1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2017 ARM Ltd.
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 */
6
7#include <linux/interrupt.h>
8#include <linux/irq.h>
9#include <linux/irqdomain.h>
10#include <linux/kvm_host.h>
11#include <linux/irqchip/arm-gic-v3.h>
12
13#include "vgic.h"
14
15/*
16 * How KVM uses GICv4 (insert rude comments here):
17 *
18 * The vgic-v4 layer acts as a bridge between several entities:
19 * - The GICv4 ITS representation offered by the ITS driver
20 * - VFIO, which is in charge of the PCI endpoint
21 * - The virtual ITS, which is the only thing the guest sees
22 *
23 * The configuration of VLPIs is triggered by a callback from VFIO,
24 * instructing KVM that a PCI device has been configured to deliver
25 * MSIs to a vITS.
26 *
27 * kvm_vgic_v4_set_forwarding() is thus called with the routing entry,
28 * and this is used to find the corresponding vITS data structures
29 * (ITS instance, device, event and irq) using a process that is
30 * extremely similar to the injection of an MSI.
31 *
32 * At this stage, we can link the guest's view of an LPI (uniquely
33 * identified by the routing entry) and the host irq, using the GICv4
34 * driver mapping operation. Should the mapping succeed, we've then
35 * successfully upgraded the guest's LPI to a VLPI. We can then start
36 * with updating GICv4's view of the property table and generating an
37 * INValidation in order to kickstart the delivery of this VLPI to the
38 * guest directly, without software intervention. Well, almost.
39 *
40 * When the PCI endpoint is deconfigured, this operation is reversed
41 * with VFIO calling kvm_vgic_v4_unset_forwarding().
42 *
43 * Once the VLPI has been mapped, it needs to follow any change the
44 * guest performs on its LPI through the vITS. For that, a number of
45 * command handlers have hooks to communicate these changes to the HW:
46 * - Any invalidation triggers a call to its_prop_update_vlpi()
47 * - The INT command results in a irq_set_irqchip_state(), which
48 *   generates an INT on the corresponding VLPI.
49 * - The CLEAR command results in a irq_set_irqchip_state(), which
50 *   generates an CLEAR on the corresponding VLPI.
51 * - DISCARD translates into an unmap, similar to a call to
52 *   kvm_vgic_v4_unset_forwarding().
53 * - MOVI is translated by an update of the existing mapping, changing
54 *   the target vcpu, resulting in a VMOVI being generated.
55 * - MOVALL is translated by a string of mapping updates (similar to
56 *   the handling of MOVI). MOVALL is horrible.
57 *
58 * Note that a DISCARD/MAPTI sequence emitted from the guest without
59 * reprogramming the PCI endpoint after MAPTI does not result in a
60 * VLPI being mapped, as there is no callback from VFIO (the guest
61 * will get the interrupt via the normal SW injection). Fixing this is
62 * not trivial, and requires some horrible messing with the VFIO
63 * internals. Not fun. Don't do that.
64 *
65 * Then there is the scheduling. Each time a vcpu is about to run on a
66 * physical CPU, KVM must tell the corresponding redistributor about
67 * it. And if we've migrated our vcpu from one CPU to another, we must
68 * tell the ITS (so that the messages reach the right redistributor).
69 * This is done in two steps: first issue a irq_set_affinity() on the
70 * irq corresponding to the vcpu, then call its_make_vpe_resident().
71 * You must be in a non-preemptible context. On exit, a call to
72 * its_make_vpe_non_resident() tells the redistributor that we're done
73 * with the vcpu.
74 *
75 * Finally, the doorbell handling: Each vcpu is allocated an interrupt
76 * which will fire each time a VLPI is made pending whilst the vcpu is
77 * not running. Each time the vcpu gets blocked, the doorbell
78 * interrupt gets enabled. When the vcpu is unblocked (for whatever
79 * reason), the doorbell interrupt is disabled.
80 */
81
82#define DB_IRQ_FLAGS	(IRQ_NOAUTOEN | IRQ_DISABLE_UNLAZY | IRQ_NO_BALANCING)
83
84static irqreturn_t vgic_v4_doorbell_handler(int irq, void *info)
85{
86	struct kvm_vcpu *vcpu = info;
87
88	/* We got the message, no need to fire again */
89	if (!kvm_vgic_global_state.has_gicv4_1 &&
90	    !irqd_irq_disabled(&irq_to_desc(irq)->irq_data))
91		disable_irq_nosync(irq);
92
93	/*
94	 * The v4.1 doorbell can fire concurrently with the vPE being
95	 * made non-resident. Ensure we only update pending_last
96	 * *after* the non-residency sequence has completed.
