1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _ASM_IA64_PGTABLE_H 3#define _ASM_IA64_PGTABLE_H 4 5/* 6 * This file contains the functions and defines necessary to modify and use 7 * the IA-64 page table tree. 8 * 9 * This hopefully works with any (fixed) IA-64 page-size, as defined 10 * in <asm/page.h>. 11 * 12 * Copyright (C) 1998-2005 Hewlett-Packard Co 13 * David Mosberger-Tang <davidm@hpl.hp.com> 14 */ 15 16 17#include <asm/mman.h> 18#include <asm/page.h> 19#include <asm/processor.h> 20#include <asm/types.h> 21 22#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */ 23 24/* 25 * First, define the various bits in a PTE. Note that the PTE format 26 * matches the VHPT short format, the firt doubleword of the VHPD long 27 * format, and the first doubleword of the TLB insertion format. 28 */ 29#define _PAGE_P_BIT 0 30#define _PAGE_A_BIT 5 31#define _PAGE_D_BIT 6 32 33#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */ 34#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */ 35#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */ 36#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */ 37#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */ 38#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */ 39#define _PAGE_MA_MASK (0x7 << 2) 40#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */ 41#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */ 42#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */ 43#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */ 44#define _PAGE_PL_MASK (3 << 7) 45#define _PAGE_AR_R (0 << 9) /* read only */ 46#define _PAGE_AR_RX (1 << 9) /* read & execute */ 47#define _PAGE_AR_RW (2 << 9) /* read & write */ 48#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */ 49#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */ 50#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */ 51#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */ 52#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */ 53#define _PAGE_AR_MASK (7 << 9) 54#define _PAGE_AR_SHIFT 9 55#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */ 56#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */ 57#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL) 58#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */ 59#define _PAGE_PROTNONE (__IA64_UL(1) << 63) 60 61#define _PFN_MASK _PAGE_PPN_MASK 62/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */ 63#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED) 64 65#define _PAGE_SIZE_4K 12 66#define _PAGE_SIZE_8K 13 67#define _PAGE_SIZE_16K 14 68#define _PAGE_SIZE_64K 16 69#define _PAGE_SIZE_256K 18 70#define _PAGE_SIZE_1M 20 71#define _PAGE_SIZE_4M 22 72#define _PAGE_SIZE_16M 24 73#define _PAGE_SIZE_64M 26 74#define _PAGE_SIZE_256M 28 75#define _PAGE_SIZE_1G 30 76#define _PAGE_SIZE_4G 32 77 78#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB 79#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB 80#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED 81 82/* 83 * How many pointers will a page table level hold expressed in shift 84 */ 85#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3) 86 87/* 88 * Definitions for fourth level: 89 */ 90#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT)) 91 92/* 93 * Definitions for third level: 94 * 95 * PMD_SHIFT determines the size of the area a third-level page table 96 * can map. 97 */ 98#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT)) 99#define PMD_SIZE (1UL << PMD_SHIFT) 100#define PMD_MASK (~(PMD_SIZE-1)) 101#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT)) 102 103#if CONFIG_PGTABLE_LEVELS == 4 104/* 105 * Definitions for second level: 106 * 107 * PUD_SHIFT determines the size of the area a second-level page table 108 * can map. 109 */ 110#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 111#define PUD_SIZE (1UL << PUD_SHIFT) 112#define PUD_MASK (~(PUD_SIZE-1)) 113#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT)) 114#endif 115 116/* 117 * Definitions for first level: 118 * 119 * PGDIR_SHIFT determines what a first-level page table entry can map. 120 */ 121#if CONFIG_PGTABLE_LEVELS == 4 122#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT)) 123#else 124#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT)) 125#endif 126#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT) 127#define PGDIR_MASK (~(PGDIR_SIZE-1)) 128#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT 129#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT) 130#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */ 131#define FIRST_USER_ADDRESS 0UL 132 133/* 134 * All the normal masks have the "page accessed" bits on, as any time 135 * they are used, the page is accessed. They are cleared only by the 136 * page-out routines. 