1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9#include <linux/kernel.h> 10#include <linux/export.h> 11#include <linux/errno.h> 12#include <linux/swap.h> 13#include <linux/init.h> 14#include <linux/cache.h> 15#include <linux/mman.h> 16#include <linux/nodemask.h> 17#include <linux/initrd.h> 18#include <linux/gfp.h> 19#include <linux/memblock.h> 20#include <linux/sort.h> 21#include <linux/of.h> 22#include <linux/of_fdt.h> 23#include <linux/dma-direct.h> 24#include <linux/dma-map-ops.h> 25#include <linux/efi.h> 26#include <linux/swiotlb.h> 27#include <linux/vmalloc.h> 28#include <linux/mm.h> 29#include <linux/kexec.h> 30#include <linux/crash_dump.h> 31#include <linux/hugetlb.h> 32#include <linux/acpi_iort.h> 33 34#include <asm/boot.h> 35#include <asm/fixmap.h> 36#include <asm/kasan.h> 37#include <asm/kernel-pgtable.h> 38#include <asm/memory.h> 39#include <asm/numa.h> 40#include <asm/sections.h> 41#include <asm/setup.h> 42#include <linux/sizes.h> 43#include <asm/tlb.h> 44#include <asm/alternative.h> 45 46/* 47 * We need to be able to catch inadvertent references to memstart_addr 48 * that occur (potentially in generic code) before arm64_memblock_init() 49 * executes, which assigns it its actual value. So use a default value 50 * that cannot be mistaken for a real physical address. 51 */ 52s64 memstart_addr __ro_after_init = -1; 53EXPORT_SYMBOL(memstart_addr); 54 55/* 56 * If the corresponding config options are enabled, we create both ZONE_DMA 57 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory 58 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). 59 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, 60 * otherwise it is empty. 61 * 62 * Memory reservation for crash kernel either done early or deferred 63 * depending on DMA memory zones configs (ZONE_DMA) -- 64 * 65 * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized 66 * here instead of max_zone_phys(). This lets early reservation of 67 * crash kernel memory which has a dependency on arm64_dma_phys_limit. 68 * Reserving memory early for crash kernel allows linear creation of block 69 * mappings (greater than page-granularity) for all the memory bank rangs. 70 * In this scheme a comparatively quicker boot is observed. 71 * 72 * If ZONE_DMA configs are defined, crash kernel memory reservation 73 * is delayed until DMA zone memory range size initilazation performed in 74 * zone_sizes_init(). The defer is necessary to steer clear of DMA zone 75 * memory range to avoid overlap allocation. So crash kernel memory boundaries 76 * are not known when mapping all bank memory ranges, which otherwise means 77 * not possible to exclude crash kernel range from creating block mappings 78 * so page-granularity mappings are created for the entire memory range. 79 * Hence a slightly slower boot is observed. 80 * 81 * Note: Page-granularity mapppings are necessary for crash kernel memory 82 * range for shrinking its size via /sys/kernel/kexec_crash_size interface. 83 */ 84#if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32) 85phys_addr_t __ro_after_init arm64_dma_phys_limit; 86#else 87phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1; 88#endif 89 90#ifdef CONFIG_KEXEC_CORE 91/* 92 * reserve_crashkernel() - reserves memory for crash kernel 93 * 94 * This function reserves memory area given in "crashkernel=" kernel command 95 * line parameter. The memory reserved is used by dump capture kernel when 96 * primary kernel is crashing. 97 */ 98static void __init reserve_crashkernel(void) 99{ 100 unsigned long long crash_base, crash_size; 101 int ret; 102 103 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 104 &crash_size, &crash_base); 105 /* no crashkernel= or invalid value specified */ 106 if (ret || !crash_size) 107 return; 108 109 crash_size = PAGE_ALIGN(crash_size); 110 111 if (crash_base == 0) { 112 /* Current arm64 boot protocol requires 2MB alignment */ 113 crash_base = memblock_find_in_range(0, arm64_dma_phys_limit, 114 crash_size, SZ_2M); 115 if (crash_base == 0) { 116 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 117 crash_size); 118 return; 119 } 120 } else { 121 /* User specifies base address explicitly. */ 122 if (!memblock_is_region_memory(crash_base, crash_size)) { 123 pr_warn("cannot reserve crashkernel: region is not memory\n"); 124 return; 125 } 126 127 if (memblock_is_region_reserved(crash_base, crash_size)) { 128 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 129 return; 130 } 131 132 if (!IS_ALIGNED(crash_base, SZ_2M)) { 133 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 134 return; 135 } 136 } 137 memblock_reserve(crash_base, crash_size); 138 139 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 140 crash_base, crash_base + crash_size, crash_size >> 20); 141 142 crashk_res.start = crash_base; 143 crashk_res.end = crash_base + crash_size - 1; 144} 145#else 146static void __init reserve_crashkernel(void) 147{ 148} 149#endif /* CONFIG_KEXEC_CORE */ 150 151#ifdef CONFIG_CRASH_DUMP 152static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 153 const char *uname, int depth, void *data) 154{ 155 const __be32 *reg; 156 int len; 157 158 if (depth != 1 || strcmp(uname, "chosen") != 0) 159 return 0; 160 161 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 162 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 163 return 1; 164 165 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 166 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 167 168 return 1; 169} 170 171/* 172 * reserve_elfcorehdr() - reserves memory for elf core header 173 * 174 * This function reserves the memory occupied by an elf core header 175 * described in the device tree. This region contains all the 176 * information about primary kernel's core image and is used by a dump 177 * capture kernel to access the system memory on primary kernel. 178 */ 179static void __init reserve_elfcorehdr(void) 180{ 181 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 182 183 if (!elfcorehdr_size) 184 return; 185 186 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 187 pr_warn("elfcorehdr is overlapped\n"); 188 return; 189 } 190 191 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 192 193 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 194 elfcorehdr_size >> 10, elfcorehdr_addr); 195} 196#else 197static void __init reserve_elfcorehdr(void) 198{ 199} 200#endif /* CONFIG_CRASH_DUMP */ 201 202/* 203 * Return the maximum physical address for a zone accessible by the given bits 204 * limit. If DRAM starts above 32-bit, expand the zone to the maximum 205 * available memory, otherwise cap it at 32-bit. 206 */ 207static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 208{ 209 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); 210 phys_addr_t phys_start = memblock_start_of_DRAM(); 211 212 if (phys_start > U32_MAX) 213 zone_mask = PHYS_ADDR_MAX; 214 else if (phys_start > zone_mask) 215 zone_mask = U32_MAX; 216 217 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; 218} 219 220static void __init zone_sizes_init(unsigned long min, unsigned long max) 221{ 222 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 223 unsigned int __maybe_unused acpi_zone_dma_bits; 224 unsigned int __maybe_unused dt_zone_dma_bits; 225 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); 226 227#ifdef CONFIG_ZONE_DMA 228 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); 229 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); 230 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); 231 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); 232 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 233#endif 234#ifdef CONFIG_ZONE_DMA32 235 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 236 if (!arm64_dma_phys_limit) 237 arm64_dma_phys_limit = dma32_phys_limit; 238#endif 239 max_zone_pfns[ZONE_NORMAL] = max; 240 241 free_area_init(max_zone_pfns); 242} 243 244int pfn_valid(unsigned long pfn) 245{ 246 phys_addr_t addr = pfn << PAGE_SHIFT; 247 248 if ((addr >> PAGE_SHIFT) != pfn) 249 return 0; 250 251#ifdef CONFIG_SPARSEMEM 252 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 253 return 0; 254 255 if (!valid_section(__pfn_to_section(pfn))) 256 return 0; 257 258 /* 259 * ZONE_DEVICE memory does not have the memblock entries. 260 * memblock_is_map_memory() check for ZONE_DEVICE based 261 * addresses will always fail. Even the normal hotplugged 262 * memory will never have MEMBLOCK_NOMAP flag set in their 263 * memblock entries. Skip memblock search for all non early 264 * memory sections covering all of hotplug memory including 265 * both normal and ZONE_DEVICE based. 266 */ 267 if (!early_section(__pfn_to_section(pfn))) 268 return pfn_section_valid(__pfn_to_section(pfn), pfn); 269#endif 270 return memblock_is_map_memory(addr); 271} 272EXPORT_SYMBOL(pfn_valid); 273 274static phys_addr_t memory_limit = PHYS_ADDR_MAX; 275 276/* 277 * Limit the memory size that was specified via FDT. 278 */ 279static int __init early_mem(char *p) 280{ 281 if (!p) 282 return 1; 283 284 memory_limit = memparse(p, &p) & PAGE_MASK; 285 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 286 287 return 0; 288} 289early_param("mem", early_mem); 290 291static int __init early_init_dt_scan_usablemem(unsigned long node, 292 const char *uname, int depth, void *data) 293{ 294 struct memblock_region *usablemem = data; 295 const __be32 *reg; 296 int len; 297 298 if (depth != 1 || strcmp(uname, "chosen") != 0) 299 return 0; 300 301 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 