97	 */
98	raw_spin_lock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
99	vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last = true;
100	raw_spin_unlock(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vpe_lock);
101
102	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
103	kvm_vcpu_kick(vcpu);
104
105	return IRQ_HANDLED;
106}
107
108static void vgic_v4_sync_sgi_config(struct its_vpe *vpe, struct vgic_irq *irq)
109{
110	vpe->sgi_config[irq->intid].enabled	= irq->enabled;
111	vpe->sgi_config[irq->intid].group 	= irq->group;
112	vpe->sgi_config[irq->intid].priority	= irq->priority;
113}
114
115static void vgic_v4_enable_vsgis(struct kvm_vcpu *vcpu)
116{
117	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
118	int i;
119
120	/*
121	 * With GICv4.1, every virtual SGI can be directly injected. So
122	 * let's pretend that they are HW interrupts, tied to a host
123	 * IRQ. The SGI code will do its magic.
124	 */
125	for (i = 0; i < VGIC_NR_SGIS; i++) {
126		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
127		struct irq_desc *desc;
128		unsigned long flags;
129		int ret;
130
131		raw_spin_lock_irqsave(&irq->irq_lock, flags);
132
133		if (irq->hw)
134			goto unlock;
135
136		irq->hw = true;
137		irq->host_irq = irq_find_mapping(vpe->sgi_domain, i);
138
139		/* Transfer the full irq state to the vPE */
140		vgic_v4_sync_sgi_config(vpe, irq);
141		desc = irq_to_desc(irq->host_irq);
142		ret = irq_domain_activate_irq(irq_desc_get_irq_data(desc),
143					      false);
144		if (!WARN_ON(ret)) {
145			/* Transfer pending state */
146			ret = irq_set_irqchip_state(irq->host_irq,
147						    IRQCHIP_STATE_PENDING,
148						    irq->pending_latch);
149			WARN_ON(ret);
150			irq->pending_latch = false;
151		}
152	unlock:
153		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
154		vgic_put_irq(vcpu->kvm, irq);
155	}
156}
157
158static void vgic_v4_disable_vsgis(struct kvm_vcpu *vcpu)
159{
160	int i;
161
162	for (i = 0; i < VGIC_NR_SGIS; i++) {
163		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, i);
164		struct irq_desc *desc;
165		unsigned long flags;
166		int ret;
167
168		raw_spin_lock_irqsave(&irq->irq_lock, flags);
169
170		if (!irq->hw)
171			goto unlock;
172
173		irq->hw = false;
174		ret = irq_get_irqchip_state(irq->host_irq,
175					    IRQCHIP_STATE_PENDING,
176					    &irq->pending_latch);
177		WARN_ON(ret);
178
179		desc = irq_to_desc(irq->host_irq);
180		irq_domain_deactivate_irq(irq_desc_get_irq_data(desc));
181	unlock:
182		raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
183		vgic_put_irq(vcpu->kvm, irq);
184	}
185}
186
187/* Must be called with the kvm lock held */
188void vgic_v4_configure_vsgis(struct kvm *kvm)
189{
190	struct vgic_dist *dist = &kvm->arch.vgic;
191	struct kvm_vcpu *vcpu;
192	int i;
193
194	kvm_arm_halt_guest(kvm);
195
196	kvm_for_each_vcpu(i, vcpu, kvm) {
197		if (dist->nassgireq)
198			vgic_v4_enable_vsgis(vcpu);
199		else
200			vgic_v4_disable_vsgis(vcpu);
201	}
202
203	kvm_arm_resume_guest(kvm);
204}
205
206/**
207 * vgic_v4_init - Initialize the GICv4 data structures
208 * @kvm:	Pointer to the VM being initialized
209 *
210 * We may be called each time a vITS is created, or when the
211 * vgic is initialized. This relies on kvm->lock to be
212 * held. In both cases, the number of vcpus should now be
213 * fixed.
