xref: /kernel/linux/linux-5.10/arch/arm64/kvm/mmu.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/mman.h>
8#include <linux/kvm_host.h>
9#include <linux/io.h>
10#include <linux/hugetlb.h>
11#include <linux/sched/signal.h>
12#include <trace/events/kvm.h>
13#include <asm/pgalloc.h>
14#include <asm/cacheflush.h>
15#include <asm/kvm_arm.h>
16#include <asm/kvm_mmu.h>
17#include <asm/kvm_pgtable.h>
18#include <asm/kvm_ras.h>
19#include <asm/kvm_asm.h>
20#include <asm/kvm_emulate.h>
21#include <asm/virt.h>
22
23#include "trace.h"
24
25static struct kvm_pgtable *hyp_pgtable;
26static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
27
28static unsigned long hyp_idmap_start;
29static unsigned long hyp_idmap_end;
30static phys_addr_t hyp_idmap_vector;
31
32static unsigned long io_map_base;
33
34
35/*
36 * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
37 * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
38 * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
39 * long will also starve other vCPUs. We have to also make sure that the page
40 * tables are not freed while we released the lock.
41 */
42static int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
43			      phys_addr_t end,
44			      int (*fn)(struct kvm_pgtable *, u64, u64),
45			      bool resched)
46{
47	int ret;
48	u64 next;
49
50	do {
51		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
52		if (!pgt)
53			return -EINVAL;
54
55		next = stage2_pgd_addr_end(kvm, addr, end);
56		ret = fn(pgt, addr, next - addr);
57		if (ret)
58			break;
59
60		if (resched && next != end)
61			cond_resched_lock(&kvm->mmu_lock);
62	} while (addr = next, addr != end);
63
64	return ret;
65}
66
67#define stage2_apply_range_resched(kvm, addr, end, fn)			\
68	stage2_apply_range(kvm, addr, end, fn, true)
69
70static bool memslot_is_logging(struct kvm_memory_slot *memslot)
71{
72	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
73}
74
75/**
76 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
77 * @kvm:	pointer to kvm structure.
78 *
79 * Interface to HYP function to flush all VM TLB entries
80 */
81void kvm_flush_remote_tlbs(struct kvm *kvm)
82{
83	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
84}
85
86static bool kvm_is_device_pfn(unsigned long pfn)
87{
88	return !pfn_valid(pfn);
89}
90
91/*
92 * Unmapping vs dcache management:
93 *
94 * If a guest maps certain memory pages as uncached, all writes will
95 * bypass the data cache and go directly to RAM.  However, the CPUs
96 * can still speculate reads (not writes) and fill cache lines with
97 * data.
98 *
99 * Those cache lines will be *clean* cache lines though, so a
100 * clean+invalidate operation is equivalent to an invalidate
101 * operation, because no cache lines are marked dirty.
102 *
103 * Those clean cache lines could be filled prior to an uncached write
104 * by the guest, and the cache coherent IO subsystem would therefore
105 * end up writing old data to disk.
106 *
107 * This is why right after unmapping a page/section and invalidating
108 * the corresponding TLBs, we flush to make sure the IO subsystem will
109 * never hit in the cache.
110 *
111 * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
112 * we then fully enforce cacheability of RAM, no matter what the guest
113 * does.
114 */
115/**
116 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
117 * @mmu:   The KVM stage-2 MMU pointer
118 * @start: The intermediate physical base address of the range to unmap
119 * @size:  The size of the area to unmap
120 * @may_block: Whether or not we are permitted to block
121 *
122 * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
123 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
124 * destroying the VM), otherwise another faulting VCPU may come in and mess
125 * with things behind our backs.
126 */
127static void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
128				 bool may_block)
129{
130	struct kvm *kvm = mmu->kvm;
131	phys_addr_t end = start + size;
132
133	assert_spin_locked(&kvm->mmu_lock);
134	WARN_ON(size & ~PAGE_MASK);
135	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
136				   may_block));
137}
138
139static void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
140{
141	__unmap_stage2_range(mmu, start, size, true);
142}
143
144static void stage2_flush_memslot(struct kvm *kvm,
145				 struct kvm_memory_slot *memslot)
146{
147	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
148	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
149
150	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
151}
152
153/**
154 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
155 * @kvm: The struct kvm pointer
156 *
157 * Go through the stage 2 page tables and invalidate any cache lines
158 * backing memory already mapped to the VM.
159 */
160static void stage2_flush_vm(struct kvm *kvm)
161{
162	struct kvm_memslots *slots;
163	struct kvm_memory_slot *memslot;
164	int idx;
165
166	idx = srcu_read_lock(&kvm->srcu);
167	spin_lock(&kvm->mmu_lock);
168
169	slots = kvm_memslots(kvm);
170	kvm_for_each_memslot(memslot, slots)
171		stage2_flush_memslot(kvm, memslot);
172
173	spin_unlock(&kvm->mmu_lock);
174	srcu_read_unlock(&kvm->srcu, idx);
175}
176
177/**
178 * free_hyp_pgds - free Hyp-mode page tables
179 */
180void free_hyp_pgds(void)
181{
182	mutex_lock(&kvm_hyp_pgd_mutex);
183	if (hyp_pgtable) {
184		kvm_pgtable_hyp_destroy(hyp_pgtable);
185		kfree(hyp_pgtable);
186	}
187	mutex_unlock(&kvm_hyp_pgd_mutex);
188}
189
190static int __create_hyp_mappings(unsigned long start, unsigned long size,
191				 unsigned long phys, enum kvm_pgtable_prot prot)
192{
193	int err;
194
195	mutex_lock(&kvm_hyp_pgd_mutex);
196	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
197	mutex_unlock(&kvm_hyp_pgd_mutex);
198
199	return err;
200}
201
202static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
203{
204	if (!is_vmalloc_addr(kaddr)) {
205		BUG_ON(!virt_addr_valid(kaddr));
206		return __pa(kaddr);
207	} else {
208		return page_to_phys(vmalloc_to_page(kaddr)) +
209		       offset_in_page(kaddr);
210	}
211}
212
213/**
214 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
215 * @from:	The virtual kernel start address of the range
216 * @to:		The virtual kernel end address of the range (exclusive)
217 * @prot:	The protection to be applied to this range
218 *
219 * The same virtual address as the kernel virtual address is also used
220 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
221 * physical pages.
