of 88c2ecf20Sopenharmony_ci * the boundary. When reading from user space we must catch 98c2ecf20Sopenharmony_ci * faults on loads. When writing to user space we must catch 108c2ecf20Sopenharmony_ci * errors on stores. Note that because of the nature of the copy 118c2ecf20Sopenharmony_ci * we don't need to worry about overlapping regions. 128c2ecf20Sopenharmony_ci * 138c2ecf20Sopenharmony_ci * 148c2ecf20Sopenharmony_ci * Inputs: 158c2ecf20Sopenharmony_ci * in0 address of source buffer 168c2ecf20Sopenharmony_ci * in1 address of destination buffer 178c2ecf20Sopenharmony_ci * in2 number of bytes to copy 188c2ecf20Sopenharmony_ci * 198c2ecf20Sopenharmony_ci * Outputs: 208c2ecf20Sopenharmony_ci * ret0 0 in case of success. The number of bytes NOT copied in 218c2ecf20Sopenharmony_ci * case of error. 228c2ecf20Sopenharmony_ci * 238c2ecf20Sopenharmony_ci * Copyright (C) 2000-2001 Hewlett-Packard Co 248c2ecf20Sopenharmony_ci * Stephane Eranian <eranian@hpl.hp.com> 258c2ecf20Sopenharmony_ci * 268c2ecf20Sopenharmony_ci * Fixme: 278c2ecf20Sopenharmony_ci * - handle the case where we have more than 16 bytes and the alignment 288c2ecf20Sopenharmony_ci * are different. 298c2ecf20Sopenharmony_ci * - more benchmarking 308c2ecf20Sopenharmony_ci * - fix extraneous stop bit introduced by the EX() macro. 318c2ecf20Sopenharmony_ci */ 328c2ecf20Sopenharmony_ci 338c2ecf20Sopenharmony_ci#include <asm/asmmacro.h> 348c2ecf20Sopenharmony_ci#include <asm/export.h> 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci// 378c2ecf20Sopenharmony_ci// Tuneable parameters 388c2ecf20Sopenharmony_ci// 398c2ecf20Sopenharmony_ci#define COPY_BREAK 16 // we do byte copy below (must be >=16) 408c2ecf20Sopenharmony_ci#define PIPE_DEPTH 21 // pipe depth 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci#define EPI p[PIPE_DEPTH-1] 438c2ecf20Sopenharmony_ci 448c2ecf20Sopenharmony_ci// 458c2ecf20Sopenharmony_ci// arguments 468c2ecf20Sopenharmony_ci// 478c2ecf20Sopenharmony_ci#define dst in0 488c2ecf20Sopenharmony_ci#define src in1 498c2ecf20Sopenharmony_ci#define len in2 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci// 528c2ecf20Sopenharmony_ci// local registers 538c2ecf20Sopenharmony_ci// 548c2ecf20Sopenharmony_ci#define t1 r2 // rshift in bytes 558c2ecf20Sopenharmony_ci#define t2 r3 // lshift in bytes 568c2ecf20Sopenharmony_ci#define rshift r14 // right shift in bits 578c2ecf20Sopenharmony_ci#define lshift r15 // left shift in bits 588c2ecf20Sopenharmony_ci#define word1 r16 598c2ecf20Sopenharmony_ci#define word2 r17 608c2ecf20Sopenharmony_ci#define cnt r18 618c2ecf20Sopenharmony_ci#define len2 r19 628c2ecf20Sopenharmony_ci#define saved_lc r20 638c2ecf20Sopenharmony_ci#define saved_pr r21 648c2ecf20Sopenharmony_ci#define tmp r22 658c2ecf20Sopenharmony_ci#define val r23 668c2ecf20Sopenharmony_ci#define src1 r24 678c2ecf20Sopenharmony_ci#define dst1 r25 688c2ecf20Sopenharmony_ci#define src2 r26 698c2ecf20Sopenharmony_ci#define dst2 r27 708c2ecf20Sopenharmony_ci#define len1 r28 718c2ecf20Sopenharmony_ci#define enddst r29 728c2ecf20Sopenharmony_ci#define endsrc r30 738c2ecf20Sopenharmony_ci#define saved_pfs r31 748c2ecf20Sopenharmony_ci 758c2ecf20Sopenharmony_ciGLOBAL_ENTRY(__copy_user) 768c2ecf20Sopenharmony_ci .prologue 778c2ecf20Sopenharmony_ci .save ar.pfs, saved_pfs 788c2ecf20Sopenharmony_ci alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) 798c2ecf20Sopenharmony_ci 808c2ecf20Sopenharmony_ci .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] 818c2ecf20Sopenharmony_ci .rotp p[PIPE_DEPTH] 828c2ecf20Sopenharmony_ci 838c2ecf20Sopenharmony_ci adds len2=-1,len // br.ctop is repeat/until 848c2ecf20Sopenharmony_ci mov ret0=r0 858c2ecf20Sopenharmony_ci 868c2ecf20Sopenharmony_ci ;; // RAW of cfm when len=0 878c2ecf20Sopenharmony_ci cmp.eq p8,p0=r0,len // check for zero length 888c2ecf20Sopenharmony_ci .save ar.lc, saved_lc 898c2ecf20Sopenharmony_ci mov saved_lc=ar.lc // preserve ar.lc (slow) 908c2ecf20Sopenharmony_ci(p8) br.ret.spnt.many rp // empty mempcy() 918c2ecf20Sopenharmony_ci ;; 928c2ecf20Sopenharmony_ci add