xref: /kernel/linux/linux-5.10/arch/arm64/mm/init.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Based on arch/arm/mm/init.c
4 *
5 * Copyright (C) 1995-2005 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 */
8
9#include <linux/kernel.h>
10#include <linux/export.h>
11#include <linux/errno.h>
12#include <linux/swap.h>
13#include <linux/init.h>
14#include <linux/cache.h>
15#include <linux/mman.h>
16#include <linux/nodemask.h>
17#include <linux/initrd.h>
18#include <linux/gfp.h>
19#include <linux/memblock.h>
20#include <linux/sort.h>
21#include <linux/of.h>
22#include <linux/of_fdt.h>
23#include <linux/dma-direct.h>
24#include <linux/dma-map-ops.h>
25#include <linux/efi.h>
26#include <linux/swiotlb.h>
27#include <linux/vmalloc.h>
28#include <linux/mm.h>
29#include <linux/kexec.h>
30#include <linux/crash_dump.h>
31#include <linux/hugetlb.h>
32#include <linux/acpi_iort.h>
33
34#include <asm/boot.h>
35#include <asm/fixmap.h>
36#include <asm/kasan.h>
37#include <asm/kernel-pgtable.h>
38#include <asm/memory.h>
39#include <asm/numa.h>
40#include <asm/sections.h>
41#include <asm/setup.h>
42#include <linux/sizes.h>
43#include <asm/tlb.h>
44#include <asm/alternative.h>
45
46/*
47 * We need to be able to catch inadvertent references to memstart_addr
48 * that occur (potentially in generic code) before arm64_memblock_init()
49 * executes, which assigns it its actual value. So use a default value
50 * that cannot be mistaken for a real physical address.
51 */
52s64 memstart_addr __ro_after_init = -1;
53EXPORT_SYMBOL(memstart_addr);
54
55/*
56 * If the corresponding config options are enabled, we create both ZONE_DMA
57 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
58 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
59 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
60 * otherwise it is empty.
61 *
62 * Memory reservation for crash kernel either done early or deferred
63 * depending on DMA memory zones configs (ZONE_DMA) --
64 *
65 * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized
66 * here instead of max_zone_phys().  This lets early reservation of
67 * crash kernel memory which has a dependency on arm64_dma_phys_limit.
68 * Reserving memory early for crash kernel allows linear creation of block
69 * mappings (greater than page-granularity) for all the memory bank rangs.
70 * In this scheme a comparatively quicker boot is observed.
71 *
72 * If ZONE_DMA configs are defined, crash kernel memory reservation
73 * is delayed until DMA zone memory range size initilazation performed in
74 * zone_sizes_init().  The defer is necessary to steer clear of DMA zone
75 * memory range to avoid overlap allocation.  So crash kernel memory boundaries
76 * are not known when mapping all bank memory ranges, which otherwise means
77 * not possible to exclude crash kernel range from creating block mappings
78 * so page-granularity mappings are created for the entire memory range.
79 * Hence a slightly slower boot is observed.
80 *
81 * Note: Page-granularity mapppings are necessary for crash kernel memory
82 * range for shrinking its size via /sys/kernel/kexec_crash_size interface.
83 */
84#if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)
85phys_addr_t __ro_after_init arm64_dma_phys_limit;
86#else
87phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1;
88#endif
89
90#ifdef CONFIG_KEXEC_CORE
91/*
92 * reserve_crashkernel() - reserves memory for crash kernel
93 *
94 * This function reserves memory area given in "crashkernel=" kernel command
95 * line parameter. The memory reserved is used by dump capture kernel when
96 * primary kernel is crashing.