214 */
215int vgic_v4_init(struct kvm *kvm)
216{
217	struct vgic_dist *dist = &kvm->arch.vgic;
218	struct kvm_vcpu *vcpu;
219	int i, nr_vcpus, ret;
220
221	if (!kvm_vgic_global_state.has_gicv4)
222		return 0; /* Nothing to see here... move along. */
223
224	if (dist->its_vm.vpes)
225		return 0;
226
227	nr_vcpus = atomic_read(&kvm->online_vcpus);
228
229	dist->its_vm.vpes = kcalloc(nr_vcpus, sizeof(*dist->its_vm.vpes),
230				    GFP_KERNEL);
231	if (!dist->its_vm.vpes)
232		return -ENOMEM;
233
234	dist->its_vm.nr_vpes = nr_vcpus;
235
236	kvm_for_each_vcpu(i, vcpu, kvm)
237		dist->its_vm.vpes[i] = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
238
239	ret = its_alloc_vcpu_irqs(&dist->its_vm);
240	if (ret < 0) {
241		kvm_err("VPE IRQ allocation failure\n");
242		kfree(dist->its_vm.vpes);
243		dist->its_vm.nr_vpes = 0;
244		dist->its_vm.vpes = NULL;
245		return ret;
246	}
247
248	kvm_for_each_vcpu(i, vcpu, kvm) {
249		int irq = dist->its_vm.vpes[i]->irq;
250		unsigned long irq_flags = DB_IRQ_FLAGS;
251
252		/*
253		 * Don't automatically enable the doorbell, as we're
254		 * flipping it back and forth when the vcpu gets
255		 * blocked. Also disable the lazy disabling, as the
256		 * doorbell could kick us out of the guest too
257		 * early...
258		 *
259		 * On GICv4.1, the doorbell is managed in HW and must
260		 * be left enabled.
261		 */
262		if (kvm_vgic_global_state.has_gicv4_1)
263			irq_flags &= ~IRQ_NOAUTOEN;
264		irq_set_status_flags(irq, irq_flags);
265
266		ret = request_irq(irq, vgic_v4_doorbell_handler,
267				  0, "vcpu", vcpu);
268		if (ret) {
269			kvm_err("failed to allocate vcpu IRQ%d\n", irq);
270			/*
271			 * Trick: adjust the number of vpes so we know
272			 * how many to nuke on teardown...
273			 */
274			dist->its_vm.nr_vpes = i;
275			break;
276		}
277	}
278
279	if (ret)
280		vgic_v4_teardown(kvm);
281
282	return ret;
283}
284
285/**
286 * vgic_v4_teardown - Free the GICv4 data structures
287 * @kvm:	Pointer to the VM being destroyed
288 *
289 * Relies on kvm->lock to be held.
290 */
291void vgic_v4_teardown(struct kvm *kvm)
292{
293	struct its_vm *its_vm = &kvm->arch.vgic.its_vm;
294	int i;
295
296	if (!its_vm->vpes)
297		return;
298
299	for (i = 0; i < its_vm->nr_vpes; i++) {
300		struct kvm_vcpu *vcpu = kvm_get_vcpu(kvm, i);
301		int irq = its_vm->vpes[i]->irq;
302
303		irq_clear_status_flags(irq, DB_IRQ_FLAGS);
304		free_irq(irq, vcpu);
305	}
306
307	its_free_vcpu_irqs(its_vm);
308	kfree(its_vm->vpes);
309	its_vm->nr_vpes = 0;
310	its_vm->vpes = NULL;
311}
312
313int vgic_v4_put(struct kvm_vcpu *vcpu, bool need_db)
314{
315	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
316
317	if (!vgic_supports_direct_msis(vcpu->kvm) || !vpe->resident)
318		return 0;
319
320	return its_make_vpe_non_resident(vpe, need_db);
321}
322
323int vgic_v4_load(struct kvm_vcpu *vcpu)
324{
325	struct its_vpe *vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
326	int err;
327
328	if (!vgic_supports_direct_msis(vcpu->kvm) || vpe->resident)
329		return 0;
330
331	/*
332	 * Before making the VPE resident, make sure the redistributor
333	 * corresponding to our current CPU expects us here. See the
334	 * doc in drivers/irqchip/irq-gic-v4.c to understand how this
335	 * turns into a VMOVP command at the ITS level.
