1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  Device State Control Registers driver
4 *
5 *  Copyright (C) 2011 Texas Instruments Incorporated
6 *  Author: Mark Salter <msalter@redhat.com>
7 */
8
9/*
10 * The Device State Control Registers (DSCR) provide SoC level control over
11 * a number of peripherals. Details vary considerably among the various SoC
12 * parts. In general, the DSCR block will provide one or more configuration
13 * registers often protected by a lock register. One or more key values must
14 * be written to a lock register in order to unlock the configuration register.
15 * The configuration register may be used to enable (and disable in some
16 * cases) SoC pin drivers, peripheral clock sources (internal or pin), etc.
17 * In some cases, a configuration register is write once or the individual
18 * bits are write once. That is, you may be able to enable a device, but
19 * will not be able to disable it.
20 *
21 * In addition to device configuration, the DSCR block may provide registers
22 * which are used to reset SoC peripherals, provide device ID information,
23 * provide MAC addresses, and other miscellaneous functions.
24 */
25
26#include <linux/of.h>
27#include <linux/of_address.h>
28#include <linux/of_platform.h>
29#include <linux/module.h>
30#include <linux/io.h>
31#include <linux/delay.h>
32#include <asm/soc.h>
33#include <asm/dscr.h>
34
35#define MAX_DEVSTATE_IDS   32
36#define MAX_DEVCTL_REGS     8
37#define MAX_DEVSTAT_REGS    8
38#define MAX_LOCKED_REGS     4
39#define MAX_SOC_EMACS       2
40
41struct rmii_reset_reg {
42	u32 reg;
43	u32 mask;
44};
45
46/*
47 * Some registerd may be locked. In order to write to these
48 * registers, the key value must first be written to the lockreg.
49 */
50struct locked_reg {
51	u32 reg;	/* offset from base */
52	u32 lockreg;	/* offset from base */
53	u32 key;	/* unlock key */
54};
55
56/*
57 * This describes a contiguous area of like control bits used to enable/disable
58 * SoC devices. Each controllable device is given an ID which is used by the
59 * individual device drivers to control the device state. These IDs start at
60 * zero and are assigned sequentially to the control bitfield ranges described
61 * by this structure.
62 */
63struct devstate_ctl_reg {
64	u32 reg;		/* register holding the control bits */
65	u8  start_id;		/* start id of this range */
66	u8  num_ids;		/* number of devices in this range */
67	u8  enable_only;	/* bits are write-once to enable only */
68	u8  enable;		/* value used to enable device */
69	u8  disable;		/* value used to disable device */
70	u8  shift;		/* starting (rightmost) bit in range */
71	u8  nbits;		/* number of bits per device */
72};
73
74
75/*
76 * This describes a region of status bits indicating the state of
77 * various devices. This is used internally to wait for status
78 * change completion when enabling/disabling a device. Status is
79 * optional and not all device controls will have a corresponding
80 * status.
81 */
82struct devstate_stat_reg {
83	u32 reg;		/* register holding the status bits */
84	u8  start_id;		/* start id of this range */
85	u8  num_ids;		/* number of devices in this range */
86	u8  enable;		/* value indicating enabled state */
87	u8  disable;		/* value indicating disabled state */
88	u8  shift;		/* starting (rightmost) bit in range */
89	u8  nbits;		/* number of bits per device */
90};
91
92struct devstate_info {
93	struct devstate_ctl_reg *ctl;
94	struct devstate_stat_reg *stat;
95};
96
97/* These are callbacks to SOC-specific code. */
98struct dscr_ops {
99	void (*init)(struct device_node *node);
100};
101
102struct dscr_regs {
103	spinlock_t		lock;
104	void __iomem		*base;
105	u32			kick_reg[2];
106	u32			kick_key[2];
107	struct locked_reg	locked[MAX_LOCKED_REGS];
108	struct devstate_info	devstate_info[MAX_DEVSTATE_IDS];
109	struct rmii_reset_reg   rmii_resets[MAX_SOC_EMACS];
110	struct devstate_ctl_reg devctl[MAX_DEVCTL_REGS];
111	struct devstate_stat_reg devstat[MAX_DEVSTAT_REGS];
112};
113
114static struct dscr_regs	dscr;
115
116static struct locked_reg *find_locked_reg(u32 reg)
117{
118	int i;
119
120	for (i = 0; i < MAX_LOCKED_REGS; i++)
121		if (dscr.locked[i].key && reg == dscr.locked[i].reg)
122			return &dscr.locked[i];
123	return NULL;
124}
125
126/*
127 * Write to a register with one lock
128 */
129static void dscr_write_locked1(u32 reg, u32 val,
130			       u32 lock, u32 key)
131{
132	void __iomem *reg_addr = dscr.base + reg;
133	void __iomem *lock_addr = dscr.base + lock;
134
135	/*
136	 * For some registers, the lock is relocked after a short number
137	 * of cycles. We have to put the lock write and register write in
138	 * the same fetch packet to meet this timing. The .align ensures
139	 * the two stw instructions are in the same fetch packet.