97 */
98static void __init reserve_crashkernel(void)
99{
100	unsigned long long crash_base, crash_size;
101	int ret;
102
103	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
104				&crash_size, &crash_base);
105	/* no crashkernel= or invalid value specified */
106	if (ret || !crash_size)
107		return;
108
109	crash_size = PAGE_ALIGN(crash_size);
110
111	if (crash_base == 0) {
112		/* Current arm64 boot protocol requires 2MB alignment */
113		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
114				crash_size, SZ_2M);
115		if (crash_base == 0) {
116			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
117				crash_size);
118			return;
119		}
120	} else {
121		/* User specifies base address explicitly. */
122		if (!memblock_is_region_memory(crash_base, crash_size)) {
123			pr_warn("cannot reserve crashkernel: region is not memory\n");
124			return;
125		}
126
127		if (memblock_is_region_reserved(crash_base, crash_size)) {
128			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
129			return;
130		}
131
132		if (!IS_ALIGNED(crash_base, SZ_2M)) {
133			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
134			return;
135		}
136	}
137	memblock_reserve(crash_base, crash_size);
138
139	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
140		crash_base, crash_base + crash_size, crash_size >> 20);
141
142	crashk_res.start = crash_base;
143	crashk_res.end = crash_base + crash_size - 1;
144}
145#else
146static void __init reserve_crashkernel(void)
147{
148}
149#endif /* CONFIG_KEXEC_CORE */
150
151#ifdef CONFIG_CRASH_DUMP
152static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
153		const char *uname, int depth, void *data)
154{
155	const __be32 *reg;
156	int len;
157
158	if (depth != 1 || strcmp(uname, "chosen") != 0)
159		return 0;
160
161	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
162	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
163		return 1;
164
165	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
166	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
167
168	return 1;
169}
170
171/*
172 * reserve_elfcorehdr() - reserves memory for elf core header
173 *
174 * This function reserves the memory occupied by an elf core header
175 * described in the device tree. This region contains all the
176 * information about primary kernel's core image and is used by a dump
177 * capture kernel to access the system memory on primary kernel.
178 */
179static void __init reserve_elfcorehdr(void)
180{
181	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
182
183	if (!elfcorehdr_size)
184		return;
185
186	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
187		pr_warn("elfcorehdr is overlapped\n");
188		return;
189	}
190
191	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
192
193	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
194		elfcorehdr_size >> 10, elfcorehdr_addr);
195}
196#else
197static void __init reserve_elfcorehdr(void)
198{
199}
200#endif /* CONFIG_CRASH_DUMP */
201
202/*
203 * Return the maximum physical address for a zone accessible by the given bits
204 * limit. If DRAM starts above 32-bit, expand the zone to the maximum
205 * available memory, otherwise cap it at 32-bit.
206 */
207static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
208{
209	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
210	phys_addr_t phys_start = memblock_start_of_DRAM();
211
212	if (phys_start > U32_MAX)
213		zone_mask = PHYS_ADDR_MAX;
214	else if (phys_start > zone_mask)
215		zone_mask = U32_MAX;
216
217	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
218}
219
220static void __init zone_sizes_init(unsigned long min, unsigned long max)
221{
222	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
223	unsigned int __maybe_unused acpi_zone_dma_bits;
224	unsigned int __maybe_unused dt_zone_dma_bits;
225	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
226
227#ifdef CONFIG_ZONE_DMA
228	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
229	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
230	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
231	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
232	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
233#endif
234#ifdef CONFIG_ZONE_DMA32
235	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
236	if (!arm64_dma_phys_limit)
237		arm64_dma_phys_limit = dma32_phys_limit;
238#endif
239	max_zone_pfns[ZONE_NORMAL] = max;
240
241	free_area_init(max_zone_pfns);
242}
243
244int pfn_valid(unsigned long pfn)
245{
246	phys_addr_t addr = pfn << PAGE_SHIFT;
247
248	if ((addr >> PAGE_SHIFT) != pfn)
249		return 0;
250
251#ifdef CONFIG_SPARSEMEM
252	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
253		return 0;
254
255	if (!valid_section(__pfn_to_section(pfn)))
256		return 0;
257
258	/*
259	 * ZONE_DEVICE memory does not have the memblock entries.
260	 * memblock_is_map_memory() check for ZONE_DEVICE based
261	 * addresses will always fail. Even the normal hotplugged
262	 * memory will never have MEMBLOCK_NOMAP flag set in their
263	 * memblock entries. Skip memblock search for all non early
264	 * memory sections covering all of hotplug memory including
265	 * both normal and ZONE_DEVICE based.
266	 */
267	if (!early_section(__pfn_to_section(pfn)))
268		return pfn_section_valid(__pfn_to_section(pfn), pfn);
269#endif
270	return memblock_is_map_memory(addr);
271}
272EXPORT_SYMBOL(pfn_valid);
273
274static phys_addr_t memory_limit = PHYS_ADDR_MAX;
275
276/*
277 * Limit the memory size that was specified via FDT.