enddst=dst,len // first byte after end of source 938c2ecf20Sopenharmony_ci add endsrc=src,len // first byte after end of destination 948c2ecf20Sopenharmony_ci .save pr, saved_pr 958c2ecf20Sopenharmony_ci mov saved_pr=pr // preserve predicates 968c2ecf20Sopenharmony_ci 978c2ecf20Sopenharmony_ci .body 988c2ecf20Sopenharmony_ci 998c2ecf20Sopenharmony_ci mov dst1=dst // copy because of rotation 1008c2ecf20Sopenharmony_ci mov ar.ec=PIPE_DEPTH 1018c2ecf20Sopenharmony_ci mov pr.rot=1<<16 // p16=true all others are false 1028c2ecf20Sopenharmony_ci 1038c2ecf20Sopenharmony_ci mov src1=src // copy because of rotation 1048c2ecf20Sopenharmony_ci mov ar.lc=len2 // initialize lc for small count 1058c2ecf20Sopenharmony_ci cmp.lt p10,p7=COPY_BREAK,len // if len > COPY_BREAK then long copy 1068c2ecf20Sopenharmony_ci 1078c2ecf20Sopenharmony_ci xor tmp=src,dst // same alignment test prepare 1088c2ecf20Sopenharmony_ci(p10) br.cond.dptk .long_copy_user 1098c2ecf20Sopenharmony_ci ;; // RAW pr.rot/p16 ? 1108c2ecf20Sopenharmony_ci // 1118c2ecf20Sopenharmony_ci // Now we do the byte by byte loop with software pipeline 1128c2ecf20Sopenharmony_ci // 1138c2ecf20Sopenharmony_ci // p7 is necessarily false by now 1148c2ecf20Sopenharmony_ci1: 1158c2ecf20Sopenharmony_ci EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) 1168c2ecf20Sopenharmony_ci EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) 1178c2ecf20Sopenharmony_ci br.ctop.dptk.few 1b 1188c2ecf20Sopenharmony_ci ;; 1198c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 1208c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 1218c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs // restore ar.ec 1228c2ecf20Sopenharmony_ci br.ret.sptk.many rp // end of short memcpy 1238c2ecf20Sopenharmony_ci 1248c2ecf20Sopenharmony_ci // 1258c2ecf20Sopenharmony_ci // Not 8-byte aligned 1268c2ecf20Sopenharmony_ci // 1278c2ecf20Sopenharmony_ci.diff_align_copy_user: 1288c2ecf20Sopenharmony_ci // At this point we know we have more than 16 bytes to copy 1298c2ecf20Sopenharmony_ci // and also that src and dest do _not_ have the same alignment. 1308c2ecf20Sopenharmony_ci and src2=0x7,src1 // src offset 1318c2ecf20Sopenharmony_ci and dst2=0x7,dst1 // dst offset 1328c2ecf20Sopenharmony_ci ;; 1338c2ecf20Sopenharmony_ci // The basic idea is that we copy byte-by-byte at the head so 1348c2ecf20Sopenharmony_ci // that we can reach 8-byte alignment for both src1 and dst1. 1358c2ecf20Sopenharmony_ci // Then copy the body using software pipelined 8-byte copy, 1368c2ecf20Sopenharmony_ci // shifting the two back-to-back words right and left, then copy 1378c2ecf20Sopenharmony_ci // the tail by copying byte-by-byte. 1388c2ecf20Sopenharmony_ci // 1398c2ecf20Sopenharmony_ci // Fault handling. If the byte-by-byte at the head fails on the 1408c2ecf20Sopenharmony_ci // load, then restart and finish the pipleline by copying zeros 1418c2ecf20Sopenharmony_ci // to the dst1. Then copy zeros for the rest of dst1. 1428c2ecf20Sopenharmony_ci // If 8-byte software pipeline fails on the load, do the same as 1438c2ecf20Sopenharmony_ci // failure_in3 does. If the byte-by-byte at the tail fails, it is 1448c2ecf20Sopenharmony_ci // handled simply by failure_in_pipe1. 1458c2ecf20Sopenharmony_ci // 1468c2ecf20Sopenharmony_ci // The case p14 represents the source has more bytes in the 1478c2ecf20Sopenharmony_ci // the first word (by the shifted part), whereas the p15 needs to 1488c2ecf20Sopenharmony_ci // copy some bytes from the 2nd word of the source that has the 1498c2ecf20Sopenharmony_ci // tail of the 1st of the destination. 1508c2ecf20Sopenharmony_ci // 1518c2ecf20Sopenharmony_ci 1528c2ecf20Sopenharmony_ci // 1538c2ecf20Sopenharmony_ci // Optimization. If dst1 is 8-byte aligned (quite common), we don't need 1548c2ecf20Sopenharmony_ci // to copy the head to dst1, to start 8-byte copy software pipeline. 