140	 */
141	asm volatile ("b	.s2	0f\n"
142		      "nop	5\n"
143		      "    .align 5\n"
144		      "0:\n"
145		      "stw	.D1T2	%3,*%2\n"
146		      "stw	.D1T2	%1,*%0\n"
147		      :
148		      : "a"(reg_addr), "b"(val), "a"(lock_addr), "b"(key)
149		);
150
151	/* in case the hw doesn't reset the lock */
152	soc_writel(0, lock_addr);
153}
154
155/*
156 * Write to a register protected by two lock registers
157 */
158static void dscr_write_locked2(u32 reg, u32 val,
159			       u32 lock0, u32 key0,
160			       u32 lock1, u32 key1)
161{
162	soc_writel(key0, dscr.base + lock0);
163	soc_writel(key1, dscr.base + lock1);
164	soc_writel(val, dscr.base + reg);
165	soc_writel(0, dscr.base + lock0);
166	soc_writel(0, dscr.base + lock1);
167}
168
169static void dscr_write(u32 reg, u32 val)
170{
171	struct locked_reg *lock;
172
173	lock = find_locked_reg(reg);
174	if (lock)
175		dscr_write_locked1(reg, val, lock->lockreg, lock->key);
176	else if (dscr.kick_key[0])
177		dscr_write_locked2(reg, val, dscr.kick_reg[0], dscr.kick_key[0],
178				   dscr.kick_reg[1], dscr.kick_key[1]);
179	else
180		soc_writel(val, dscr.base + reg);
181}
182
183
184/*
185 * Drivers can use this interface to enable/disable SoC IP blocks.
186 */
187void dscr_set_devstate(int id, enum dscr_devstate_t state)
188{
189	struct devstate_ctl_reg *ctl;
190	struct devstate_stat_reg *stat;
191	struct devstate_info *info;
192	u32 ctl_val, val;
193	int ctl_shift, ctl_mask;
194	unsigned long flags;
195
196	if (!dscr.base)
197		return;
198
199	if (id < 0 || id >= MAX_DEVSTATE_IDS)
200		return;
201
202	info = &dscr.devstate_info[id];
203	ctl = info->ctl;
204	stat = info->stat;
205
206	if (ctl == NULL)
207		return;
208
209	ctl_shift = ctl->shift + ctl->nbits * (id - ctl->start_id);
210	ctl_mask = ((1 << ctl->nbits) - 1) << ctl_shift;
211
212	switch (state) {
213	case DSCR_DEVSTATE_ENABLED:
214		ctl_val = ctl->enable << ctl_shift;
215		break;
216	case DSCR_DEVSTATE_DISABLED:
217		if (ctl->enable_only)
218			return;
219		ctl_val = ctl->disable << ctl_shift;
220		break;
221	default:
222		return;
223	}
224
225	spin_lock_irqsave(&dscr.lock, flags);
226
227	val = soc_readl(dscr.base + ctl->reg);
228	val &= ~ctl_mask;
229	val |= ctl_val;
230
231	dscr_write(ctl->reg, val);
232
233	spin_unlock_irqrestore(&dscr.lock, flags);
234
235	if (!stat)
236		return;
237
238	ctl_shift = stat->shift + stat->nbits * (id - stat->start_id);
239
240	if (state == DSCR_DEVSTATE_ENABLED)
241		ctl_val = stat->enable;
242	else
243		ctl_val = stat->disable;
244
245	do {
246		val = soc_readl(dscr.base + stat->reg);
247		val >>= ctl_shift;
248		val &= ((1 << stat->nbits) - 1);
249	} while (val != ctl_val);
250}
251EXPORT_SYMBOL(dscr_set_devstate);
252
253/*
254 * Drivers can use this to reset RMII module.
