1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Page table support for the Hexagon architecture 4 * 5 * Copyright (c) 2010-2011, The Linux Foundation. All rights reserved. 6 */ 7 8#ifndef _ASM_PGTABLE_H 9#define _ASM_PGTABLE_H 10 11/* 12 * Page table definitions for Qualcomm Hexagon processor. 13 */ 14#include <asm/page.h> 15#include <asm-generic/pgtable-nopmd.h> 16 17/* A handy thing to have if one has the RAM. Declared in head.S */ 18extern unsigned long empty_zero_page; 19 20/* 21 * The PTE model described here is that of the Hexagon Virtual Machine, 22 * which autonomously walks 2-level page tables. At a lower level, we 23 * also describe the RISCish software-loaded TLB entry structure of 24 * the underlying Hexagon processor. A kernel built to run on the 25 * virtual machine has no need to know about the underlying hardware. 26 */ 27#include <asm/vm_mmu.h> 28 29/* 30 * To maximize the comfort level for the PTE manipulation macros, 31 * define the "well known" architecture-specific bits. 32 */ 33#define _PAGE_READ __HVM_PTE_R 34#define _PAGE_WRITE __HVM_PTE_W 35#define _PAGE_EXECUTE __HVM_PTE_X 36#define _PAGE_USER __HVM_PTE_U 37 38/* 39 * We have a total of 4 "soft" bits available in the abstract PTE. 40 * The two mandatory software bits are Dirty and Accessed. 41 * To make nonlinear swap work according to the more recent 42 * model, we want a low order "Present" bit to indicate whether 43 * the PTE describes MMU programming or swap space. 44 */ 45#define _PAGE_PRESENT (1<<0) 46#define _PAGE_DIRTY (1<<1) 47#define _PAGE_ACCESSED (1<<2) 48 49/* 50 * For now, let's say that Valid and Present are the same thing. 51 * Alternatively, we could say that it's the "or" of R, W, and X 52 * permissions. 53 */ 54#define _PAGE_VALID _PAGE_PRESENT 55 56/* 57 * We're not defining _PAGE_GLOBAL here, since there's no concept 58 * of global pages or ASIDs exposed to the Hexagon Virtual Machine, 59 * and we want to use the same page table structures and macros in 60 * the native kernel as we do in the virtual machine kernel. 61 * So we'll put up with a bit of inefficiency for now... 62 */ 63 64/* 65 * Top "FOURTH" level (pgd), which for the Hexagon VM is really 66 * only the second from the bottom, pgd and pud both being collapsed. 67 * Each entry represents 4MB of virtual address space, 4K of table 68 * thus maps the full 4GB. 69 */ 70#define PGDIR_SHIFT 22 71#define PTRS_PER_PGD 1024 72 73#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 74#define PGDIR_MASK (~(PGDIR_SIZE-1)) 75 76#ifdef CONFIG_PAGE_SIZE_4KB 77#define PTRS_PER_PTE 1024 78#endif 79 80#ifdef CONFIG_PAGE_SIZE_16KB 81#define PTRS_PER_PTE 256 82#endif 83 84#ifdef CONFIG_PAGE_SIZE_64KB 85#define PTRS_PER_PTE 64 86#endif 87 88#ifdef CONFIG_PAGE_SIZE_256KB 89#define PTRS_PER_PTE 16 90#endif 91 92#ifdef CONFIG_PAGE_SIZE_1MB 93#define PTRS_PER_PTE 4 94#endif 95 96/* Any bigger and the PTE disappears. */ 97#define pgd_ERROR(e) \ 98 printk(KERN_ERR "%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__,\ 99 pgd_val(e)) 100 101/* 102 * Page Protection Constants. Includes (in this variant) cache attributes. 103 */ 104extern unsigned long _dflt_cache_att; 105 106#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 107 _dflt_cache_att) 108#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 109 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 110#define PAGE_COPY PAGE_READONLY 111#define PAGE_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 112 _PAGE_READ | _PAGE_EXECUTE | _dflt_cache_att) 113#define PAGE_COPY_EXEC PAGE_EXEC 114#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 115 _PAGE_EXECUTE | _PAGE_WRITE | _dflt_cache_att) 116#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 117 _PAGE_WRITE | _PAGE_EXECUTE | _dflt_cache_att) 118 119 120/* 121 * Aliases for mapping mmap() protection bits to page protections. 122 * These get used for static initialization, so using the _dflt_cache_att 123 * variable for the default cache attribute isn't workable. If the 124 * default gets changed at boot time, the boot option code has to 125 * update data structures like the protaction_map[] array. 