137 */ 138#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A) 139#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW) 140#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 141#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R) 142#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 143#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX) 144#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX) 145#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX) 146#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \ 147 _PAGE_MA_UC) 148 149# ifndef __ASSEMBLY__ 150 151#include <linux/sched/mm.h> /* for mm_struct */ 152#include <linux/bitops.h> 153#include <asm/cacheflush.h> 154#include <asm/mmu_context.h> 155 156/* 157 * Next come the mappings that determine how mmap() protection bits 158 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The 159 * _P version gets used for a private shared memory segment, the _S 160 * version gets used for a shared memory segment with MAP_SHARED on. 161 * In a private shared memory segment, we do a copy-on-write if a task 162 * attempts to write to the page. 163 */ 164 /* xwr */ 165#define __P000 PAGE_NONE 166#define __P001 PAGE_READONLY 167#define __P010 PAGE_READONLY /* write to priv pg -> copy & make writable */ 168#define __P011 PAGE_READONLY /* ditto */ 169#define __P100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 170#define __P101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 171#define __P110 PAGE_COPY_EXEC 172#define __P111 PAGE_COPY_EXEC 173 174#define __S000 PAGE_NONE 175#define __S001 PAGE_READONLY 176#define __S010 PAGE_SHARED /* we don't have (and don't need) write-only */ 177#define __S011 PAGE_SHARED 178#define __S100 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX) 179#define __S101 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX) 180#define __S110 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 181#define __S111 __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX) 182 183#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 184#if CONFIG_PGTABLE_LEVELS == 4 185#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 186#endif 187#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 188#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 189 190 191/* 192 * Some definitions to translate between mem_map, PTEs, and page addresses: 193 */ 194 195 196/* Quick test to see if ADDR is a (potentially) valid physical address. */ 197static inline long 198ia64_phys_addr_valid (unsigned long addr) 199{ 200 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0; 201} 202 203/* 204 * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel 205 * memory. For the return value to be meaningful, ADDR must be >= 206 * PAGE_OFFSET. This operation can be relatively expensive (e.g., 207 * require a hash-, or multi-level tree-lookup or something of that 208 * sort) but it guarantees to return TRUE only if accessing the page 209 * at that address does not cause an error. Note that there may be 210 * addresses for which kern_addr_valid() returns FALSE even though an 211 * access would not cause an error (e.g., this is typically true for 212 * memory mapped I/O regions. 213 * 214 * XXX Need to implement this for IA-64. 215 */ 216#define kern_addr_valid(addr) (1) 217 218 219/* 220 * Now come the defines and routines to manage and access the three-level 221 * page table. 222 */ 223 224 225#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL) 226#ifdef CONFIG_VIRTUAL_MEM_MAP 227# define VMALLOC_END_INIT (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 228extern unsigned long VMALLOC_END; 229#else 230#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP) 231/* SPARSEMEM_VMEMMAP uses half of vmalloc... */ 232# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10))) 233# define vmemmap ((struct page *)VMALLOC_END) 234#else 235# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9))) 236#endif 237#endif 238 239/* fs/proc/kcore.c */ 240#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE)) 241#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE)) 242 243#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3) 244#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */ 245 246/* 247 * Conversion functions: convert page frame number (pfn) and a protection value to a page 248 * table entry (pte). 249 */ 250#define pfn_pte(pfn, pgprot) \ 251({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; }) 252 253/* Extract pfn from pte. */ 254#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT) 255 256#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 257 258/* This takes a physical page address that is used by the remapping functions */ 259#define mk_pte_phys(physpage, pgprot) \ 260({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; }) 261 262#define pte_modify(_pte, newprot) \ 263 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK))) 264 265#define pte_none(pte) (!pte_val(pte)) 266#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE)) 267#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL) 268/* pte_page() returns the "struct page *" corresponding to the PTE: */ 269#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET)) 270 271#define pmd_none(pmd) (!pmd_val(pmd)) 272#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd))) 273#define pmd_present(pmd) (pmd_val(pmd) != 0UL) 274#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL) 275#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK)) 