278 */
279static int __init early_mem(char *p)
280{
281	if (!p)
282		return 1;
283
284	memory_limit = memparse(p, &p) & PAGE_MASK;
285	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
286
287	return 0;
288}
289early_param("mem", early_mem);
290
291static int __init early_init_dt_scan_usablemem(unsigned long node,
292		const char *uname, int depth, void *data)
293{
294	struct memblock_region *usablemem = data;
295	const __be32 *reg;
296	int len;
297
298	if (depth != 1 || strcmp(uname, "chosen") != 0)
299		return 0;
300
301	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
302	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
303		return 1;
304
305	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
306	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
307
308	return 1;
309}
310
311static void __init fdt_enforce_memory_region(void)
312{
313	struct memblock_region reg = {
314		.size = 0,
315	};
316
317	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
318
319	if (reg.size)
320		memblock_cap_memory_range(reg.base, reg.size);
321}
322
323void __init arm64_memblock_init(void)
324{
325	const s64 linear_region_size = BIT(vabits_actual - 1);
326
327	/* Handle linux,usable-memory-range property */
328	fdt_enforce_memory_region();
329
330	/* Remove memory above our supported physical address size */
331	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
332
333	/*
334	 * Select a suitable value for the base of physical memory.
335	 */
336	memstart_addr = round_down(memblock_start_of_DRAM(),
337				   ARM64_MEMSTART_ALIGN);
338
339	/*
340	 * Remove the memory that we will not be able to cover with the
341	 * linear mapping. Take care not to clip the kernel which may be
342	 * high in memory.
343	 */
344	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
345			__pa_symbol(_end)), ULLONG_MAX);
346	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
347		/* ensure that memstart_addr remains sufficiently aligned */
348		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
349					 ARM64_MEMSTART_ALIGN);
350		memblock_remove(0, memstart_addr);
351	}
352
353	/*
354	 * If we are running with a 52-bit kernel VA config on a system that
355	 * does not support it, we have to place the available physical
356	 * memory in the 48-bit addressable part of the linear region, i.e.,
357	 * we have to move it upward. Since memstart_addr represents the
358	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
359	 */
360	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
361		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
362
363	/*
364	 * Apply the memory limit if it was set. Since the kernel may be loaded
365	 * high up in memory, add back the kernel region that must be accessible
366	 * via the linear mapping.
367	 */
368	if (memory_limit != PHYS_ADDR_MAX) {
369		memblock_mem_limit_remove_map(memory_limit);
370		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
371	}
372
373	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
374		/*
375		 * Add back the memory we just removed if it results in the
376		 * initrd to become inaccessible via the linear mapping.
377		 * Otherwise, this is a no-op
378		 */
379		u64 base = phys_initrd_start & PAGE_MASK;
380		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
381
382		/*
383		 * We can only add back the initrd memory if we don't end up
384		 * with more memory than we can address via the linear mapping.
385		 * It is up to the bootloader to position the kernel and the
386		 * initrd reasonably close to each other (i.e., within 32 GB of
387		 * each other) so that all granule/#levels combinations can
388		 * always access both.
389		 */
390		if (WARN(base < memblock_start_of_DRAM() ||
391			 base + size > memblock_start_of_DRAM() +
392				       linear_region_size,
393			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
394			phys_initrd_size = 0;
395		} else {
396			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
397			memblock_add(base, size);
398			memblock_reserve(base, size);
399		}
400	}
401
402	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
403		extern u16 memstart_offset_seed;
404		u64 range = linear_region_size -
405			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
406
407		/*
408		 * If the size of the linear region exceeds, by a sufficient
409		 * margin, the size of the region that the available physical
410		 * memory spans, randomize the linear region as well.
411		 */
412		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
413			range /= ARM64_MEMSTART_ALIGN;
414			memstart_addr -= ARM64_MEMSTART_ALIGN *
415					 ((range * memstart_offset_seed) >> 16);
416		}
417	}
418
419	/*
420	 * Register the kernel text, kernel data, initrd, and initial
421	 * pagetables with memblock.
422	 */
423	memblock_reserve(__pa_symbol(_text), _end - _text);
424	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
425		/* the generic initrd code expects virtual addresses */
426		initrd_start = __phys_to_virt(phys_initrd_start);
427		initrd_end = initrd_start + phys_initrd_size;
428	}
429
430	early_init_fdt_scan_reserved_mem();
431
432	reserve_elfcorehdr();
433
434	if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32))
435		reserve_crashkernel();
436
437	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
438}
439
440void __init bootmem_init(void)
441{
442	unsigned long min, max;
443
444	min = PFN_UP(memblock_start_of_DRAM());
445	max = PFN_DOWN(memblock_end_of_DRAM());
446
447	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
448
449	max_pfn = max_low_pfn = max;
450	min_low_pfn = min;
451
452	arm64_numa_init();
453
454	/*
455	 * must be done after arm64_numa_init() which calls numa_init() to
456	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
457	 * while allocating required CMA size across online nodes.