222 */
223int create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
224{
225	phys_addr_t phys_addr;
226	unsigned long virt_addr;
227	unsigned long start = kern_hyp_va((unsigned long)from);
228	unsigned long end = kern_hyp_va((unsigned long)to);
229
230	if (is_kernel_in_hyp_mode())
231		return 0;
232
233	start = start & PAGE_MASK;
234	end = PAGE_ALIGN(end);
235
236	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
237		int err;
238
239		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
240		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
241					    prot);
242		if (err)
243			return err;
244	}
245
246	return 0;
247}
248
249static int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
250					unsigned long *haddr,
251					enum kvm_pgtable_prot prot)
252{
253	unsigned long base;
254	int ret = 0;
255
256	mutex_lock(&kvm_hyp_pgd_mutex);
257
258	/*
259	 * This assumes that we have enough space below the idmap
260	 * page to allocate our VAs. If not, the check below will
261	 * kick. A potential alternative would be to detect that
262	 * overflow and switch to an allocation above the idmap.
263	 *
264	 * The allocated size is always a multiple of PAGE_SIZE.
265	 */
266	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
267	base = io_map_base - size;
268
269	/*
270	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
271	 * allocating the new area, as it would indicate we've
272	 * overflowed the idmap/IO address range.
273	 */
274	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
275		ret = -ENOMEM;
276	else
277		io_map_base = base;
278
279	mutex_unlock(&kvm_hyp_pgd_mutex);
280
281	if (ret)
282		goto out;
283
284	ret = __create_hyp_mappings(base, size, phys_addr, prot);
285	if (ret)
286		goto out;
287
288	*haddr = base + offset_in_page(phys_addr);
289out:
290	return ret;
291}
292
293/**
294 * create_hyp_io_mappings - Map IO into both kernel and HYP
295 * @phys_addr:	The physical start address which gets mapped
296 * @size:	Size of the region being mapped
297 * @kaddr:	Kernel VA for this mapping
298 * @haddr:	HYP VA for this mapping
299 */
300int create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
301			   void __iomem **kaddr,
302			   void __iomem **haddr)
303{
304	unsigned long addr;
305	int ret;
306
307	*kaddr = ioremap(phys_addr, size);
308	if (!*kaddr)
309		return -ENOMEM;
310
311	if (is_kernel_in_hyp_mode()) {
312		*haddr = *kaddr;
313		return 0;
314	}
315
316	ret = __create_hyp_private_mapping(phys_addr, size,
317					   &addr, PAGE_HYP_DEVICE);
318	if (ret) {
319		iounmap(*kaddr);
320		*kaddr = NULL;
321		*haddr = NULL;
322		return ret;
323	}
324
325	*haddr = (void __iomem *)addr;
326	return 0;
327}
328
329/**
330 * create_hyp_exec_mappings - Map an executable range into HYP
331 * @phys_addr:	The physical start address which gets mapped
332 * @size:	Size of the region being mapped
333 * @haddr:	HYP VA for this mapping
334 */
335int create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
336			     void **haddr)
337{
338	unsigned long addr;
339	int ret;
340
341	BUG_ON(is_kernel_in_hyp_mode());
342
343	ret = __create_hyp_private_mapping(phys_addr, size,
344					   &addr, PAGE_HYP_EXEC);
345	if (ret) {
346		*haddr = NULL;
347		return ret;
348	}
349
350	*haddr = (void *)addr;
351	return 0;
352}
353
354/**
355 * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
356 * @kvm:	The pointer to the KVM structure
357 * @mmu:	The pointer to the s2 MMU structure
358 *
359 * Allocates only the stage-2 HW PGD level table(s).
360 * Note we don't need locking here as this is only called when the VM is
361 * created, which can only be done once.