336	 */
337	err = irq_set_affinity(vpe->irq, cpumask_of(smp_processor_id()));
338	if (err)
339		return err;
340
341	err = its_make_vpe_resident(vpe, false, vcpu->kvm->arch.vgic.enabled);
342	if (err)
343		return err;
344
345	/*
346	 * Now that the VPE is resident, let's get rid of a potential
347	 * doorbell interrupt that would still be pending. This is a
348	 * GICv4.0 only "feature"...
349	 */
350	if (!kvm_vgic_global_state.has_gicv4_1)
351		err = irq_set_irqchip_state(vpe->irq, IRQCHIP_STATE_PENDING, false);
352
353	return err;
354}
355
356static struct vgic_its *vgic_get_its(struct kvm *kvm,
357				     struct kvm_kernel_irq_routing_entry *irq_entry)
358{
359	struct kvm_msi msi  = (struct kvm_msi) {
360		.address_lo	= irq_entry->msi.address_lo,
361		.address_hi	= irq_entry->msi.address_hi,
362		.data		= irq_entry->msi.data,
363		.flags		= irq_entry->msi.flags,
364		.devid		= irq_entry->msi.devid,
365	};
366
367	return vgic_msi_to_its(kvm, &msi);
368}
369
370int kvm_vgic_v4_set_forwarding(struct kvm *kvm, int virq,
371			       struct kvm_kernel_irq_routing_entry *irq_entry)
372{
373	struct vgic_its *its;
374	struct vgic_irq *irq;
375	struct its_vlpi_map map;
376	int ret;
377
378	if (!vgic_supports_direct_msis(kvm))
379		return 0;
380
381	/*
382	 * Get the ITS, and escape early on error (not a valid
383	 * doorbell for any of our vITSs).
384	 */
385	its = vgic_get_its(kvm, irq_entry);
386	if (IS_ERR(its))
387		return 0;
388
389	mutex_lock(&its->its_lock);
390
391	/* Perform the actual DevID/EventID -> LPI translation. */
392	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
393				   irq_entry->msi.data, &irq);
394	if (ret)
395		goto out;
396
397	/*
398	 * Emit the mapping request. If it fails, the ITS probably
399	 * isn't v4 compatible, so let's silently bail out. Holding
400	 * the ITS lock should ensure that nothing can modify the
401	 * target vcpu.
402	 */
403	map = (struct its_vlpi_map) {
404		.vm		= &kvm->arch.vgic.its_vm,
405		.vpe		= &irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe,
406		.vintid		= irq->intid,
407		.properties	= ((irq->priority & 0xfc) |
408				   (irq->enabled ? LPI_PROP_ENABLED : 0) |
409				   LPI_PROP_GROUP1),
410		.db_enabled	= true,
411	};
412
413	ret = its_map_vlpi(virq, &map);
414	if (ret)
415		goto out;
416
417	irq->hw		= true;
418	irq->host_irq	= virq;
419	atomic_inc(&map.vpe->vlpi_count);
420
421out:
422	mutex_unlock(&its->its_lock);
423	return ret;
424}
425
426int kvm_vgic_v4_unset_forwarding(struct kvm *kvm, int virq,
427				 struct kvm_kernel_irq_routing_entry *irq_entry)
428{
429	struct vgic_its *its;
430	struct vgic_irq *irq;
431	int ret;
432
433	if (!vgic_supports_direct_msis(kvm))
434		return 0;
435
436	/*
437	 * Get the ITS, and escape early on error (not a valid
438	 * doorbell for any of our vITSs).
439	 */
440	its = vgic_get_its(kvm, irq_entry);
441	if (IS_ERR(its))
442		return 0;
443
444	mutex_lock(&its->its_lock);
445
446	ret = vgic_its_resolve_lpi(kvm, its, irq_entry->msi.devid,
447				   irq_entry->msi.data, &irq);
448	if (ret)
449		goto out;
450
451	WARN_ON(!(irq->hw && irq->host_irq == virq));
452	if (irq->hw) {
453		atomic_dec(&irq->target_vcpu->arch.vgic_cpu.vgic_v3.its_vpe.vlpi_count);
454		irq->hw = false;
455		ret = its_unmap_vlpi(virq);
456	}
457
458out:
459	mutex_unlock(&its->its_lock);
460	return ret;
461}
462