458	 */
459#if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
460	arm64_hugetlb_cma_reserve();
461#endif
462
463	dma_pernuma_cma_reserve();
464
465	/*
466	 * sparse_init() tries to allocate memory from memblock, so must be
467	 * done after the fixed reservations
468	 */
469	sparse_init();
470	zone_sizes_init(min, max);
471
472	/*
473	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
474	 */
475	dma_contiguous_reserve(arm64_dma_phys_limit);
476
477	/*
478	 * request_standard_resources() depends on crashkernel's memory being
479	 * reserved, so do it here.
480	 */
481	if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32))
482		reserve_crashkernel();
483
484	memblock_dump_all();
485}
486
487#ifndef CONFIG_SPARSEMEM_VMEMMAP
488static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
489{
490	struct page *start_pg, *end_pg;
491	unsigned long pg, pgend;
492
493	/*
494	 * Convert start_pfn/end_pfn to a struct page pointer.
495	 */
496	start_pg = pfn_to_page(start_pfn - 1) + 1;
497	end_pg = pfn_to_page(end_pfn - 1) + 1;
498
499	/*
500	 * Convert to physical addresses, and round start upwards and end
501	 * downwards.
502	 */
503	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
504	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
505
506	/*
507	 * If there are free pages between these, free the section of the
508	 * memmap array.
509	 */
510	if (pg < pgend)
511		memblock_free(pg, pgend - pg);
512}
513
514/*
515 * The mem_map array can get very big. Free the unused area of the memory map.
516 */
517static void __init free_unused_memmap(void)
518{
519	unsigned long start, end, prev_end = 0;
520	int i;
521
522	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
523#ifdef CONFIG_SPARSEMEM
524		/*
525		 * Take care not to free memmap entries that don't exist due
526		 * to SPARSEMEM sections which aren't present.
527		 */
528		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
529#endif
530		/*
531		 * If we had a previous bank, and there is a space between the
532		 * current bank and the previous, free it.
533		 */
534		if (prev_end && prev_end < start)
535			free_memmap(prev_end, start);
536
537		/*
538		 * Align up here since the VM subsystem insists that the
539		 * memmap entries are valid from the bank end aligned to
540		 * MAX_ORDER_NR_PAGES.
541		 */
542		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
543	}
544
545#ifdef CONFIG_SPARSEMEM
546	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
547		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
548#endif
549}
550#endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
551
552/*
553 * mem_init() marks the free areas in the mem_map and tells us how much memory
554 * is free.  This is done after various parts of the system have claimed their
555 * memory after the kernel image.
556 */
557void __init mem_init(void)
558{
559	if (swiotlb_force == SWIOTLB_FORCE ||
560	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
561		swiotlb_init(1);
562	else
563		swiotlb_force = SWIOTLB_NO_FORCE;
564
565	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
566
567#ifndef CONFIG_SPARSEMEM_VMEMMAP
568	free_unused_memmap();
569#endif
570	/* this will put all unused low memory onto the freelists */
571	memblock_free_all();
572
573	mem_init_print_info(NULL);
574
575	/*
576	 * Check boundaries twice: Some fundamental inconsistencies can be
577	 * detected at build time already.
578	 */
579#ifdef CONFIG_COMPAT
580	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
581#endif
582
583	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
584		extern int sysctl_overcommit_memory;
585		/*
586		 * On a machine this small we won't get anywhere without
587		 * overcommit, so turn it on by default.
588		 */
589		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
590	}
591}
592
593void free_initmem(void)
594{
595	free_reserved_area(lm_alias(__init_begin),
596			   lm_alias(__init_end),
597			   POISON_FREE_INITMEM, "unused kernel");
598	/*
599	 * Unmap the __init region but leave the VM area in place. This
600	 * prevents the region from being reused for kernel modules, which
601	 * is not supported by kallsyms.
602	 */
603	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
604}
605
606void dump_mem_limit(void)
607{
608	if (memory_limit != PHYS_ADDR_MAX) {
609		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
610	} else {
611		pr_emerg("Memory Limit: none\n");
612	}
613}
614