362 */
363int kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
364{
365	int cpu, err;
366	struct kvm_pgtable *pgt;
367
368	if (mmu->pgt != NULL) {
369		kvm_err("kvm_arch already initialized?\n");
370		return -EINVAL;
371	}
372
373	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
374	if (!pgt)
375		return -ENOMEM;
376
377	err = kvm_pgtable_stage2_init(pgt, kvm);
378	if (err)
379		goto out_free_pgtable;
380
381	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
382	if (!mmu->last_vcpu_ran) {
383		err = -ENOMEM;
384		goto out_destroy_pgtable;
385	}
386
387	for_each_possible_cpu(cpu)
388		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
389
390	mmu->kvm = kvm;
391	mmu->pgt = pgt;
392	mmu->pgd_phys = __pa(pgt->pgd);
393	mmu->vmid.vmid_gen = 0;
394	return 0;
395
396out_destroy_pgtable:
397	kvm_pgtable_stage2_destroy(pgt);
398out_free_pgtable:
399	kfree(pgt);
400	return err;
401}
402
403static void stage2_unmap_memslot(struct kvm *kvm,
404				 struct kvm_memory_slot *memslot)
405{
406	hva_t hva = memslot->userspace_addr;
407	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
408	phys_addr_t size = PAGE_SIZE * memslot->npages;
409	hva_t reg_end = hva + size;
410
411	/*
412	 * A memory region could potentially cover multiple VMAs, and any holes
413	 * between them, so iterate over all of them to find out if we should
414	 * unmap any of them.
415	 *
416	 *     +--------------------------------------------+
417	 * +---------------+----------------+   +----------------+
418	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
419	 * +---------------+----------------+   +----------------+
420	 *     |               memory region                |
421	 *     +--------------------------------------------+
422	 */
423	do {
424		struct vm_area_struct *vma = find_vma(current->mm, hva);
425		hva_t vm_start, vm_end;
426
427		if (!vma || vma->vm_start >= reg_end)
428			break;
429
430		/*
431		 * Take the intersection of this VMA with the memory region
432		 */
433		vm_start = max(hva, vma->vm_start);
434		vm_end = min(reg_end, vma->vm_end);
435
436		if (!(vma->vm_flags & VM_PFNMAP)) {
437			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
438			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
439		}
440		hva = vm_end;
441	} while (hva < reg_end);
442}
443
444/**
445 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
446 * @kvm: The struct kvm pointer
447 *
448 * Go through the memregions and unmap any regular RAM
449 * backing memory already mapped to the VM.
450 */
451void stage2_unmap_vm(struct kvm *kvm)
452{
453	struct kvm_memslots *slots;
454	struct kvm_memory_slot *memslot;
455	int idx;
456
457	idx = srcu_read_lock(&kvm->srcu);
458	mmap_read_lock(current->mm);
459	spin_lock(&kvm->mmu_lock);
460
461	slots = kvm_memslots(kvm);
462	kvm_for_each_memslot(memslot, slots)
463		stage2_unmap_memslot(kvm, memslot);
464
465	spin_unlock(&kvm->mmu_lock);
466	mmap_read_unlock(current->mm);
467	srcu_read_unlock(&kvm->srcu, idx);
468}
469
470void kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
471{
472	struct kvm *kvm = mmu->kvm;
473	struct kvm_pgtable *pgt = NULL;
474
475	spin_lock(&kvm->mmu_lock);
476	pgt = mmu->pgt;
477	if (pgt) {
478		mmu->pgd_phys = 0;
479		mmu->pgt = NULL;
480		free_percpu(mmu->last_vcpu_ran);
481	}
482	spin_unlock(&kvm->mmu_lock);
483
484	if (pgt) {
485		kvm_pgtable_stage2_destroy(pgt);
486		kfree(pgt);
487	}
488}
489
490/**
491 * kvm_phys_addr_ioremap - map a device range to guest IPA
492 *
493 * @kvm:	The KVM pointer
494 * @guest_ipa:	The IPA at which to insert the mapping
495 * @pa:		The physical address of the device
496 * @size:	The size of the mapping
497 * @writable:   Whether or not to create a writable mapping
498 */
499int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
500			  phys_addr_t pa, unsigned long size, bool writable)
501{
502	phys_addr_t addr;
503	int ret = 0;
504	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
505	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
506	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
507				     KVM_PGTABLE_PROT_R |
508				     (writable ? KVM_PGTABLE_PROT_W : 0);
509
510	size += offset_in_page(guest_ipa);
511	guest_ipa &= PAGE_MASK;
512
513	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
514		ret = kvm_mmu_topup_memory_cache(&cache,
515						 kvm_mmu_cache_min_pages(kvm));
516		if (ret)
517			break;
518
519		spin_lock(&kvm->mmu_lock);
520		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
521					     &cache);
522		spin_unlock(&kvm->mmu_lock);
523		if (ret)
524			break;
525
526		pa += PAGE_SIZE;
527	}
528
529	kvm_mmu_free_memory_cache(&cache);
530	return ret;
531}
532
533/**
534 * stage2_wp_range() - write protect stage2 memory region range
535 * @mmu:        The KVM stage-2 MMU pointer
536 * @addr:	Start address of range
537 * @end:	End address of range
538 */
539static void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
540{
541	struct kvm *kvm = mmu->kvm;
542	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
543}
544
545/**
546 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
547 * @kvm:	The KVM pointer
548 * @slot:	The memory slot to write protect
549 *
550 * Called to start logging dirty pages after memory region
551 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
552 * all present PUD, PMD and PTEs are write protected in the memory region.
553 * Afterwards read of dirty page log can be called.
554 *
555 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
556 * serializing operations for VM memory regions.
557 */
558void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
559{
560	struct kvm_memslots *slots = kvm_memslots(kvm);
561	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
562	phys_addr_t start, end;
563
564	if (WARN_ON_ONCE(!memslot))
565		return;
566
567	start = memslot->base_gfn << PAGE_SHIFT;
568	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
569
570	spin_lock(&kvm->mmu_lock);
571	stage2_wp_range(&kvm->arch.mmu, start, end);
572	spin_unlock(&kvm->mmu_lock);
573	kvm_flush_remote_tlbs(kvm);
574}
575
576/**
577 * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
578 * @kvm:	The KVM pointer
579 * @slot:	The memory slot associated with mask
580 * @gfn_offset:	The gfn offset in memory slot
581 * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
582 *		slot to be write protected
583 *
584 * Walks bits set in mask write protects the associated pte's. Caller must
585 * acquire kvm_mmu_lock.