126 */ 127#define CACHEDEF (CACHE_DEFAULT << 6) 128 129/* Private (copy-on-write) page protections. */ 130#define __P000 __pgprot(_PAGE_PRESENT | _PAGE_USER | CACHEDEF) 131#define __P001 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | CACHEDEF) 132#define __P010 __P000 /* Write-only copy-on-write */ 133#define __P011 __P001 /* Read/Write copy-on-write */ 134#define __P100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 135 _PAGE_EXECUTE | CACHEDEF) 136#define __P101 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_EXECUTE | \ 137 _PAGE_READ | CACHEDEF) 138#define __P110 __P100 /* Write/execute copy-on-write */ 139#define __P111 __P101 /* Read/Write/Execute, copy-on-write */ 140 141/* Shared page protections. */ 142#define __S000 __P000 143#define __S001 __P001 144#define __S010 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 145 _PAGE_WRITE | CACHEDEF) 146#define __S011 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 147 _PAGE_WRITE | CACHEDEF) 148#define __S100 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 149 _PAGE_EXECUTE | CACHEDEF) 150#define __S101 __P101 151#define __S110 __pgprot(_PAGE_PRESENT | _PAGE_USER | \ 152 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 153#define __S111 __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | \ 154 _PAGE_EXECUTE | _PAGE_WRITE | CACHEDEF) 155 156extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* located in head.S */ 157 158/* Seems to be zero even in architectures where the zero page is firewalled? */ 159#define FIRST_USER_ADDRESS 0UL 160 161/* HUGETLB not working currently */ 162#ifdef CONFIG_HUGETLB_PAGE 163#define pte_mkhuge(pte) __pte((pte_val(pte) & ~0x3) | HVM_HUGEPAGE_SIZE) 164#endif 165 166/* 167 * For now, assume that higher-level code will do TLB/MMU invalidations 168 * and don't insert that overhead into this low-level function. 169 */ 170extern void sync_icache_dcache(pte_t pte); 171 172#define pte_present_exec_user(pte) \ 173 ((pte_val(pte) & (_PAGE_EXECUTE | _PAGE_USER)) == \ 174 (_PAGE_EXECUTE | _PAGE_USER)) 175 176static inline void set_pte(pte_t *ptep, pte_t pteval) 177{ 178 /* should really be using pte_exec, if it weren't declared later. */ 179 if (pte_present_exec_user(pteval)) 180 sync_icache_dcache(pteval); 181 182 *ptep = pteval; 183} 184 185/* 186 * For the Hexagon Virtual Machine MMU (or its emulation), a null/invalid 187 * L1 PTE (PMD/PGD) has 7 in the least significant bits. For the L2 PTE 188 * (Linux PTE), the key is to have bits 11..9 all zero. We'd use 0x7 189 * as a universal null entry, but some of those least significant bits 190 * are interpreted by software. 191 */ 192#define _NULL_PMD 0x7 193#define _NULL_PTE 0x0 194 195static inline void pmd_clear(pmd_t *pmd_entry_ptr) 196{ 197 pmd_val(*pmd_entry_ptr) = _NULL_PMD; 198} 199 200/* 201 * Conveniently, a null PTE value is invalid. 202 */ 203static inline void pte_clear(struct mm_struct *mm, unsigned long addr, 204 pte_t *ptep) 205{ 206 pte_val(*ptep) = _NULL_PTE; 207} 208 209/** 210 * pmd_none - check if pmd_entry is mapped 211 * @pmd_entry: pmd entry 212 * 213 * MIPS checks it against that "invalid pte table" thing. 214 */ 215static inline int pmd_none(pmd_t pmd) 216{ 217 return pmd_val(pmd) == _NULL_PMD; 218} 219 220/** 221 * pmd_present - is there a page table behind this? 222 * Essentially the inverse of pmd_none. We maybe 223 * save an inline instruction by defining it this 224 * way, instead of simply "!pmd_none". 225 */ 226static inline int pmd_present(pmd_t pmd) 227{ 228 return pmd_val(pmd) != (unsigned long)_NULL_PMD; 229} 230 231/** 232 * pmd_bad - check if a PMD entry is "bad". That might mean swapped out. 233 * As we have no known cause of badness, it's null, as it is for many 234 * architectures. 235 */ 236static inline int pmd_bad(pmd_t pmd) 237{ 238 return 0; 239} 240 241/* 242 * pmd_page - converts a PMD entry to a page pointer 243 */ 244#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)) 245#define pmd_pgtable(pmd) pmd_page(pmd) 246 247/** 248 * pte_none - check if pte is mapped 249 * @pte: pte_t entry 250 */ 251static inline int pte_none(pte_t pte) 252{ 253 return pte_val(pte) == _NULL_PTE; 254}; 255 256/* 257 * pte_present - check if page is present 258 */ 259static inline int pte_present(pte_t pte) 260{ 261 return pte_val(pte) & _PAGE_PRESENT; 262} 263 264/* mk_pte - make a PTE out of a page pointer and protection bits */ 265#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 266 267/* pte_page - returns a page (frame pointer/descriptor?) based on a PTE */ 268#define pte_page(x) pfn_to_page(pte_pfn(x)) 269 270/* pte_mkold - mark PTE as not recently accessed */ 271static inline pte_t pte_mkold(pte_t pte) 272{ 273 