255 */
256void dscr_rmii_reset(int id, int assert)
257{
258	struct rmii_reset_reg *r;
259	unsigned long flags;
260	u32 val;
261
262	if (id < 0 || id >= MAX_SOC_EMACS)
263		return;
264
265	r = &dscr.rmii_resets[id];
266	if (r->mask == 0)
267		return;
268
269	spin_lock_irqsave(&dscr.lock, flags);
270
271	val = soc_readl(dscr.base + r->reg);
272	if (assert)
273		dscr_write(r->reg, val | r->mask);
274	else
275		dscr_write(r->reg, val & ~(r->mask));
276
277	spin_unlock_irqrestore(&dscr.lock, flags);
278}
279EXPORT_SYMBOL(dscr_rmii_reset);
280
281static void __init dscr_parse_devstat(struct device_node *node,
282				      void __iomem *base)
283{
284	u32 val;
285	int err;
286
287	err = of_property_read_u32_array(node, "ti,dscr-devstat", &val, 1);
288	if (!err)
289		c6x_devstat = soc_readl(base + val);
290	printk(KERN_INFO "DEVSTAT: %08x\n", c6x_devstat);
291}
292
293static void __init dscr_parse_silicon_rev(struct device_node *node,
294					 void __iomem *base)
295{
296	u32 vals[3];
297	int err;
298
299	err = of_property_read_u32_array(node, "ti,dscr-silicon-rev", vals, 3);
300	if (!err) {
301		c6x_silicon_rev = soc_readl(base + vals[0]);
302		c6x_silicon_rev >>= vals[1];
303		c6x_silicon_rev &= vals[2];
304	}
305}
306
307/*
308 * Some SoCs will have a pair of fuse registers which hold
309 * an ethernet MAC address. The "ti,dscr-mac-fuse-regs"
310 * property is a mapping from fuse register bytes to MAC
311 * address bytes. The expected format is:
312 *
313 *	ti,dscr-mac-fuse-regs = <reg0 b3 b2 b1 b0
314 *				 reg1 b3 b2 b1 b0>
315 *
316 * reg0 and reg1 are the offsets of the two fuse registers.
317 * b3-b0 positionally represent bytes within the fuse register.
318 * b3 is the most significant byte and b0 is the least.
319 * Allowable values for b3-b0 are:
320 *
321 *	  0 = fuse register byte not used in MAC address
322 *      1-6 = index+1 into c6x_fuse_mac[]
323 */
324static void __init dscr_parse_mac_fuse(struct device_node *node,
325				       void __iomem *base)
326{
327	u32 vals[10], fuse;
328	int f, i, j, err;
329
330	err = of_property_read_u32_array(node, "ti,dscr-mac-fuse-regs",
331					 vals, 10);
332	if (err)
333		return;
334
335	for (f = 0; f < 2; f++) {
336		fuse = soc_readl(base + vals[f * 5]);
337		for (j = (f * 5) + 1, i = 24; i >= 0; i -= 8, j++)
338			if (vals[j] && vals[j] <= 6)
339				c6x_fuse_mac[vals[j] - 1] = fuse >> i;
340	}
341}
342
343static void __init dscr_parse_rmii_resets(struct device_node *node,
344					  void __iomem *base)
345{
346	const __be32 *p;
347	int i, size;
348
349	/* look for RMII reset registers */
350	p = of_get_property(node, "ti,dscr-rmii-resets", &size);
351	if (p) {
352		/* parse all the reg/mask pairs we can handle */
353		size /= (sizeof(*p) * 2);
354		if (size > MAX_SOC_EMACS)
355			size = MAX_SOC_EMACS;
356
357		for (i = 0; i < size; i++) {
358			dscr.rmii_resets[i].reg = be32_to_cpup(p++);
359			dscr.rmii_resets[i].mask = be32_to_cpup(p++);
360		}
361	}
362}
363
364
365static void __init dscr_parse_privperm(struct device_node *node,
366				       void __iomem *base)
367{
368	u32 vals[2];
369	int err;
370
371	err = of_property_read_u32_array(node, "ti,dscr-privperm", vals, 2);
372	if (err)
373		return;
374	dscr_write(vals[0], vals[1]);
375}
376
377/*
378 * SoCs may have "locked" DSCR registers which can only be written
379 * to only after writing a key value to a lock registers. These
380 * regisers can be described with the "ti,dscr-locked-regs" property.