276#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET)) 277 278#define pud_none(pud) (!pud_val(pud)) 279#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud))) 280#define pud_present(pud) (pud_val(pud) != 0UL) 281#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL) 282#define pud_pgtable(pud) ((pmd_t *) __va(pud_val(pud) & _PFN_MASK)) 283#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET)) 284 285#if CONFIG_PGTABLE_LEVELS == 4 286#define p4d_none(p4d) (!p4d_val(p4d)) 287#define p4d_bad(p4d) (!ia64_phys_addr_valid(p4d_val(p4d))) 288#define p4d_present(p4d) (p4d_val(p4d) != 0UL) 289#define p4d_clear(p4dp) (p4d_val(*(p4dp)) = 0UL) 290#define p4d_pgtable(p4d) ((pud_t *) __va(p4d_val(p4d) & _PFN_MASK)) 291#define p4d_page(p4d) virt_to_page((p4d_val(p4d) + PAGE_OFFSET)) 292#endif 293 294/* 295 * The following have defined behavior only work if pte_present() is true. 296 */ 297#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4) 298#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0) 299#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0) 300#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0) 301 302/* 303 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the 304 * access rights: 305 */ 306#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW)) 307#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW)) 308#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A)) 309#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A)) 310#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D)) 311#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D)) 312#define pte_mkhuge(pte) (__pte(pte_val(pte))) 313 314/* 315 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to 316 * sync icache and dcache when we insert *new* executable page. 317 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache 318 * if necessary. 319 * 320 * set_pte() is also called by the kernel, but we can expect that the kernel 321 * flushes icache explicitly if necessary. 322 */ 323#define pte_present_exec_user(pte)\ 324 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \ 325 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX)) 326 327extern void __ia64_sync_icache_dcache(pte_t pteval); 328static inline void set_pte(pte_t *ptep, pte_t pteval) 329{ 330 /* page is present && page is user && page is executable 331 * && (page swapin or new page or page migraton 332 * || copy_on_write with page copying.) 333 */ 334 if (pte_present_exec_user(pteval) && 335 (!pte_present(*ptep) || 336 pte_pfn(*ptep) != pte_pfn(pteval))) 337 /* load_module() calles flush_icache_range() explicitly*/ 338 __ia64_sync_icache_dcache(pteval); 339 *ptep = pteval; 340} 341 342#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval) 343 344/* 345 * Make page protection values cacheable, uncacheable, or write- 346 * combining. Note that "protection" is really a misnomer here as the 347 * protection value contains the memory attribute bits, dirty bits, and 348 * various other bits as well. 349 */ 350#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB) 351#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC) 352#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC) 353 354struct file; 355extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn, 356 unsigned long size, pgprot_t vma_prot); 357#define __HAVE_PHYS_MEM_ACCESS_PROT 358 359static inline unsigned long 360pgd_index (unsigned long address) 361{ 362 unsigned long region = address >> 61; 363 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1); 364 365 return (region << (PAGE_SHIFT - 6)) | l1index; 366} 367#define pgd_index pgd_index 368 369/* 370 * In the kernel's mapped region we know everything is in region number 5, so 371 * as an optimisation its PGD already points to the area for that region. 372 * However, this also means that we cannot use pgd_index() and we must 373 * never add the region here. 374 */ 375#define pgd_offset_k(addr) \ 376 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))) 377 378/* Look up a pgd entry in the gate area. On IA-64, the gate-area 379 resides in the kernel-mapped segment, hence we use pgd_offset_k() 380 here. */ 381#define pgd_offset_gate(mm, addr) pgd_offset_k(addr) 382 383/* atomic versions of the some PTE manipulations: */ 384 385static inline int 386ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 387{ 388#ifdef CONFIG_SMP 389 if (!pte_young(*ptep)) 390 return 0; 391 return test_and_clear_bit(_PAGE_A_BIT, ptep); 392#else 393 pte_t pte = *ptep; 394 if (!pte_young(pte)) 395 return 0; 396 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 397 return 1; 398#endif 399} 400 401static inline pte_t 402ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 403{ 404#ifdef CONFIG_SMP 405 return __pte(xchg((long *) ptep, 0)); 406#else 407 pte_t pte = *ptep; 408 pte_clear(mm, addr, ptep); 409 return pte; 410#endif 411} 412 413static inline void 414ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 415{ 416#ifdef CONFIG_SMP 417 unsigned long new, old; 418 419 do { 420 old = pte_val(*ptep); 421 new = pte_val(pte_wrprotect(__pte (old))); 422 } while (cmpxchg((unsigned long *) ptep, old, new) != old); 423#else 424 pte_t old_pte = *ptep; 425 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte)); 426#endif 427} 428 429static inline int 430pte_same (pte_t a, pte_t b) 431{ 432 return pte_val(a) == pte_val(b); 433} 434 435#define update_mmu_cache(vma, address, ptep) do { } while (0) 436 437extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; 438extern void paging_init (void); 439 440/* 441 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of 442 * bits in the swap-type field of the swap pte. It would be nice to 443 * enforce that, but we can't easily include <linux/swap.h> here. 444 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...). 