1558c2ecf20Sopenharmony_ci // We know src1 is not 8-byte aligned in this case. 1568c2ecf20Sopenharmony_ci // 1578c2ecf20Sopenharmony_ci cmp.eq p14,p15=r0,dst2 1588c2ecf20Sopenharmony_ci(p15) br.cond.spnt 1f 1598c2ecf20Sopenharmony_ci ;; 1608c2ecf20Sopenharmony_ci sub t1=8,src2 1618c2ecf20Sopenharmony_ci mov t2=src2 1628c2ecf20Sopenharmony_ci ;; 1638c2ecf20Sopenharmony_ci shl rshift=t2,3 1648c2ecf20Sopenharmony_ci sub len1=len,t1 // set len1 1658c2ecf20Sopenharmony_ci ;; 1668c2ecf20Sopenharmony_ci sub lshift=64,rshift 1678c2ecf20Sopenharmony_ci ;; 1688c2ecf20Sopenharmony_ci br.cond.spnt .word_copy_user 1698c2ecf20Sopenharmony_ci ;; 1708c2ecf20Sopenharmony_ci1: 1718c2ecf20Sopenharmony_ci cmp.leu p14,p15=src2,dst2 1728c2ecf20Sopenharmony_ci sub t1=dst2,src2 1738c2ecf20Sopenharmony_ci ;; 1748c2ecf20Sopenharmony_ci .pred.rel "mutex", p14, p15 1758c2ecf20Sopenharmony_ci(p14) sub word1=8,src2 // (8 - src offset) 1768c2ecf20Sopenharmony_ci(p15) sub t1=r0,t1 // absolute value 1778c2ecf20Sopenharmony_ci(p15) sub word1=8,dst2 // (8 - dst offset) 1788c2ecf20Sopenharmony_ci ;; 1798c2ecf20Sopenharmony_ci // For the case p14, we don't need to copy the shifted part to 1808c2ecf20Sopenharmony_ci // the 1st word of destination. 1818c2ecf20Sopenharmony_ci sub t2=8,t1 1828c2ecf20Sopenharmony_ci(p14) sub word1=word1,t1 1838c2ecf20Sopenharmony_ci ;; 1848c2ecf20Sopenharmony_ci sub len1=len,word1 // resulting len 1858c2ecf20Sopenharmony_ci(p15) shl rshift=t1,3 // in bits 1868c2ecf20Sopenharmony_ci(p14) shl rshift=t2,3 1878c2ecf20Sopenharmony_ci ;; 1888c2ecf20Sopenharmony_ci(p14) sub len1=len1,t1 1898c2ecf20Sopenharmony_ci adds cnt=-1,word1 1908c2ecf20Sopenharmony_ci ;; 1918c2ecf20Sopenharmony_ci sub lshift=64,rshift 1928c2ecf20Sopenharmony_ci mov ar.ec=PIPE_DEPTH 1938c2ecf20Sopenharmony_ci mov pr.rot=1<<16 // p16=true all others are false 1948c2ecf20Sopenharmony_ci mov ar.lc=cnt 1958c2ecf20Sopenharmony_ci ;; 1968c2ecf20Sopenharmony_ci2: 1978c2ecf20Sopenharmony_ci EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) 1988c2ecf20Sopenharmony_ci EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) 1998c2ecf20Sopenharmony_ci br.ctop.dptk.few 2b 2008c2ecf20Sopenharmony_ci ;; 2018c2ecf20Sopenharmony_ci clrrrb 2028c2ecf20Sopenharmony_ci ;; 2038c2ecf20Sopenharmony_ci.word_copy_user: 2048c2ecf20Sopenharmony_ci cmp.gtu p9,p0=16,len1 2058c2ecf20Sopenharmony_ci(p9) br.cond.spnt 4f // if (16 > len1) skip 8-byte copy 2068c2ecf20Sopenharmony_ci ;; 2078c2ecf20Sopenharmony_ci shr.u cnt=len1,3 // number of 64-bit words 2088c2ecf20Sopenharmony_ci ;; 2098c2ecf20Sopenharmony_ci adds cnt=-1,cnt 2108c2ecf20Sopenharmony_ci ;; 2118c2ecf20Sopenharmony_ci .pred.rel "mutex", p14, p15 2128c2ecf20Sopenharmony_ci(p14) sub src1=src1,t2 2138c2ecf20Sopenharmony_ci(p15) sub src1=src1,t1 2148c2ecf20Sopenharmony_ci // 2158c2ecf20Sopenharmony_ci // Now both src1 and dst1 point to an 8-byte aligned address. And 2168c2ecf20Sopenharmony_ci // we have more than 8 bytes to copy. 2178c2ecf20Sopenharmony_ci // 2188c2ecf20Sopenharmony_ci mov ar.lc=cnt 2198c2ecf20Sopenharmony_ci mov ar.ec=PIPE_DEPTH 2208c2ecf20Sopenharmony_ci mov pr.rot=1<<16 // p16=true all others are false 2218c2ecf20Sopenharmony_ci ;; 2228c2ecf20Sopenharmony_ci3: 2238c2ecf20Sopenharmony_ci // 2248c2ecf20Sopenharmony_ci // The pipleline consists of 3 stages: 2258c2ecf20Sopenharmony_ci // 1 (p16): Load a word from src1 2268c2ecf20Sopenharmony_ci // 2 (EPI_1): Shift right pair, saving to tmp 2278c2ecf20Sopenharmony_ci // 3 (EPI): Store tmp to dst1 2288c2ecf20Sopenharmony_ci // 2298c2ecf20Sopenharmony_ci // To make it simple, use at least 2 (p16) loops to set up val1[n] 2308c2ecf20Sopenharmony_ci // because we need 2 back-to-back val1[] to get tmp. 2318c2ecf20Sopenharmony_ci // Note that this implies EPI_2 must be p18 or greater. 