586 */
587static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
588		struct kvm_memory_slot *slot,
589		gfn_t gfn_offset, unsigned long mask)
590{
591	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
592	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
593	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
594
595	stage2_wp_range(&kvm->arch.mmu, start, end);
596}
597
598/*
599 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
600 * dirty pages.
601 *
602 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
603 * enable dirty logging for them.
604 */
605void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
606		struct kvm_memory_slot *slot,
607		gfn_t gfn_offset, unsigned long mask)
608{
609	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
610}
611
612static void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
613{
614	__clean_dcache_guest_page(pfn, size);
615}
616
617static void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
618{
619	__invalidate_icache_guest_page(pfn, size);
620}
621
622static void kvm_send_hwpoison_signal(unsigned long address, short lsb)
623{
624	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
625}
626
627static bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
628					       unsigned long hva,
629					       unsigned long map_size)
630{
631	gpa_t gpa_start;
632	hva_t uaddr_start, uaddr_end;
633	size_t size;
634
635	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
636	if (map_size == PAGE_SIZE)
637		return true;
638
639	size = memslot->npages * PAGE_SIZE;
640
641	gpa_start = memslot->base_gfn << PAGE_SHIFT;
642
643	uaddr_start = memslot->userspace_addr;
644	uaddr_end = uaddr_start + size;
645
646	/*
647	 * Pages belonging to memslots that don't have the same alignment
648	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
649	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
650	 *
651	 * Consider a layout like the following:
652	 *
653	 *    memslot->userspace_addr:
654	 *    +-----+--------------------+--------------------+---+
655	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
656	 *    +-----+--------------------+--------------------+---+
657	 *
658	 *    memslot->base_gfn << PAGE_SHIFT:
659	 *      +---+--------------------+--------------------+-----+
660	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
661	 *      +---+--------------------+--------------------+-----+
662	 *
663	 * If we create those stage-2 blocks, we'll end up with this incorrect
664	 * mapping:
665	 *   d -> f
666	 *   e -> g
667	 *   f -> h
668	 */
669	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
670		return false;
671
672	/*
673	 * Next, let's make sure we're not trying to map anything not covered
674	 * by the memslot. This means we have to prohibit block size mappings
675	 * for the beginning and end of a non-block aligned and non-block sized
676	 * memory slot (illustrated by the head and tail parts of the
677	 * userspace view above containing pages 'abcde' and 'xyz',
678	 * respectively).
679	 *
680	 * Note that it doesn't matter if we do the check using the
681	 * userspace_addr or the base_gfn, as both are equally aligned (per
682	 * the check above) and equally sized.
683	 */
684	return (hva & ~(map_size - 1)) >= uaddr_start &&
685	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
686}
687
688/*
689 * Check if the given hva is backed by a transparent huge page (THP) and
690 * whether it can be mapped using block mapping in stage2. If so, adjust
691 * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
692 * supported. This will need to be updated to support other THP sizes.
693 *
694 * Returns the size of the mapping.
695 */
696static unsigned long
697transparent_hugepage_adjust(struct kvm_memory_slot *memslot,
698			    unsigned long hva, kvm_pfn_t *pfnp,
699			    phys_addr_t *ipap)
700{
701	kvm_pfn_t pfn = *pfnp;
702
703	/*
704	 * Make sure the adjustment is done only for THP pages. Also make
705	 * sure that the HVA and IPA are sufficiently aligned and that the
706	 * block map is contained within the memslot.
707	 */
708	if (kvm_is_transparent_hugepage(pfn) &&
709	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
710		/*
711		 * The address we faulted on is backed by a transparent huge
712		 * page.  However, because we map the compound huge page and
713		 * not the individual tail page, we need to transfer the
714		 * refcount to the head page.  We have to be careful that the
715		 * THP doesn't start to split while we are adjusting the
716		 * refcounts.
717		 *
718		 * We are sure this doesn't happen, because mmu_notifier_retry
719		 * was successful and we are holding the mmu_lock, so if this
720		 * THP is trying to split, it will be blocked in the mmu
721		 * notifier before touching any of the pages, specifically
722		 * before being able to call __split_huge_page_refcount().
723		 *
724		 * We can therefore safely transfer the refcount from PG_tail
725		 * to PG_head and switch the pfn from a tail page to the head
726		 * page accordingly.