445 * 446 * Format of swap pte: 447 * bit 0 : present bit (must be zero) 448 * bits 1- 7: swap-type 449 * bits 8-62: swap offset 450 * bit 63 : _PAGE_PROTNONE bit 451 */ 452#define __swp_type(entry) (((entry).val >> 1) & 0x7f) 453#define __swp_offset(entry) (((entry).val << 1) >> 9) 454#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << 1) | ((long) (offset) << 8) }) 455#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 456#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 457 458/* 459 * ZERO_PAGE is a global shared page that is always zero: used 460 * for zero-mapped memory areas etc.. 461 */ 462extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)]; 463extern struct page *zero_page_memmap_ptr; 464#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr) 465 466/* We provide our own get_unmapped_area to cope with VA holes for userland */ 467#define HAVE_ARCH_UNMAPPED_AREA 468 469#ifdef CONFIG_HUGETLB_PAGE 470#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3)) 471#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT) 472#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1)) 473#endif 474 475 476#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 477/* 478 * Update PTEP with ENTRY, which is guaranteed to be a less 479 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and 480 * WRITABLE bits turned on, when the value at PTEP did not. The 481 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE. 482 * 483 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without 484 * having to worry about races. On SMP machines, there are only two 485 * cases where this is true: 486 * 487 * (1) *PTEP has the PRESENT bit turned OFF 488 * (2) ENTRY has the DIRTY bit turned ON 489 * 490 * On ia64, we could implement this routine with a cmpxchg()-loop 491 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY. 492 * However, like on x86, we can get a more streamlined version by 493 * observing that it is OK to drop ACCESSED bit updates when 494 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is 495 * result in an extra Access-bit fault, which would then turn on the 496 * ACCESSED bit in the low-level fault handler (iaccess_bit or 497 * daccess_bit in ivt.S). 498 */ 499#ifdef CONFIG_SMP 500# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 501({ \ 502 int __changed = !pte_same(*(__ptep), __entry); \ 503 if (__changed && __safely_writable) { \ 504 set_pte(__ptep, __entry); \ 505 flush_tlb_page(__vma, __addr); \ 506 } \ 507 __changed; \ 508}) 509#else 510# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \ 511({ \ 512 int __changed = !pte_same(*(__ptep), __entry); \ 513 if (__changed) { \ 514 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \ 515 flush_tlb_page(__vma, __addr); \ 516 } \ 517 __changed; \ 518}) 519#endif 520 521# ifdef CONFIG_VIRTUAL_MEM_MAP 522 /* arch mem_map init routine is needed due to holes in a virtual mem_map */ 523void memmap_init(void); 524void arch_memmap_init(unsigned long size, int nid, unsigned long zone, 525 unsigned long start_pfn); 526# endif /* CONFIG_VIRTUAL_MEM_MAP */ 527# endif /* !__ASSEMBLY__ */ 528 529/* 530 * Identity-mapped regions use a large page size. We'll call such large pages 531 * "granules". If you can think of a better name that's unambiguous, let me 532 * know... 533 */ 534#if defined(CONFIG_IA64_GRANULE_64MB) 535# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M 536#elif defined(CONFIG_IA64_GRANULE_16MB) 537# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M 538#endif 539#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT) 540/* 541 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL): 542 */ 543#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M 544#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT) 545 546/* These tell get_user_pages() that the first gate page is accessible from user-level. */ 547#define FIXADDR_USER_START GATE_ADDR 548#ifdef HAVE_BUGGY_SEGREL 549# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE) 550#else 551# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE) 552#endif 553 554#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 555#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 556#define __HAVE_ARCH_PTEP_SET_WRPROTECT 557#define __HAVE_ARCH_PTE_SAME 558#define __HAVE_ARCH_PGD_OFFSET_GATE 559 560 561#if CONFIG_PGTABLE_LEVELS == 3 562#include <asm-generic/pgtable-nopud.h> 563#endif 564#include <asm-generic/pgtable-nop4d.h> 565 566#endif /* _ASM_IA64_PGTABLE_H */ 567