302 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 303 return 1; 304 305 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 306 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 307 308 return 1; 309} 310 311static void __init fdt_enforce_memory_region(void) 312{ 313 struct memblock_region reg = { 314 .size = 0, 315 }; 316 317 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 318 319 if (reg.size) 320 memblock_cap_memory_range(reg.base, reg.size); 321} 322 323void __init arm64_memblock_init(void) 324{ 325 const s64 linear_region_size = BIT(vabits_actual - 1); 326 327 /* Handle linux,usable-memory-range property */ 328 fdt_enforce_memory_region(); 329 330 /* Remove memory above our supported physical address size */ 331 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 332 333 /* 334 * Select a suitable value for the base of physical memory. 335 */ 336 memstart_addr = round_down(memblock_start_of_DRAM(), 337 ARM64_MEMSTART_ALIGN); 338 339 /* 340 * Remove the memory that we will not be able to cover with the 341 * linear mapping. Take care not to clip the kernel which may be 342 * high in memory. 343 */ 344 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 345 __pa_symbol(_end)), ULLONG_MAX); 346 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 347 /* ensure that memstart_addr remains sufficiently aligned */ 348 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 349 ARM64_MEMSTART_ALIGN); 350 memblock_remove(0, memstart_addr); 351 } 352 353 /* 354 * If we are running with a 52-bit kernel VA config on a system that 355 * does not support it, we have to place the available physical 356 * memory in the 48-bit addressable part of the linear region, i.e., 357 * we have to move it upward. Since memstart_addr represents the 358 * physical address of PAGE_OFFSET, we have to *subtract* from it. 359 */ 360 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 361 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 362 363 /* 364 * Apply the memory limit if it was set. Since the kernel may be loaded 365 * high up in memory, add back the kernel region that must be accessible 366 * via the linear mapping. 367 */ 368 if (memory_limit != PHYS_ADDR_MAX) { 369 memblock_mem_limit_remove_map(memory_limit); 370 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 371 } 372 373 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 374 /* 375 * Add back the memory we just removed if it results in the 376 * initrd to become inaccessible via the linear mapping. 377 * Otherwise, this is a no-op 378 */ 379 u64 base = phys_initrd_start & PAGE_MASK; 380 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 381 382 /* 383 * We can only add back the initrd memory if we don't end up 384 * with more memory than we can address via the linear mapping. 385 * It is up to the bootloader to position the kernel and the 386 * initrd reasonably close to each other (i.e., within 32 GB of 387 * each other) so that all granule/#levels combinations can 388 * always access both. 389 */ 390 if (WARN(base < memblock_start_of_DRAM() || 391 base + size > memblock_start_of_DRAM() + 392 linear_region_size, 393 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 394 phys_initrd_size = 0; 395 } else { 396 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 397 memblock_add(base, size); 398 memblock_reserve(base, size); 399 } 400 } 401 402 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 403 extern u16 memstart_offset_seed; 404 u64 range = linear_region_size - 405 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 406 407 /* 408 * If the size of the linear region exceeds, by a sufficient 409 * margin, the size of the region that the available physical 410 * memory spans, randomize the linear region as well. 411 */ 412 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 413 range /= ARM64_MEMSTART_ALIGN; 414 memstart_addr -= ARM64_MEMSTART_ALIGN * 415 ((range * memstart_offset_seed) >> 16); 416 } 417 } 418 419 /* 420 * Register the kernel text, kernel data, initrd, and initial 421 * pagetables with memblock. 422 */ 423 memblock_reserve(__pa_symbol(_text), _end - _text); 424 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 425 /* the generic initrd code expects virtual addresses */ 426 initrd_start = __phys_to_virt(phys_initrd_start); 427 initrd_end = initrd_start + phys_initrd_size; 428 } 429 430 early_init_fdt_scan_reserved_mem(); 431 432 reserve_elfcorehdr(); 433 434 if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) 435 reserve_crashkernel(); 436 437 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 438} 439 440void __init bootmem_init(void) 441{ 442 unsigned long min, max; 443 444 min = PFN_UP(memblock_start_of_DRAM()); 445 max = PFN_DOWN(memblock_end_of_DRAM()); 446 447 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 448 449 max_pfn = max_low_pfn = max; 450 min_low_pfn = min; 451 452 arm64_numa_init(); 453 454 /* 455 * must be done after arm64_numa_init() which calls numa_init() to 456 * initialize node_online_map that gets used in hugetlb_cma_reserve() 457 * while allocating required CMA size across online nodes. 