727		 */
728		*ipap &= PMD_MASK;
729		kvm_release_pfn_clean(pfn);
730		pfn &= ~(PTRS_PER_PMD - 1);
731		kvm_get_pfn(pfn);
732		*pfnp = pfn;
733
734		return PMD_SIZE;
735	}
736
737	/* Use page mapping if we cannot use block mapping. */
738	return PAGE_SIZE;
739}
740
741static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
742			  struct kvm_memory_slot *memslot, unsigned long hva,
743			  unsigned long fault_status)
744{
745	int ret = 0;
746	bool write_fault, writable, force_pte = false;
747	bool exec_fault;
748	bool device = false;
749	unsigned long mmu_seq;
750	struct kvm *kvm = vcpu->kvm;
751	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
752	struct vm_area_struct *vma;
753	short vma_shift;
754	gfn_t gfn;
755	kvm_pfn_t pfn;
756	bool logging_active = memslot_is_logging(memslot);
757	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
758	unsigned long vma_pagesize, fault_granule;
759	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
760	struct kvm_pgtable *pgt;
761
762	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
763	write_fault = kvm_is_write_fault(vcpu);
764	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
765	VM_BUG_ON(write_fault && exec_fault);
766
767	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
768		kvm_err("Unexpected L2 read permission error\n");
769		return -EFAULT;
770	}
771
772	/* Let's check if we will get back a huge page backed by hugetlbfs */
773	mmap_read_lock(current->mm);
774	vma = find_vma_intersection(current->mm, hva, hva + 1);
775	if (unlikely(!vma)) {
776		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
777		mmap_read_unlock(current->mm);
778		return -EFAULT;
779	}
780
781	if (is_vm_hugetlb_page(vma))
782		vma_shift = huge_page_shift(hstate_vma(vma));
783	else
784		vma_shift = PAGE_SHIFT;
785
786	if (logging_active ||
787	    (vma->vm_flags & VM_PFNMAP)) {
788		force_pte = true;
789		vma_shift = PAGE_SHIFT;
790	}
791
792	switch (vma_shift) {
793#ifndef __PAGETABLE_PMD_FOLDED
794	case PUD_SHIFT:
795		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
796			break;
797		fallthrough;
798#endif
799	case CONT_PMD_SHIFT:
800		vma_shift = PMD_SHIFT;
801		fallthrough;
802	case PMD_SHIFT:
803		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
804			break;
805		fallthrough;
806	case CONT_PTE_SHIFT:
807		vma_shift = PAGE_SHIFT;
808		force_pte = true;
809		fallthrough;
810	case PAGE_SHIFT:
811		break;
812	default:
813		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
814	}
815
816	vma_pagesize = 1UL << vma_shift;
817	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
818		fault_ipa &= ~(vma_pagesize - 1);
819
820	gfn = fault_ipa >> PAGE_SHIFT;
821	mmap_read_unlock(current->mm);
822
823	/*
824	 * Permission faults just need to update the existing leaf entry,
825	 * and so normally don't require allocations from the memcache. The
826	 * only exception to this is when dirty logging is enabled at runtime
827	 * and a write fault needs to collapse a block entry into a table.
828	 */
829	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
830		ret = kvm_mmu_topup_memory_cache(memcache,
831						 kvm_mmu_cache_min_pages(kvm));
832		if (ret)
833			return ret;
834	}
835
836	mmu_seq = vcpu->kvm->mmu_notifier_seq;
837	/*
838	 * Ensure the read of mmu_notifier_seq happens before we call
839	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
840	 * the page we just got a reference to gets unmapped before we have a
841	 * chance to grab the mmu_lock, which ensure that if the page gets
842	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
843	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
844	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
845	 */
846	smp_rmb();
847
848	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
849	if (pfn == KVM_PFN_ERR_HWPOISON) {
850		kvm_send_hwpoison_signal(hva, vma_shift);
851		return 0;
852	}
853	if (is_error_noslot_pfn(pfn))
854		return -EFAULT;
855
856	if (kvm_is_device_pfn(pfn)) {
857		device = true;
858		force_pte = true;
859	} else if (logging_active && !write_fault) {
860		/*
861		 * Only actually map the page as writable if this was a write
862		 * fault.
863		 */
864		writable = false;
865	}
866
867	if (exec_fault && device)
868		return -ENOEXEC;
869
870	spin_lock(&kvm->mmu_lock);
871	pgt = vcpu->arch.hw_mmu->pgt;
872	if (mmu_notifier_retry(kvm, mmu_seq))
873		goto out_unlock;
874
875	/*
876	 * If we are not forced to use page mapping, check if we are
877	 * backed by a THP and thus use block mapping if possible.
878	 */
879	if (vma_pagesize == PAGE_SIZE && !force_pte)
880		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
881							   &pfn, &fault_ipa);
882	if (writable) {
883		prot |= KVM_PGTABLE_PROT_W;
884		kvm_set_pfn_dirty(pfn);
885		mark_page_dirty(kvm, gfn);
886	}
887
888	if (fault_status != FSC_PERM && !device)
889		clean_dcache_guest_page(pfn, vma_pagesize);
890
891	if (exec_fault) {
892		prot |= KVM_PGTABLE_PROT_X;
893		invalidate_icache_guest_page(pfn, vma_pagesize);
894	}
895
896	if (device)
897		prot |= KVM_PGTABLE_PROT_DEVICE;
898	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
899		prot |= KVM_PGTABLE_PROT_X;
900
901	/*
902	 * Under the premise of getting a FSC_PERM fault, we just need to relax
903	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
904	 * kvm_pgtable_stage2_map() should be called to change block size.