2328c2ecf20Sopenharmony_ci // 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_ci#define EPI_1 p[PIPE_DEPTH-2] 2358c2ecf20Sopenharmony_ci#define SWITCH(pred, shift) cmp.eq pred,p0=shift,rshift 2368c2ecf20Sopenharmony_ci#define CASE(pred, shift) \ 2378c2ecf20Sopenharmony_ci (pred) br.cond.spnt .copy_user_bit##shift 2388c2ecf20Sopenharmony_ci#define BODY(rshift) \ 2398c2ecf20Sopenharmony_ci.copy_user_bit##rshift: \ 2408c2ecf20Sopenharmony_ci1: \ 2418c2ecf20Sopenharmony_ci EX(.failure_out,(EPI) st8 [dst1]=tmp,8); \ 2428c2ecf20Sopenharmony_ci(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ 2438c2ecf20Sopenharmony_ci EX(3f,(p16) ld8 val1[1]=[src1],8); \ 2448c2ecf20Sopenharmony_ci(p16) mov val1[0]=r0; \ 2458c2ecf20Sopenharmony_ci br.ctop.dptk 1b; \ 2468c2ecf20Sopenharmony_ci ;; \ 2478c2ecf20Sopenharmony_ci br.cond.sptk.many .diff_align_do_tail; \ 2488c2ecf20Sopenharmony_ci2: \ 2498c2ecf20Sopenharmony_ci(EPI) st8 [dst1]=tmp,8; \ 2508c2ecf20Sopenharmony_ci(EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift; \ 2518c2ecf20Sopenharmony_ci3: \ 2528c2ecf20Sopenharmony_ci(p16) mov val1[1]=r0; \ 2538c2ecf20Sopenharmony_ci(p16) mov val1[0]=r0; \ 2548c2ecf20Sopenharmony_ci br.ctop.dptk 2b; \ 2558c2ecf20Sopenharmony_ci ;; \ 2568c2ecf20Sopenharmony_ci br.cond.sptk.many .failure_in2 2578c2ecf20Sopenharmony_ci 2588c2ecf20Sopenharmony_ci // 2598c2ecf20Sopenharmony_ci // Since the instruction 'shrp' requires a fixed 128-bit value 2608c2ecf20Sopenharmony_ci // specifying the bits to shift, we need to provide 7 cases 2618c2ecf20Sopenharmony_ci // below. 2628c2ecf20Sopenharmony_ci // 2638c2ecf20Sopenharmony_ci SWITCH(p6, 8) 2648c2ecf20Sopenharmony_ci SWITCH(p7, 16) 2658c2ecf20Sopenharmony_ci SWITCH(p8, 24) 2668c2ecf20Sopenharmony_ci SWITCH(p9, 32) 2678c2ecf20Sopenharmony_ci SWITCH(p10, 40) 2688c2ecf20Sopenharmony_ci SWITCH(p11, 48) 2698c2ecf20Sopenharmony_ci SWITCH(p12, 56) 2708c2ecf20Sopenharmony_ci ;; 2718c2ecf20Sopenharmony_ci CASE(p6, 8) 2728c2ecf20Sopenharmony_ci CASE(p7, 16) 2738c2ecf20Sopenharmony_ci CASE(p8, 24) 2748c2ecf20Sopenharmony_ci CASE(p9, 32) 2758c2ecf20Sopenharmony_ci CASE(p10, 40) 2768c2ecf20Sopenharmony_ci CASE(p11, 48) 2778c2ecf20Sopenharmony_ci CASE(p12, 56) 2788c2ecf20Sopenharmony_ci ;; 2798c2ecf20Sopenharmony_ci BODY(8) 2808c2ecf20Sopenharmony_ci BODY(16) 2818c2ecf20Sopenharmony_ci BODY(24) 2828c2ecf20Sopenharmony_ci BODY(32) 2838c2ecf20Sopenharmony_ci BODY(40) 2848c2ecf20Sopenharmony_ci BODY(48) 2858c2ecf20Sopenharmony_ci BODY(56) 2868c2ecf20Sopenharmony_ci ;; 2878c2ecf20Sopenharmony_ci.diff_align_do_tail: 2888c2ecf20Sopenharmony_ci .pred.rel "mutex", p14, p15 2898c2ecf20Sopenharmony_ci(p14) sub src1=src1,t1 2908c2ecf20Sopenharmony_ci(p14) adds dst1=-8,dst1 2918c2ecf20Sopenharmony_ci(p15) sub dst1=dst1,t1 2928c2ecf20Sopenharmony_ci ;; 2938c2ecf20Sopenharmony_ci4: 2948c2ecf20Sopenharmony_ci // Tail correction. 2958c2ecf20Sopenharmony_ci // 2968c2ecf20Sopenharmony_ci // The problem with this piplelined loop is that the last word is not 2978c2ecf20Sopenharmony_ci // loaded and thus parf of the last word written is not correct. 2988c2ecf20Sopenharmony_ci // To fix that, we simply copy the tail byte by byte. 2998c2ecf20Sopenharmony_ci 3008c2ecf20Sopenharmony_ci sub len1=endsrc,src1,1 3018c2ecf20Sopenharmony_ci clrrrb 3028c2ecf20Sopenharmony_ci ;; 3038c2ecf20Sopenharmony_ci mov ar.ec=PIPE_DEPTH 3048c2ecf20Sopenharmony_ci mov pr.rot=1<<16 // p16=true all others are false 3058c2ecf20Sopenharmony_ci mov ar.lc=len1 3068c2ecf20Sopenharmony_ci ;; 3078c2ecf20Sopenharmony_ci5: 3088c2ecf20Sopenharmony_ci EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) 3098c2ecf20Sopenharmony_ci EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) 3108c2ecf20Sopenharmony_ci br.ctop.dptk.few 5b 3118c2ecf20Sopenharmony_ci ;; 3128c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 3138c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 3148c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 3158c2ecf20Sopenharmony_ci br.ret.sptk.many rp 3168c2ecf20Sopenharmony_ci 3178c2ecf20Sopenharmony_ci // 3188c2ecf20Sopenharmony_ci // Beginning of long mempcy (i.e. > 16 bytes) 3198c2ecf20Sopenharmony_ci // 3208c2ecf20Sopenharmony_ci.long_copy_user: 3218c2ecf20Sopenharmony_ci tbit.nz p6,p7=src1,0 // odd alignment 3228c2ecf20Sopenharmony_ci and tmp=7,tmp 3238c2ecf20Sopenharmony_ci ;; 3248c2ecf20Sopenharmony_ci cmp.eq p10,p8=r0,tmp 3258c2ecf20Sopenharmony_ci mov len1=len // copy because of rotation 3268c2ecf20Sopenharmony_ci(p8) br.cond.dpnt .diff_align_copy_user 3278c2ecf20Sopenharmony_ci ;; 3288c2ecf20Sopenharmony_ci // At this point we know we have more than 16 bytes to copy 3298c2ecf20Sopenharmony_ci // and also that both src and dest have the same alignment 3308c2ecf20Sopenharmony_ci // which may not be the one we want. So for now we must move 3318c2ecf20Sopenharmony_ci // forward slowly until we reach 16byte alignment: no need to 3328c2ecf20Sopenharmony_ci // worry about reaching the end of buffer. 