381 * This property provides a list of register descriptions with each
382 * description consisting of three values.
383 *
384 *	ti,dscr-locked-regs = <reg0 lockreg0 key0
385 *                               ...
386 *                             regN lockregN keyN>;
387 *
388 * reg is the offset of the locked register
389 * lockreg is the offset of the lock register
390 * key is the unlock key written to lockreg
391 *
392 */
393static void __init dscr_parse_locked_regs(struct device_node *node,
394					  void __iomem *base)
395{
396	struct locked_reg *r;
397	const __be32 *p;
398	int i, size;
399
400	p = of_get_property(node, "ti,dscr-locked-regs", &size);
401	if (p) {
402		/* parse all the register descriptions we can handle */
403		size /= (sizeof(*p) * 3);
404		if (size > MAX_LOCKED_REGS)
405			size = MAX_LOCKED_REGS;
406
407		for (i = 0; i < size; i++) {
408			r = &dscr.locked[i];
409
410			r->reg = be32_to_cpup(p++);
411			r->lockreg = be32_to_cpup(p++);
412			r->key = be32_to_cpup(p++);
413		}
414	}
415}
416
417/*
418 * SoCs may have DSCR registers which are only write enabled after
419 * writing specific key values to two registers. The two key registers
420 * and the key values can be parsed from a "ti,dscr-kick-regs"
421 * propety with the following layout:
422 *
423 *	ti,dscr-kick-regs = <kickreg0 key0 kickreg1 key1>
424 *
425 * kickreg is the offset of the "kick" register
426 * key is the value which unlocks writing for protected regs
427 */
428static void __init dscr_parse_kick_regs(struct device_node *node,
429					void __iomem *base)
430{
431	u32 vals[4];
432	int err;
433
434	err = of_property_read_u32_array(node, "ti,dscr-kick-regs", vals, 4);
435	if (!err) {
436		dscr.kick_reg[0] = vals[0];
437		dscr.kick_key[0] = vals[1];
438		dscr.kick_reg[1] = vals[2];
439		dscr.kick_key[1] = vals[3];
440	}
441}
442
443
444/*
445 * SoCs may provide controls to enable/disable individual IP blocks. These
446 * controls in the DSCR usually control pin drivers but also may control
447 * clocking and or resets. The device tree is used to describe the bitfields
448 * in registers used to control device state. The number of bits and their
449 * values may vary even within the same register.
450 *
451 * The layout of these bitfields is described by the ti,dscr-devstate-ctl-regs
452 * property. This property is a list where each element describes a contiguous
453 * range of control fields with like properties. Each element of the list
454 * consists of 7 cells with the following values:
455 *
456 *   start_id num_ids reg enable disable start_bit nbits
457 *
458 * start_id is device id for the first device control in the range
459 * num_ids is the number of device controls in the range
460 * reg is the offset of the register holding the control bits
461 * enable is the value to enable a device
462 * disable is the value to disable a device (0xffffffff if cannot disable)
463 * start_bit is the bit number of the first bit in the range
464 * nbits is the number of bits per device control
465 */
466static void __init dscr_parse_devstate_ctl_regs(struct device_node *node,
467						void __iomem *base)
468{
469	struct devstate_ctl_reg *r;
470	const __be32 *p;
471	int i, j, size;
472
473	p = of_get_property(node, "ti,dscr-devstate-ctl-regs", &size);
474	if (p) {
475		/* parse all the ranges we can handle */
476		size /= (sizeof(*p) * 7);
477		if (size > MAX_DEVCTL_REGS)
478			size = MAX_DEVCTL_REGS;
479
480		for (i = 0; i < size; i++) {
481			r = &dscr.devctl[i];
482
483			r->start_id = be32_to_cpup(p++);
484			r->num_ids = be32_to_cpup(p++);
485			r->reg = be32_to_cpup(p++);
486			r->enable = be32_to_cpup(p++);
487			r->disable = be32_to_cpup(p++);
488			if (r->disable == 0xffffffff)
489				r->enable_only = 1;
490			r->shift = be32_to_cpup(p++);
491			r->nbits = be32_to_cpup(p++);
492
493			for (j = r->start_id;
494			     j < (r->start_id + r->num_ids);
495			     j++)
496				dscr.devstate_info[j].ctl = r;
497		}
498	}
499}
500
501/*
502 * SoCs may provide status registers indicating the state (enabled/disabled) of
503 * devices on the SoC. The device tree is used to describe the bitfields in
504 * registers used to provide device status. The number of bits and their
505 * values used to provide status may vary even within the same register.