905	 */
906	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
907		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
908	} else {
909		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
910					     __pfn_to_phys(pfn), prot,
911					     memcache);
912	}
913
914out_unlock:
915	spin_unlock(&kvm->mmu_lock);
916	kvm_set_pfn_accessed(pfn);
917	kvm_release_pfn_clean(pfn);
918	return ret;
919}
920
921/* Resolve the access fault by making the page young again. */
922static void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
923{
924	pte_t pte;
925	kvm_pte_t kpte;
926	struct kvm_s2_mmu *mmu;
927
928	trace_kvm_access_fault(fault_ipa);
929
930	spin_lock(&vcpu->kvm->mmu_lock);
931	mmu = vcpu->arch.hw_mmu;
932	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
933	spin_unlock(&vcpu->kvm->mmu_lock);
934
935	pte = __pte(kpte);
936	if (pte_valid(pte))
937		kvm_set_pfn_accessed(pte_pfn(pte));
938}
939
940/**
941 * kvm_handle_guest_abort - handles all 2nd stage aborts
942 * @vcpu:	the VCPU pointer
943 *
944 * Any abort that gets to the host is almost guaranteed to be caused by a
945 * missing second stage translation table entry, which can mean that either the
946 * guest simply needs more memory and we must allocate an appropriate page or it
947 * can mean that the guest tried to access I/O memory, which is emulated by user
948 * space. The distinction is based on the IPA causing the fault and whether this
949 * memory region has been registered as standard RAM by user space.
950 */
951int kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
952{
953	unsigned long fault_status;
954	phys_addr_t fault_ipa;
955	struct kvm_memory_slot *memslot;
956	unsigned long hva;
957	bool is_iabt, write_fault, writable;
958	gfn_t gfn;
959	int ret, idx;
960
961	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
962
963	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
964	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
965
966	/* Synchronous External Abort? */
967	if (kvm_vcpu_abt_issea(vcpu)) {
968		/*
969		 * For RAS the host kernel may handle this abort.
970		 * There is no need to pass the error into the guest.
971		 */
972		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
973			kvm_inject_vabt(vcpu);
974
975		return 1;
976	}
977
978	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
979			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
980
981	/* Check the stage-2 fault is trans. fault or write fault */
982	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
983	    fault_status != FSC_ACCESS) {
984		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
985			kvm_vcpu_trap_get_class(vcpu),
986			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
987			(unsigned long)kvm_vcpu_get_esr(vcpu));
988		return -EFAULT;
989	}
990
991	idx = srcu_read_lock(&vcpu->kvm->srcu);
992
993	gfn = fault_ipa >> PAGE_SHIFT;
994	memslot = gfn_to_memslot(vcpu->kvm, gfn);
995	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
996	write_fault = kvm_is_write_fault(vcpu);
997	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
998		/*
999		 * The guest has put either its instructions or its page-tables
1000		 * somewhere it shouldn't have. Userspace won't be able to do
1001		 * anything about this (there's no syndrome for a start), so
1002		 * re-inject the abort back into the guest.
1003		 */
1004		if (is_iabt) {
1005			ret = -ENOEXEC;
1006			goto out;
1007		}
1008
1009		if (kvm_vcpu_abt_iss1tw(vcpu)) {
1010			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1011			ret = 1;
1012			goto out_unlock;
1013		}
1014
1015		/*
1016		 * Check for a cache maintenance operation. Since we
1017		 * ended-up here, we know it is outside of any memory
1018		 * slot. But we can't find out if that is for a device,
1019		 * or if the guest is just being stupid. The only thing
1020		 * we know for sure is that this range cannot be cached.
1021		 *
1022		 * So let's assume that the guest is just being
1023		 * cautious, and skip the instruction.
1024		 */
1025		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
1026			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1027			ret = 1;
1028			goto out_unlock;
1029		}
1030
1031		/*
1032		 * The IPA is reported as [MAX:12], so we need to
1033		 * complement it with the bottom 12 bits from the
1034		 * faulting VA. This is always 12 bits, irrespective
1035		 * of the page size.
1036		 */
1037		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
1038		ret = io_mem_abort(vcpu, fault_ipa);
1039		goto out_unlock;
1040	}
1041
1042	/* Userspace should not be able to register out-of-bounds IPAs */
1043	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
1044
1045	if (fault_status == FSC_ACCESS) {
1046		handle_access_fault(vcpu, fault_ipa);
1047		ret = 1;
1048		goto out_unlock;
1049	}
1050
1051	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
1052	if (ret == 0)
1053		ret = 1;
1054out:
1055	if (ret == -ENOEXEC) {
1056		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
1057		ret = 1;
1058	}
1059out_unlock:
1060	srcu_read_unlock(&vcpu->kvm->srcu, idx);
1061	return ret;
1062}
1063
1064static int handle_hva_to_gpa(struct kvm *kvm,
1065			     unsigned long start,
1066			     unsigned long end,
1067			     int (*handler)(struct kvm *kvm,
1068					    gpa_t gpa, u64 size,
1069					    void *data),
1070			     void *data)
1071{
1072	struct kvm_memslots *slots;
1073	struct kvm_memory_slot *memslot;
1074	int ret = 0;
1075
1076	slots = kvm_memslots(kvm);
1077
1078	/* we only care about the pages that the guest sees */
1079	kvm_for_each_memslot(memslot, slots) {
1080		unsigned long hva_start, hva_end;
1081		gfn_t gpa;
1082
1083		hva_start = max(start, memslot->userspace_addr);
1084		hva_end = min(end, memslot->userspace_addr +
1085					(memslot->npages << PAGE_SHIFT));
1086		if (hva_start >= hva_end)
1087			continue;
1088
1089		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
1090		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
1091	}
1092
1093	return ret;
1094}
1095
1096static int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1097{
1098	unsigned flags = *(unsigned *)data;
1099	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
1100
1101	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
1102	return 0;
1103}
1104
1105int kvm_unmap_hva_range(struct kvm *kvm,
1106			unsigned long start, unsigned long end, unsigned flags)
1107{
1108	if (!kvm->arch.mmu.pgt)
1109		return 0;
1110
1111	trace_kvm_unmap_hva_range(start, end);
1112	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
1113	return 0;
1114}
1115
1116static int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1117{
1118	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
1119
1120	WARN_ON(size != PAGE_SIZE);
1121
1122	/*
1123	 * The MMU notifiers will have unmapped a huge PMD before calling
1124	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1125	 * therefore we never need to clear out a huge PMD through this
1126	 * calling path and a memcache is not required.