pte_val(pte) &= ~_PAGE_ACCESSED; 274 return pte; 275} 276 277/* pte_mkyoung - mark PTE as recently accessed */ 278static inline pte_t pte_mkyoung(pte_t pte) 279{ 280 pte_val(pte) |= _PAGE_ACCESSED; 281 return pte; 282} 283 284/* pte_mkclean - mark page as in sync with backing store */ 285static inline pte_t pte_mkclean(pte_t pte) 286{ 287 pte_val(pte) &= ~_PAGE_DIRTY; 288 return pte; 289} 290 291/* pte_mkdirty - mark page as modified */ 292static inline pte_t pte_mkdirty(pte_t pte) 293{ 294 pte_val(pte) |= _PAGE_DIRTY; 295 return pte; 296} 297 298/* pte_young - "is PTE marked as accessed"? */ 299static inline int pte_young(pte_t pte) 300{ 301 return pte_val(pte) & _PAGE_ACCESSED; 302} 303 304/* pte_dirty - "is PTE dirty?" */ 305static inline int pte_dirty(pte_t pte) 306{ 307 return pte_val(pte) & _PAGE_DIRTY; 308} 309 310/* pte_modify - set protection bits on PTE */ 311static inline pte_t pte_modify(pte_t pte, pgprot_t prot) 312{ 313 pte_val(pte) &= PAGE_MASK; 314 pte_val(pte) |= pgprot_val(prot); 315 return pte; 316} 317 318/* pte_wrprotect - mark page as not writable */ 319static inline pte_t pte_wrprotect(pte_t pte) 320{ 321 pte_val(pte) &= ~_PAGE_WRITE; 322 return pte; 323} 324 325/* pte_mkwrite - mark page as writable */ 326static inline pte_t pte_mkwrite(pte_t pte) 327{ 328 pte_val(pte) |= _PAGE_WRITE; 329 return pte; 330} 331 332/* pte_mkexec - mark PTE as executable */ 333static inline pte_t pte_mkexec(pte_t pte) 334{ 335 pte_val(pte) |= _PAGE_EXECUTE; 336 return pte; 337} 338 339/* pte_read - "is PTE marked as readable?" */ 340static inline int pte_read(pte_t pte) 341{ 342 return pte_val(pte) & _PAGE_READ; 343} 344 345/* pte_write - "is PTE marked as writable?" */ 346static inline int pte_write(pte_t pte) 347{ 348 return pte_val(pte) & _PAGE_WRITE; 349} 350 351 352/* pte_exec - "is PTE marked as executable?" */ 353static inline int pte_exec(pte_t pte) 354{ 355 return pte_val(pte) & _PAGE_EXECUTE; 356} 357 358/* __pte_to_swp_entry - extract swap entry from PTE */ 359#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 360 361/* __swp_entry_to_pte - extract PTE from swap entry */ 362#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 363 364/* pfn_pte - convert page number and protection value to page table entry */ 365#define pfn_pte(pfn, pgprot) __pte((pfn << PAGE_SHIFT) | pgprot_val(pgprot)) 366 367/* pte_pfn - convert pte to page frame number */ 368#define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) 369#define set_pmd(pmdptr, pmdval) (*(pmdptr) = (pmdval)) 370 371/* 372 * set_pte_at - update page table and do whatever magic may be 373 * necessary to make the underlying hardware/firmware take note. 374 * 375 * VM may require a virtual instruction to alert the MMU. 376 */ 377#define set_pte_at(mm, addr, ptep, pte) set_pte(ptep, pte) 378 379static inline unsigned long pmd_page_vaddr(pmd_t pmd) 380{ 381 return (unsigned long)__va(pmd_val(pmd) & PAGE_MASK); 382} 383 384/* ZERO_PAGE - returns the globally shared zero page */ 385#define ZERO_PAGE(vaddr) (virt_to_page(&empty_zero_page)) 386 387/* 388 * Swap/file PTE definitions. If _PAGE_PRESENT is zero, the rest of the PTE is 389 * interpreted as swap information. The remaining free bits are interpreted as 390 * swap type/offset tuple. Rather than have the TLB fill handler test 391 * _PAGE_PRESENT, we're going to reserve the permissions bits and set them to 392 * all zeros for swap entries, which speeds up the miss handler at the cost of 393 * 3 bits of offset. That trade-off can be revisited if necessary, but Hexagon 394 * processor architecture and target applications suggest a lot of TLB misses 395 * and not much swap space. 396 * 397 * Format of swap PTE: 398 * bit 0: Present (zero) 399 * bits 1-5: swap type (arch independent layer uses 5 bits max) 400 * bits 6-9: bits 3:0 of offset 401 * bits 10-12: effectively _PAGE_PROTNONE (all zero) 402 * bits 13-31: bits 22:4 of swap offset 403 * 404 * The split offset makes some of the following macros a little gnarly, 405 * but there's plenty of precedent for this sort of thing. 406 */ 407 408/* Used for swap PTEs */ 409#define __swp_type(swp_pte) (((swp_pte).val >> 1) & 0x1f) 410 411#define __swp_offset(swp_pte) \ 412 ((((swp_pte).val >> 6) & 0xf) | (((swp_pte).val >> 9) & 0x7ffff0)) 413 414#define __swp_entry(type, offset) \ 415 ((swp_entry_t) { \ 416 ((type << 1) | \ 417 ((offset & 0x7ffff0) << 9) | ((offset & 0xf) << 6)) }) 418 419#endif 420