3338c2ecf20Sopenharmony_ci // 3348c2ecf20Sopenharmony_ci EX(.failure_in1,(p6) ld1 val1[0]=[src1],1) // 1-byte aligned 3358c2ecf20Sopenharmony_ci(p6) adds len1=-1,len1;; 3368c2ecf20Sopenharmony_ci tbit.nz p7,p0=src1,1 3378c2ecf20Sopenharmony_ci ;; 3388c2ecf20Sopenharmony_ci EX(.failure_in1,(p7) ld2 val1[1]=[src1],2) // 2-byte aligned 3398c2ecf20Sopenharmony_ci(p7) adds len1=-2,len1;; 3408c2ecf20Sopenharmony_ci tbit.nz p8,p0=src1,2 3418c2ecf20Sopenharmony_ci ;; 3428c2ecf20Sopenharmony_ci // 3438c2ecf20Sopenharmony_ci // Stop bit not required after ld4 because if we fail on ld4 3448c2ecf20Sopenharmony_ci // we have never executed the ld1, therefore st1 is not executed. 3458c2ecf20Sopenharmony_ci // 3468c2ecf20Sopenharmony_ci EX(.failure_in1,(p8) ld4 val2[0]=[src1],4) // 4-byte aligned 3478c2ecf20Sopenharmony_ci ;; 3488c2ecf20Sopenharmony_ci EX(.failure_out,(p6) st1 [dst1]=val1[0],1) 3498c2ecf20Sopenharmony_ci tbit.nz p9,p0=src1,3 3508c2ecf20Sopenharmony_ci ;; 3518c2ecf20Sopenharmony_ci // 3528c2ecf20Sopenharmony_ci // Stop bit not required after ld8 because if we fail on ld8 3538c2ecf20Sopenharmony_ci // we have never executed the ld2, therefore st2 is not executed. 3548c2ecf20Sopenharmony_ci // 3558c2ecf20Sopenharmony_ci EX(.failure_in1,(p9) ld8 val2[1]=[src1],8) // 8-byte aligned 3568c2ecf20Sopenharmony_ci EX(.failure_out,(p7) st2 [dst1]=val1[1],2) 3578c2ecf20Sopenharmony_ci(p8) adds len1=-4,len1 3588c2ecf20Sopenharmony_ci ;; 3598c2ecf20Sopenharmony_ci EX(.failure_out, (p8) st4 [dst1]=val2[0],4) 3608c2ecf20Sopenharmony_ci(p9) adds len1=-8,len1;; 3618c2ecf20Sopenharmony_ci shr.u cnt=len1,4 // number of 128-bit (2x64bit) words 3628c2ecf20Sopenharmony_ci ;; 3638c2ecf20Sopenharmony_ci EX(.failure_out, (p9) st8 [dst1]=val2[1],8) 3648c2ecf20Sopenharmony_ci tbit.nz p6,p0=len1,3 3658c2ecf20Sopenharmony_ci cmp.eq p7,p0=r0,cnt 3668c2ecf20Sopenharmony_ci adds tmp=-1,cnt // br.ctop is repeat/until 3678c2ecf20Sopenharmony_ci(p7) br.cond.dpnt .dotail // we have less than 16 bytes left 3688c2ecf20Sopenharmony_ci ;; 3698c2ecf20Sopenharmony_ci adds src2=8,src1 3708c2ecf20Sopenharmony_ci adds dst2=8,dst1 3718c2ecf20Sopenharmony_ci mov ar.lc=tmp 3728c2ecf20Sopenharmony_ci ;; 3738c2ecf20Sopenharmony_ci // 3748c2ecf20Sopenharmony_ci // 16bytes/iteration 3758c2ecf20Sopenharmony_ci // 3768c2ecf20Sopenharmony_ci2: 3778c2ecf20Sopenharmony_ci EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) 3788c2ecf20Sopenharmony_ci(p16) ld8 val2[0]=[src2],16 3798c2ecf20Sopenharmony_ci 3808c2ecf20Sopenharmony_ci EX(.failure_out, (EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16) 3818c2ecf20Sopenharmony_ci(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 3828c2ecf20Sopenharmony_ci br.ctop.dptk 2b 3838c2ecf20Sopenharmony_ci ;; // RAW on src1 when fall through from loop 3848c2ecf20Sopenharmony_ci // 3858c2ecf20Sopenharmony_ci // Tail correction based on len only 3868c2ecf20Sopenharmony_ci // 3878c2ecf20Sopenharmony_ci // No matter where we come from (loop or test) the src1 pointer 3888c2ecf20Sopenharmony_ci // is 16 byte aligned AND we have less than 16 bytes to copy. 3898c2ecf20Sopenharmony_ci // 3908c2ecf20Sopenharmony_ci.dotail: 3918c2ecf20Sopenharmony_ci EX(.failure_in1,(p6) ld8 val1[0]=[src1],8) // at least 8 bytes 3928c2ecf20Sopenharmony_ci tbit.nz p7,p0=len1,2 3938c2ecf20Sopenharmony_ci ;; 3948c2ecf20Sopenharmony_ci EX(.failure_in1,(p7) ld4 val1[1]=[src1],4) // at least 4 bytes 3958c2ecf20Sopenharmony_ci tbit.nz p8,p0=len1,1 3968c2ecf20Sopenharmony_ci ;; 3978c2ecf20Sopenharmony_ci EX(.failure_in1,(p8) ld2 val2[0]=[src1],2) // at least 2 bytes 3988c2ecf20Sopenharmony_ci tbit.nz