458 */ 459#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 460 arm64_hugetlb_cma_reserve(); 461#endif 462 463 dma_pernuma_cma_reserve(); 464 465 /* 466 * sparse_init() tries to allocate memory from memblock, so must be 467 * done after the fixed reservations 468 */ 469 sparse_init(); 470 zone_sizes_init(min, max); 471 472 /* 473 * Reserve the CMA area after arm64_dma_phys_limit was initialised. 474 */ 475 dma_contiguous_reserve(arm64_dma_phys_limit); 476 477 /* 478 * request_standard_resources() depends on crashkernel's memory being 479 * reserved, so do it here. 480 */ 481 if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)) 482 reserve_crashkernel(); 483 484 memblock_dump_all(); 485} 486 487#ifndef CONFIG_SPARSEMEM_VMEMMAP 488static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 489{ 490 struct page *start_pg, *end_pg; 491 unsigned long pg, pgend; 492 493 /* 494 * Convert start_pfn/end_pfn to a struct page pointer. 495 */ 496 start_pg = pfn_to_page(start_pfn - 1) + 1; 497 end_pg = pfn_to_page(end_pfn - 1) + 1; 498 499 /* 500 * Convert to physical addresses, and round start upwards and end 501 * downwards. 502 */ 503 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 504 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 505 506 /* 507 * If there are free pages between these, free the section of the 508 * memmap array. 509 */ 510 if (pg < pgend) 511 memblock_free(pg, pgend - pg); 512} 513 514/* 515 * The mem_map array can get very big. Free the unused area of the memory map. 516 */ 517static void __init free_unused_memmap(void) 518{ 519 unsigned long start, end, prev_end = 0; 520 int i; 521 522 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 523#ifdef CONFIG_SPARSEMEM 524 /* 525 * Take care not to free memmap entries that don't exist due 526 * to SPARSEMEM sections which aren't present. 527 */ 528 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 529#endif 530 /* 531 * If we had a previous bank, and there is a space between the 532 * current bank and the previous, free it. 533 */ 534 if (prev_end && prev_end < start) 535 free_memmap(prev_end, start); 536 537 /* 538 * Align up here since the VM subsystem insists that the 539 * memmap entries are valid from the bank end aligned to 540 * MAX_ORDER_NR_PAGES. 541 */ 542 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); 543 } 544 545#ifdef CONFIG_SPARSEMEM 546 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 547 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 548#endif 549} 550#endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 551 552/* 553 * mem_init() marks the free areas in the mem_map and tells us how much memory 554 * is free. This is done after various parts of the system have claimed their 555 * memory after the kernel image. 556 */ 557void __init mem_init(void) 558{ 559 if (swiotlb_force == SWIOTLB_FORCE || 560 max_pfn > PFN_DOWN(arm64_dma_phys_limit)) 561 swiotlb_init(1); 562 else 563 swiotlb_force = SWIOTLB_NO_FORCE; 564 565 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 566 567#ifndef CONFIG_SPARSEMEM_VMEMMAP 568 free_unused_memmap(); 569#endif 570 /* this will put all unused low memory onto the freelists */ 571 memblock_free_all(); 572 573 mem_init_print_info(NULL); 574 575 /* 576 * Check boundaries twice: Some fundamental inconsistencies can be 577 * detected at build time already. 578 */ 579#ifdef CONFIG_COMPAT 580 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 581#endif 582 583 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 584 extern int sysctl_overcommit_memory; 585 /* 586 * On a machine this small we won't get anywhere without 587 * overcommit, so turn it on by default. 588 */ 589 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 590 } 591} 592 593void free_initmem(void) 594{ 595 free_reserved_area(lm_alias(__init_begin), 596 lm_alias(__init_end), 597 POISON_FREE_INITMEM, "unused kernel"); 598 /* 599 * Unmap the __init region but leave the VM area in place. This 600 * prevents the region from being reused for kernel modules, which 601 * is not supported by kallsyms. 602 */ 603 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 604} 605 606void dump_mem_limit(void) 607{ 608 if (memory_limit != PHYS_ADDR_MAX) { 609 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 610 } else { 611 pr_emerg("Memory Limit: none\n"); 612 } 613} 614