1127	 */
1128	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
1129			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
1130	return 0;
1131}
1132
1133int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1134{
1135	unsigned long end = hva + PAGE_SIZE;
1136	kvm_pfn_t pfn = pte_pfn(pte);
1137
1138	if (!kvm->arch.mmu.pgt)
1139		return 0;
1140
1141	trace_kvm_set_spte_hva(hva);
1142
1143	/*
1144	 * We've moved a page around, probably through CoW, so let's treat it
1145	 * just like a translation fault and clean the cache to the PoC.
1146	 */
1147	clean_dcache_guest_page(pfn, PAGE_SIZE);
1148	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
1149	return 0;
1150}
1151
1152static int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1153{
1154	pte_t pte;
1155	kvm_pte_t kpte;
1156
1157	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1158	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
1159	pte = __pte(kpte);
1160	return pte_valid(pte) && pte_young(pte);
1161}
1162
1163static int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
1164{
1165	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
1166	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
1167}
1168
1169int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
1170{
1171	if (!kvm->arch.mmu.pgt)
1172		return 0;
1173	trace_kvm_age_hva(start, end);
1174	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
1175}
1176
1177int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1178{
1179	if (!kvm->arch.mmu.pgt)
1180		return 0;
1181	trace_kvm_test_age_hva(hva);
1182	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
1183				 kvm_test_age_hva_handler, NULL);
1184}
1185
1186phys_addr_t kvm_mmu_get_httbr(void)
1187{
1188	return __pa(hyp_pgtable->pgd);
1189}
1190
1191phys_addr_t kvm_get_idmap_vector(void)
1192{
1193	return hyp_idmap_vector;
1194}
1195
1196static int kvm_map_idmap_text(void)
1197{
1198	unsigned long size = hyp_idmap_end - hyp_idmap_start;
1199	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
1200					PAGE_HYP_EXEC);
1201	if (err)
1202		kvm_err("Failed to idmap %lx-%lx\n",
1203			hyp_idmap_start, hyp_idmap_end);
1204
1205	return err;
1206}
1207
1208int kvm_mmu_init(void)
1209{
1210	int err;
1211	u32 hyp_va_bits;
1212
1213	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
1214	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
1215	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
1216	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
1217	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
1218
1219	/*
1220	 * We rely on the linker script to ensure at build time that the HYP
1221	 * init code does not cross a page boundary.
1222	 */
1223	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
1224
1225	hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
1226	kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits);
1227	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
1228	kvm_debug("HYP VA range: %lx:%lx\n",
1229		  kern_hyp_va(PAGE_OFFSET),
1230		  kern_hyp_va((unsigned long)high_memory - 1));
1231
1232	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
1233	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
1234	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
1235		/*
1236		 * The idmap page is intersecting with the VA space,
1237		 * it is not safe to continue further.
1238		 */
1239		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
1240		err = -EINVAL;
1241		goto out;
1242	}
1243
1244	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
1245	if (!hyp_pgtable) {
1246		kvm_err("Hyp mode page-table not allocated\n");
1247		err = -ENOMEM;
1248		goto out;
1249	}
1250
1251	err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits);
1252	if (err)
1253		goto out_free_pgtable;
1254
1255	err = kvm_map_idmap_text();
1256	if (err)
1257		goto out_destroy_pgtable;
1258
1259	io_map_base = hyp_idmap_start;
1260	return 0;
1261
1262out_destroy_pgtable:
1263	kvm_pgtable_hyp_destroy(hyp_pgtable);
1264out_free_pgtable:
1265	kfree(hyp_pgtable);
1266	hyp_pgtable = NULL;
1267out:
1268	return err;
1269}
1270
1271void kvm_arch_commit_memory_region(struct kvm *kvm,
1272				   const struct kvm_userspace_memory_region *mem,
1273				   struct kvm_memory_slot *old,
1274				   const struct kvm_memory_slot *new,
1275				   enum kvm_mr_change change)
1276{
1277	/*
1278	 * At this point memslot has been committed and there is an
1279	 * allocated dirty_bitmap[], dirty pages will be tracked while the
1280	 * memory slot is write protected.
1281	 */
1282	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1283		/*
1284		 * If we're with initial-all-set, we don't need to write
1285		 * protect any pages because they're all reported as dirty.
1286		 * Huge pages and normal pages will be write protect gradually.
1287		 */
1288		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
1289			kvm_mmu_wp_memory_region(kvm, mem->slot);
1290		}
1291	}
1292}
1293
1294int kvm_arch_prepare_memory_region(struct kvm *kvm,
1295				   struct kvm_memory_slot *memslot,
1296				   const struct kvm_userspace_memory_region *mem,
1297				   enum kvm_mr_change change)
1298{
1299	hva_t hva = mem->userspace_addr;
1300	hva_t reg_end = hva + mem->memory_size;
1301	bool writable = !(mem->flags & KVM_MEM_READONLY);
1302	int ret = 0;
1303
1304	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1305			change != KVM_MR_FLAGS_ONLY)
1306		return 0;
1307
1308	/*
1309	 * Prevent userspace from creating a memory region outside of the IPA
1310	 * space addressable by the KVM guest IPA space.