p9,p0=len1,0 3998c2ecf20Sopenharmony_ci ;; 4008c2ecf20Sopenharmony_ci EX(.failure_out, (p6) st8 [dst1]=val1[0],8) 4018c2ecf20Sopenharmony_ci ;; 4028c2ecf20Sopenharmony_ci EX(.failure_in1,(p9) ld1 val2[1]=[src1]) // only 1 byte left 4038c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 4048c2ecf20Sopenharmony_ci ;; 4058c2ecf20Sopenharmony_ci EX(.failure_out,(p7) st4 [dst1]=val1[1],4) 4068c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 4078c2ecf20Sopenharmony_ci ;; 4088c2ecf20Sopenharmony_ci EX(.failure_out, (p8) st2 [dst1]=val2[0],2) 4098c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 4108c2ecf20Sopenharmony_ci ;; 4118c2ecf20Sopenharmony_ci EX(.failure_out, (p9) st1 [dst1]=val2[1]) 4128c2ecf20Sopenharmony_ci br.ret.sptk.many rp 4138c2ecf20Sopenharmony_ci 4148c2ecf20Sopenharmony_ci 4158c2ecf20Sopenharmony_ci // 4168c2ecf20Sopenharmony_ci // Here we handle the case where the byte by byte copy fails 4178c2ecf20Sopenharmony_ci // on the load. 4188c2ecf20Sopenharmony_ci // Several factors make the zeroing of the rest of the buffer kind of 4198c2ecf20Sopenharmony_ci // tricky: 4208c2ecf20Sopenharmony_ci // - the pipeline: loads/stores are not in sync (pipeline) 4218c2ecf20Sopenharmony_ci // 4228c2ecf20Sopenharmony_ci // In the same loop iteration, the dst1 pointer does not directly 4238c2ecf20Sopenharmony_ci // reflect where the faulty load was. 4248c2ecf20Sopenharmony_ci // 4258c2ecf20Sopenharmony_ci // - pipeline effect 4268c2ecf20Sopenharmony_ci // When you get a fault on load, you may have valid data from 4278c2ecf20Sopenharmony_ci // previous loads not yet store in transit. Such data must be 4288c2ecf20Sopenharmony_ci // store normally before moving onto zeroing the rest. 4298c2ecf20Sopenharmony_ci // 4308c2ecf20Sopenharmony_ci // - single/multi dispersal independence. 4318c2ecf20Sopenharmony_ci // 4328c2ecf20Sopenharmony_ci // solution: 4338c2ecf20Sopenharmony_ci // - we don't disrupt the pipeline, i.e. data in transit in 4348c2ecf20Sopenharmony_ci // the software pipeline will be eventually move to memory. 4358c2ecf20Sopenharmony_ci // We simply replace the load with a simple mov and keep the 4368c2ecf20Sopenharmony_ci // pipeline going. We can't really do this inline because 4378c2ecf20Sopenharmony_ci // p16 is always reset to 1 when lc > 0. 4388c2ecf20Sopenharmony_ci // 4398c2ecf20Sopenharmony_ci.failure_in_pipe1: 4408c2ecf20Sopenharmony_ci sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 4418c2ecf20Sopenharmony_ci1: 4428c2ecf20Sopenharmony_ci(p16) mov val1[0]=r0 4438c2ecf20Sopenharmony_ci(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 4448c2ecf20Sopenharmony_ci br.ctop.dptk 1b 4458c2ecf20Sopenharmony_ci ;; 4468c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 4478c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 4488c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 4498c2ecf20Sopenharmony_ci br.ret.sptk.many rp 4508c2ecf20Sopenharmony_ci 4518c2ecf20Sopenharmony_ci // 4528c2ecf20Sopenharmony_ci // This is the case where the byte by byte copy fails on the load 4538c2ecf20Sopenharmony_ci // when we copy the head. We need to finish the pipeline and copy 4548c2ecf20Sopenharmony_ci // zeros for the rest of the destination. Since this happens 4558c2ecf20Sopenharmony_ci // at the top we still need to fill the body and tail. 4568c2ecf20Sopenharmony_ci.failure_in_pipe2: 4578c2ecf20Sopenharmony_ci sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 4588c2ecf20Sopenharmony_ci2: 4598c2ecf20Sopenharmony_ci(p16) mov val1[0]=r0 4608c2ecf20Sopenharmony_ci(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1 4618c2ecf20Sopenharmony_ci br.ctop.dptk 2b 4628c2ecf20Sopenharmony_ci ;; 4638c2ecf20Sopenharmony_ci sub len=enddst,dst1,1 // precompute len 4648c2ecf20Sopenharmony_ci br.cond.dptk.many .failure_in1bis 4658c2ecf20Sopenharmony_ci ;; 4668c2ecf20Sopenharmony_ci 4678c2ecf20Sopenharmony_ci // 4688c2ecf20Sopenharmony_ci // Here we handle the head & tail part when we check for alignment. 