xref: /kernel/linux/linux-5.10/arch/arm64/mm/pageattr.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2014, The Linux Foundation. All rights reserved.
4 */
5#include <linux/kernel.h>
6#include <linux/mm.h>
7#include <linux/module.h>
8#include <linux/sched.h>
9#include <linux/vmalloc.h>
10
11#include <asm/cacheflush.h>
12#include <asm/set_memory.h>
13#include <asm/tlbflush.h>
14
15struct page_change_data {
16	pgprot_t set_mask;
17	pgprot_t clear_mask;
18};
19
20bool rodata_full __ro_after_init = IS_ENABLED(CONFIG_RODATA_FULL_DEFAULT_ENABLED);
21
22static int change_page_range(pte_t *ptep, unsigned long addr, void *data)
23{
24	struct page_change_data *cdata = data;
25	pte_t pte = READ_ONCE(*ptep);
26
27	pte = clear_pte_bit(pte, cdata->clear_mask);
28	pte = set_pte_bit(pte, cdata->set_mask);
29
30	set_pte(ptep, pte);
31	return 0;
32}
33
34/*
35 * This function assumes that the range is mapped with PAGE_SIZE pages.
36 */
37static int __change_memory_common(unsigned long start, unsigned long size,
38				pgprot_t set_mask, pgprot_t clear_mask)
39{
40	struct page_change_data data;
41	int ret;
42
43	data.set_mask = set_mask;
44	data.clear_mask = clear_mask;
45
46	ret = apply_to_page_range(&init_mm, start, size, change_page_range,
47					&data);
48
49	flush_tlb_kernel_range(start, start + size);
50	return ret;
51}
52
53static int change_memory_common(unsigned long addr, int numpages,
54				pgprot_t set_mask, pgprot_t clear_mask)
55{
56	unsigned long start = addr;
57	unsigned long size = PAGE_SIZE * numpages;
58	unsigned long end = start + size;
59	struct vm_struct *area;
60	int i;
61
62	if (!PAGE_ALIGNED(addr)) {
63		start &= PAGE_MASK;
64		end = start + size;
65		WARN_ON_ONCE(1);
66	}
67
68	/*
69	 * Kernel VA mappings are always live, and splitting live section
70	 * mappings into page mappings may cause TLB conflicts. This means
71	 * we have to ensure that changing the permission bits of the range
72	 * we are operating on does not result in such splitting.
73	 *
74	 * Let's restrict ourselves to mappings created by vmalloc (or vmap).
75	 * Those are guaranteed to consist entirely of page mappings, and
76	 * splitting is never needed.
77	 *
78	 * So check whether the [addr, addr + size) interval is entirely
79	 * covered by precisely one VM area that has the VM_ALLOC flag set.
80	 */
81	area = find_vm_area((void *)addr);
82	if (!area ||
83	    end > (unsigned long)area->addr + area->size ||
84	    !(area->flags & VM_ALLOC))
85		return -EINVAL;
86
87	if (!numpages)
88		return 0;
89
90	/*
91	 * If we are manipulating read-only permissions, apply the same
92	 * change to the linear mapping of the pages that back this VM area.
93	 */
94	if (rodata_full && (pgprot_val(set_mask) == PTE_RDONLY ||
95			    pgprot_val(clear_mask) == PTE_RDONLY)) {
96		for (i = 0; i < area->nr_pages; i++) {
97			__change_memory_common((u64)page_address(area->pages[i]),
98					       PAGE_SIZE, set_mask, clear_mask);
99		}
100	}
101
102	/*
103	 * Get rid of potentially aliasing lazily unmapped vm areas that may
104	 * have permissions set that deviate from the ones we are setting here.