1311	 */
1312	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
1313		return -EFAULT;
1314
1315	mmap_read_lock(current->mm);
1316	/*
1317	 * A memory region could potentially cover multiple VMAs, and any holes
1318	 * between them, so iterate over all of them to find out if we can map
1319	 * any of them right now.
1320	 *
1321	 *     +--------------------------------------------+
1322	 * +---------------+----------------+   +----------------+
1323	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
1324	 * +---------------+----------------+   +----------------+
1325	 *     |               memory region                |
1326	 *     +--------------------------------------------+
1327	 */
1328	do {
1329		struct vm_area_struct *vma = find_vma(current->mm, hva);
1330		hva_t vm_start, vm_end;
1331
1332		if (!vma || vma->vm_start >= reg_end)
1333			break;
1334
1335		/*
1336		 * Take the intersection of this VMA with the memory region
1337		 */
1338		vm_start = max(hva, vma->vm_start);
1339		vm_end = min(reg_end, vma->vm_end);
1340
1341		if (vma->vm_flags & VM_PFNMAP) {
1342			gpa_t gpa = mem->guest_phys_addr +
1343				    (vm_start - mem->userspace_addr);
1344			phys_addr_t pa;
1345
1346			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
1347			pa += vm_start - vma->vm_start;
1348
1349			/* IO region dirty page logging not allowed */
1350			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
1351				ret = -EINVAL;
1352				goto out;
1353			}
1354
1355			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1356						    vm_end - vm_start,
1357						    writable);
1358			if (ret)
1359				break;
1360		}
1361		hva = vm_end;
1362	} while (hva < reg_end);
1363
1364	if (change == KVM_MR_FLAGS_ONLY)
1365		goto out;
1366
1367	spin_lock(&kvm->mmu_lock);
1368	if (ret)
1369		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
1370	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1371		stage2_flush_memslot(kvm, memslot);
1372	spin_unlock(&kvm->mmu_lock);
1373out:
1374	mmap_read_unlock(current->mm);
1375	return ret;
1376}
1377
1378void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1379{
1380}
1381
1382void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
1383{
1384}
1385
1386void kvm_arch_flush_shadow_all(struct kvm *kvm)
1387{
1388	kvm_free_stage2_pgd(&kvm->arch.mmu);
1389}
1390
1391void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1392				   struct kvm_memory_slot *slot)
1393{
1394	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1395	phys_addr_t size = slot->npages << PAGE_SHIFT;
1396
1397	spin_lock(&kvm->mmu_lock);
1398	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
1399	spin_unlock(&kvm->mmu_lock);
1400}
1401
1402/*
1403 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
1404 *
1405 * Main problems:
1406 * - S/W ops are local to a CPU (not broadcast)
1407 * - We have line migration behind our back (speculation)
1408 * - System caches don't support S/W at all (damn!)
1409 *
1410 * In the face of the above, the best we can do is to try and convert
1411 * S/W ops to VA ops. Because the guest is not allowed to infer the
1412 * S/W to PA mapping, it can only use S/W to nuke the whole cache,
1413 * which is a rather good thing for us.
1414 *
1415 * Also, it is only used when turning caches on/off ("The expected
1416 * usage of the cache maintenance instructions that operate by set/way
1417 * is associated with the cache maintenance instructions associated
1418 * with the powerdown and powerup of caches, if this is required by
1419 * the implementation.").
1420 *
1421 * We use the following policy:
1422 *
1423 * - If we trap a S/W operation, we enable VM trapping to detect
1424 *   caches being turned on/off, and do a full clean.
1425 *
1426 * - We flush the caches on both caches being turned on and off.
1427 *
1428 * - Once the caches are enabled, we stop trapping VM ops.
1429 */
1430void kvm_set_way_flush(struct kvm_vcpu *vcpu)
1431{
1432	unsigned long hcr = *vcpu_hcr(vcpu);
1433
1434	/*
1435	 * If this is the first time we do a S/W operation
1436	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
1437	 * VM trapping.
1438	 *
1439	 * Otherwise, rely on the VM trapping to wait for the MMU +
1440	 * Caches to be turned off. At that point, we'll be able to
1441	 * clean the caches again.
1442	 */
1443	if (!(hcr & HCR_TVM)) {
1444		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
1445					vcpu_has_cache_enabled(vcpu));
1446		stage2_flush_vm(vcpu->kvm);
1447		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
1448	}
1449}
1450
1451void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
1452{
1453	bool now_enabled = vcpu_has_cache_enabled(vcpu);
1454
1455	/*
1456	 * If switching the MMU+caches on, need to invalidate the caches.
1457	 * If switching it off, need to clean the caches.
1458	 * Clean + invalidate does the trick always.
1459	 */
1460	if (now_enabled != was_enabled)
1461		stage2_flush_vm(vcpu->kvm);
1462
1463	/* Caches are now on, stop trapping VM ops (until a S/W op) */
1464	if (now_enabled)
1465		*vcpu_hcr(vcpu) &= ~HCR_TVM;
1466
1467	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
1468}
1469