506 *
507 * The layout of these bitfields is described by the ti,dscr-devstate-stat-regs
508 * property. This property is a list where each element describes a contiguous
509 * range of status fields with like properties. Each element of the list
510 * consists of 7 cells with the following values:
511 *
512 *   start_id num_ids reg enable disable start_bit nbits
513 *
514 * start_id is device id for the first device status in the range
515 * num_ids is the number of devices covered by the range
516 * reg is the offset of the register holding the status bits
517 * enable is the value indicating device is enabled
518 * disable is the value indicating device is disabled
519 * start_bit is the bit number of the first bit in the range
520 * nbits is the number of bits per device status
521 */
522static void __init dscr_parse_devstate_stat_regs(struct device_node *node,
523						 void __iomem *base)
524{
525	struct devstate_stat_reg *r;
526	const __be32 *p;
527	int i, j, size;
528
529	p = of_get_property(node, "ti,dscr-devstate-stat-regs", &size);
530	if (p) {
531		/* parse all the ranges we can handle */
532		size /= (sizeof(*p) * 7);
533		if (size > MAX_DEVSTAT_REGS)
534			size = MAX_DEVSTAT_REGS;
535
536		for (i = 0; i < size; i++) {
537			r = &dscr.devstat[i];
538
539			r->start_id = be32_to_cpup(p++);
540			r->num_ids = be32_to_cpup(p++);
541			r->reg = be32_to_cpup(p++);
542			r->enable = be32_to_cpup(p++);
543			r->disable = be32_to_cpup(p++);
544			r->shift = be32_to_cpup(p++);
545			r->nbits = be32_to_cpup(p++);
546
547			for (j = r->start_id;
548			     j < (r->start_id + r->num_ids);
549			     j++)
550				dscr.devstate_info[j].stat = r;
551		}
552	}
553}
554
555static struct of_device_id dscr_ids[] __initdata = {
556	{ .compatible = "ti,c64x+dscr" },
557	{}
558};
559
560/*
561 * Probe for DSCR area.
562 *
563 * This has to be done early on in case timer or interrupt controller
564 * needs something. e.g. On C6455 SoC, timer must be enabled through
565 * DSCR before it is functional.
566 */
567void __init dscr_probe(void)
568{
569	struct device_node *node;
570	void __iomem *base;
571
572	spin_lock_init(&dscr.lock);
573
574	node = of_find_matching_node(NULL, dscr_ids);
575	if (!node)
576		return;
577
578	base = of_iomap(node, 0);
579	if (!base) {
580		of_node_put(node);
581		return;
582	}
583
584	dscr.base = base;
585
586	dscr_parse_devstat(node, base);
587	dscr_parse_silicon_rev(node, base);
588	dscr_parse_mac_fuse(node, base);
589	dscr_parse_rmii_resets(node, base);
590	dscr_parse_locked_regs(node, base);
591	dscr_parse_kick_regs(node, base);
592	dscr_parse_devstate_ctl_regs(node, base);
593	dscr_parse_devstate_stat_regs(node, base);
594	dscr_parse_privperm(node, base);
595}
596