105	 */
106	vm_unmap_aliases();
107
108	return __change_memory_common(start, size, set_mask, clear_mask);
109}
110
111int set_memory_ro(unsigned long addr, int numpages)
112{
113	return change_memory_common(addr, numpages,
114					__pgprot(PTE_RDONLY),
115					__pgprot(PTE_WRITE));
116}
117
118int set_memory_rw(unsigned long addr, int numpages)
119{
120	return change_memory_common(addr, numpages,
121					__pgprot(PTE_WRITE),
122					__pgprot(PTE_RDONLY));
123}
124
125int set_memory_nx(unsigned long addr, int numpages)
126{
127	return change_memory_common(addr, numpages,
128					__pgprot(PTE_PXN),
129					__pgprot(PTE_MAYBE_GP));
130}
131
132int set_memory_x(unsigned long addr, int numpages)
133{
134	return change_memory_common(addr, numpages,
135					__pgprot(PTE_MAYBE_GP),
136					__pgprot(PTE_PXN));
137}
138
139int set_memory_valid(unsigned long addr, int numpages, int enable)
140{
141	if (enable)
142		return __change_memory_common(addr, PAGE_SIZE * numpages,
143					__pgprot(PTE_VALID),
144					__pgprot(0));
145	else
146		return __change_memory_common(addr, PAGE_SIZE * numpages,
147					__pgprot(0),
148					__pgprot(PTE_VALID));
149}
150
151int set_direct_map_invalid_noflush(struct page *page)
152{
153	struct page_change_data data = {
154		.set_mask = __pgprot(0),
155		.clear_mask = __pgprot(PTE_VALID),
156	};
157
158	if (!rodata_full)
159		return 0;
160
161	return apply_to_page_range(&init_mm,
162				   (unsigned long)page_address(page),
163				   PAGE_SIZE, change_page_range, &data);
164}
165
166int set_direct_map_default_noflush(struct page *page)
167{
168	struct page_change_data data = {
169		.set_mask = __pgprot(PTE_VALID | PTE_WRITE),
170		.clear_mask = __pgprot(PTE_RDONLY),
171	};
172
173	if (!rodata_full)
174		return 0;
175
176	return apply_to_page_range(&init_mm,
177				   (unsigned long)page_address(page),
178				   PAGE_SIZE, change_page_range, &data);
179}
180
181void __kernel_map_pages(struct page *page, int numpages, int enable)
182{
183	if (!debug_pagealloc_enabled() && !rodata_full)
184		return;
185
186	set_memory_valid((unsigned long)page_address(page), numpages, enable);
187}
188
189/*
190 * This function is used to determine if a linear map page has been marked as
191 * not-valid. Walk the page table and check the PTE_VALID bit. This is based
192 * on kern_addr_valid(), which almost does what we need.
193 *
194 * Because this is only called on the kernel linear map,  p?d_sect() implies
195 * p?d_present(). When debug_pagealloc is enabled, sections mappings are
196 * disabled.
197 */
198bool kernel_page_present(struct page *page)
199{
200	pgd_t *pgdp;
201	p4d_t *p4dp;
202	pud_t *pudp, pud;
203	pmd_t *pmdp, pmd;
204	pte_t *ptep;
205	unsigned long addr = (unsigned long)page_address(page);
206
207	if (!debug_pagealloc_enabled() && !rodata_full)
208		return true;
209
210	pgdp = pgd_offset_k(addr);
211	if (pgd_none(READ_ONCE(*pgdp)))
212		return false;
213
214	p4dp = p4d_offset(pgdp, addr);
215	if (p4d_none(READ_ONCE(*p4dp)))
216		return false;
217
218	pudp = pud_offset(p4dp, addr);
219	pud = READ_ONCE(*pudp);
220	if (pud_none(pud))
221		return false;
222	if (pud_sect(pud))
223		return true;
224
225	pmdp = pmd_offset(pudp, addr);
226	pmd = READ_ONCE(*pmdp);
227	if (pmd_none(pmd))
228		return false;
229	if (pmd_sect(pmd))
230		return true;
231
232	ptep = pte_offset_kernel(pmdp, addr);
233	return pte_valid(READ_ONCE(*ptep));
234}
235