4698c2ecf20Sopenharmony_ci // The following code handles only the load failures. The 4708c2ecf20Sopenharmony_ci // main diffculty comes from the fact that loads/stores are 4718c2ecf20Sopenharmony_ci // scheduled. So when you fail on a load, the stores corresponding 4728c2ecf20Sopenharmony_ci // to previous successful loads must be executed. 4738c2ecf20Sopenharmony_ci // 4748c2ecf20Sopenharmony_ci // However some simplifications are possible given the way 4758c2ecf20Sopenharmony_ci // things work. 4768c2ecf20Sopenharmony_ci // 4778c2ecf20Sopenharmony_ci // 1) HEAD 4788c2ecf20Sopenharmony_ci // Theory of operation: 4798c2ecf20Sopenharmony_ci // 4808c2ecf20Sopenharmony_ci // Page A | Page B 4818c2ecf20Sopenharmony_ci // ---------|----- 4828c2ecf20Sopenharmony_ci // 1|8 x 4838c2ecf20Sopenharmony_ci // 1 2|8 x 4848c2ecf20Sopenharmony_ci // 4|8 x 4858c2ecf20Sopenharmony_ci // 1 4|8 x 4868c2ecf20Sopenharmony_ci // 2 4|8 x 4878c2ecf20Sopenharmony_ci // 1 2 4|8 x 4888c2ecf20Sopenharmony_ci // |1 4898c2ecf20Sopenharmony_ci // |2 x 4908c2ecf20Sopenharmony_ci // |4 x 4918c2ecf20Sopenharmony_ci // 4928c2ecf20Sopenharmony_ci // page_size >= 4k (2^12). (x means 4, 2, 1) 4938c2ecf20Sopenharmony_ci // Here we suppose Page A exists and Page B does not. 4948c2ecf20Sopenharmony_ci // 4958c2ecf20Sopenharmony_ci // As we move towards eight byte alignment we may encounter faults. 4968c2ecf20Sopenharmony_ci // The numbers on each page show the size of the load (current alignment). 4978c2ecf20Sopenharmony_ci // 4988c2ecf20Sopenharmony_ci // Key point: 4998c2ecf20Sopenharmony_ci // - if you fail on 1, 2, 4 then you have never executed any smaller 5008c2ecf20Sopenharmony_ci // size loads, e.g. failing ld4 means no ld1 nor ld2 executed 5018c2ecf20Sopenharmony_ci // before. 5028c2ecf20Sopenharmony_ci // 5038c2ecf20Sopenharmony_ci // This allows us to simplify the cleanup code, because basically you 5048c2ecf20Sopenharmony_ci // only have to worry about "pending" stores in the case of a failing 5058c2ecf20Sopenharmony_ci // ld8(). Given the way the code is written today, this means only 5068c2ecf20Sopenharmony_ci // worry about st2, st4. There we can use the information encapsulated 5078c2ecf20Sopenharmony_ci // into the predicates. 5088c2ecf20Sopenharmony_ci // 5098c2ecf20Sopenharmony_ci // Other key point: 5108c2ecf20Sopenharmony_ci // - if you fail on the ld8 in the head, it means you went straight 5118c2ecf20Sopenharmony_ci // to it, i.e. 8byte alignment within an unexisting page. 5128c2ecf20Sopenharmony_ci // Again this comes from the fact that if you crossed just for the ld8 then 5138c2ecf20Sopenharmony_ci // you are 8byte aligned but also 16byte align, therefore you would 5148c2ecf20Sopenharmony_ci // either go for the 16byte copy loop OR the ld8 in the tail part. 5158c2ecf20Sopenharmony_ci // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible 5168c2ecf20Sopenharmony_ci // because it would mean you had 15bytes to copy in which case you 5178c2ecf20Sopenharmony_ci // would have defaulted to the byte by byte copy. 5188c2ecf20Sopenharmony_ci // 5198c2ecf20Sopenharmony_ci // 5208c2ecf20Sopenharmony_ci // 2) TAIL 5218c2ecf20Sopenharmony_ci // Here we now we have less than 16 bytes AND we are either 8 or 16 byte 5228c2ecf20Sopenharmony_ci // aligned. 5238c2ecf20Sopenharmony_ci // 5248c2ecf20Sopenharmony_ci // Key point: 5258c2ecf20Sopenharmony_ci // This means that we either: 5268c2ecf20Sopenharmony_ci // - are right on a page boundary 5278c2ecf20Sopenharmony_ci // OR 5288c2ecf20Sopenharmony_ci // - are at more than 16 bytes from a page boundary with 5298c2ecf20Sopenharmony_ci // at most 15 bytes to copy: no chance of crossing. 5308c2ecf20Sopenharmony_ci // 5318c2ecf20Sopenharmony_ci // This allows us to assume that if we fail on a load we haven't possibly 5328c2ecf20Sopenharmony_ci // executed any of the previous (tail) ones, so we don't need to do 5338c2ecf20Sopenharmony_ci // any stores. For instance, if we fail on ld2, this means we had 5348c2ecf20Sopenharmony_ci // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. 5358c2ecf20Sopenharmony_ci // 5368c2ecf20Sopenharmony_ci // This means that we are in a situation similar the a fault in the 5378c2ecf20Sopenharmony_ci // head part. That's nice! 5388c2ecf20Sopenharmony_ci // 5398c2ecf20Sopenharmony_ci.failure_in1: 5408c2ecf20Sopenharmony_ci sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 5418c2ecf20Sopenharmony_ci sub len=endsrc,src1,1 5428c2ecf20Sopenharmony_ci // 5438c2ecf20Sopenharmony_ci // we know that ret0 can never be zero at this point 5448c2ecf20Sopenharmony_ci // because we failed why trying to do a load, i.e. there is still 5458c2ecf20Sopenharmony_ci // some work to do. 5468c2ecf20Sopenharmony_ci // The failure_in1bis and length problem is taken care of at the 5478c2ecf20Sopenharmony_ci // calling side. 5488c2ecf20Sopenharmony_ci // 5498c2ecf20Sopenharmony_ci ;; 5508c2ecf20Sopenharmony_ci.failure_in1bis: // from (.failure_in3) 5518c2ecf20Sopenharmony_ci mov ar.lc=len // Continue with a stupid byte store. 5528c2ecf20Sopenharmony_ci ;; 5538c2ecf20Sopenharmony_ci5: 5548c2ecf20Sopenharmony_ci st1 [dst1]=r0,1 5558c2ecf20Sopenharmony_ci br.cloop.dptk 5b 5568c2ecf20Sopenharmony_ci ;; 5578c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 5588c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 5598c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 5608c2ecf20Sopenharmony_ci br.ret.sptk.many rp 5618c2ecf20Sopenharmony_ci 5628c2ecf20Sopenharmony_ci // 5638c2ecf20Sopenharmony_ci // Here we simply restart the loop but instead 5648c2ecf20Sopenharmony_ci // of doing loads we fill the pipeline with zeroes 5658c2ecf20Sopenharmony_ci // We can't simply store r0 because we may have valid 5668c2ecf20Sopenharmony_ci // data in transit in the pipeline. 5678c2ecf20Sopenharmony_ci // ar.lc and ar.ec are setup correctly at this point 5688c2ecf20Sopenharmony_ci // 5698c2ecf20Sopenharmony_ci // we MUST use src1/endsrc here and not dst1/enddst because 5708c2ecf20Sopenharmony_ci // of the pipeline effect. 5718c2ecf20Sopenharmony_ci // 5728c2ecf20Sopenharmony_ci.failure_in3: 5738c2ecf20Sopenharmony_ci sub ret0=endsrc,src1 // number of bytes to zero, i.e. not copied 5748c2ecf20Sopenharmony_ci ;; 5758c2ecf20Sopenharmony_ci2: 5768c2ecf20Sopenharmony_ci(p16) mov val1[0]=r0 5778c2ecf20Sopenharmony_ci(p16) mov val2[0]=r0 5788c2ecf20Sopenharmony_ci(EPI) st8 [dst1]=val1[PIPE_DEPTH-1],16 5798c2ecf20Sopenharmony_ci(EPI) st8 [dst2]=val2[PIPE_DEPTH-1],16 5808c2ecf20Sopenharmony_ci br.ctop.dptk 2b 5818c2ecf20Sopenharmony_ci ;; 5828c2ecf20Sopenharmony_ci cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? 5838c2ecf20Sopenharmony_ci sub len=enddst,dst1,1 // precompute len 5848c2ecf20Sopenharmony_ci(p6) br.cond.dptk .failure_in1bis 5858c2ecf20Sopenharmony_ci ;; 5868c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 5878c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 5888c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 5898c2ecf20Sopenharmony_ci br.ret.sptk.many rp 5908c2ecf20Sopenharmony_ci 5918c2ecf20Sopenharmony_ci.failure_in2: 5928c2ecf20Sopenharmony_ci sub ret0=endsrc,src1 5938c2ecf20Sopenharmony_ci cmp.ne p6,p0=dst1,enddst // Do we need to finish the tail ? 5948c2ecf20Sopenharmony_ci sub len=enddst,dst1,1 // precompute len 5958c2ecf20Sopenharmony_ci(p6) br.cond.dptk .failure_in1bis 5968c2ecf20Sopenharmony_ci ;; 5978c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 5988c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 5998c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 6008c2ecf20Sopenharmony_ci br.ret.sptk.many rp 6018c2ecf20Sopenharmony_ci 6028c2ecf20Sopenharmony_ci // 6038c2ecf20Sopenharmony_ci // handling of failures on stores: that's the easy part 6048c2ecf20Sopenharmony_ci // 6058c2ecf20Sopenharmony_ci.failure_out: 6068c2ecf20Sopenharmony_ci sub ret0=enddst,dst1 6078c2ecf20Sopenharmony_ci mov pr=saved_pr,0xffffffffffff0000 6088c2ecf20Sopenharmony_ci mov ar.lc=saved_lc 6098c2ecf20Sopenharmony_ci 6108c2ecf20Sopenharmony_ci mov ar.pfs=saved_pfs 6118c2ecf20Sopenharmony_ci br.ret.sptk.many rp 6128c2ecf20Sopenharmony_ciEND(__copy_user) 6138c2ecf20Sopenharmony_ciEXPORT_SYMBOL(__copy_user) 614