18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright (C) 2012 - Virtual Open Systems and Columbia University
48c2ecf20Sopenharmony_ci * Author: Christoffer Dall <c.dall@virtualopensystems.com>
58c2ecf20Sopenharmony_ci */
68c2ecf20Sopenharmony_ci
78c2ecf20Sopenharmony_ci#include <linux/mman.h>
88c2ecf20Sopenharmony_ci#include <linux/kvm_host.h>
98c2ecf20Sopenharmony_ci#include <linux/io.h>
108c2ecf20Sopenharmony_ci#include <linux/hugetlb.h>
118c2ecf20Sopenharmony_ci#include <linux/sched/signal.h>
128c2ecf20Sopenharmony_ci#include <trace/events/kvm.h>
138c2ecf20Sopenharmony_ci#include <asm/pgalloc.h>
148c2ecf20Sopenharmony_ci#include <asm/cacheflush.h>
158c2ecf20Sopenharmony_ci#include <asm/kvm_arm.h>
168c2ecf20Sopenharmony_ci#include <asm/kvm_mmu.h>
178c2ecf20Sopenharmony_ci#include <asm/kvm_pgtable.h>
188c2ecf20Sopenharmony_ci#include <asm/kvm_ras.h>
198c2ecf20Sopenharmony_ci#include <asm/kvm_asm.h>
208c2ecf20Sopenharmony_ci#include <asm/kvm_emulate.h>
218c2ecf20Sopenharmony_ci#include <asm/virt.h>
228c2ecf20Sopenharmony_ci
238c2ecf20Sopenharmony_ci#include "trace.h"
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_cistatic struct kvm_pgtable *hyp_pgtable;
268c2ecf20Sopenharmony_cistatic DEFINE_MUTEX(kvm_hyp_pgd_mutex);
278c2ecf20Sopenharmony_ci
288c2ecf20Sopenharmony_cistatic unsigned long hyp_idmap_start;
298c2ecf20Sopenharmony_cistatic unsigned long hyp_idmap_end;
308c2ecf20Sopenharmony_cistatic phys_addr_t hyp_idmap_vector;
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_cistatic unsigned long io_map_base;
338c2ecf20Sopenharmony_ci
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_ci/*
368c2ecf20Sopenharmony_ci * Release kvm_mmu_lock periodically if the memory region is large. Otherwise,
378c2ecf20Sopenharmony_ci * we may see kernel panics with CONFIG_DETECT_HUNG_TASK,
388c2ecf20Sopenharmony_ci * CONFIG_LOCKUP_DETECTOR, CONFIG_LOCKDEP. Additionally, holding the lock too
398c2ecf20Sopenharmony_ci * long will also starve other vCPUs. We have to also make sure that the page
408c2ecf20Sopenharmony_ci * tables are not freed while we released the lock.
418c2ecf20Sopenharmony_ci */
428c2ecf20Sopenharmony_cistatic int stage2_apply_range(struct kvm *kvm, phys_addr_t addr,
438c2ecf20Sopenharmony_ci			      phys_addr_t end,
448c2ecf20Sopenharmony_ci			      int (*fn)(struct kvm_pgtable *, u64, u64),
458c2ecf20Sopenharmony_ci			      bool resched)
468c2ecf20Sopenharmony_ci{
478c2ecf20Sopenharmony_ci	int ret;
488c2ecf20Sopenharmony_ci	u64 next;
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_ci	do {
518c2ecf20Sopenharmony_ci		struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
528c2ecf20Sopenharmony_ci		if (!pgt)
538c2ecf20Sopenharmony_ci			return -EINVAL;
548c2ecf20Sopenharmony_ci
558c2ecf20Sopenharmony_ci		next = stage2_pgd_addr_end(kvm, addr, end);
568c2ecf20Sopenharmony_ci		ret = fn(pgt, addr, next - addr);
578c2ecf20Sopenharmony_ci		if (ret)
588c2ecf20Sopenharmony_ci			break;
598c2ecf20Sopenharmony_ci
608c2ecf20Sopenharmony_ci		if (resched && next != end)
618c2ecf20Sopenharmony_ci			cond_resched_lock(&kvm->mmu_lock);
628c2ecf20Sopenharmony_ci	} while (addr = next, addr != end);
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci	return ret;
658c2ecf20Sopenharmony_ci}
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci#define stage2_apply_range_resched(kvm, addr, end, fn)			\
688c2ecf20Sopenharmony_ci	stage2_apply_range(kvm, addr, end, fn, true)
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_cistatic bool memslot_is_logging(struct kvm_memory_slot *memslot)
718c2ecf20Sopenharmony_ci{
728c2ecf20Sopenharmony_ci	return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
738c2ecf20Sopenharmony_ci}
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_ci/**
768c2ecf20Sopenharmony_ci * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
778c2ecf20Sopenharmony_ci * @kvm:	pointer to kvm structure.
788c2ecf20Sopenharmony_ci *
798c2ecf20Sopenharmony_ci * Interface to HYP function to flush all VM TLB entries
808c2ecf20Sopenharmony_ci */
818c2ecf20Sopenharmony_civoid kvm_flush_remote_tlbs(struct kvm *kvm)
828c2ecf20Sopenharmony_ci{
838c2ecf20Sopenharmony_ci	kvm_call_hyp(__kvm_tlb_flush_vmid, &kvm->arch.mmu);
848c2ecf20Sopenharmony_ci}
858c2ecf20Sopenharmony_ci
868c2ecf20Sopenharmony_cistatic bool kvm_is_device_pfn(unsigned long pfn)
878c2ecf20Sopenharmony_ci{
888c2ecf20Sopenharmony_ci	return !pfn_valid(pfn);
898c2ecf20Sopenharmony_ci}
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_ci/*
928c2ecf20Sopenharmony_ci * Unmapping vs dcache management:
938c2ecf20Sopenharmony_ci *
948c2ecf20Sopenharmony_ci * If a guest maps certain memory pages as uncached, all writes will
958c2ecf20Sopenharmony_ci * bypass the data cache and go directly to RAM.  However, the CPUs
968c2ecf20Sopenharmony_ci * can still speculate reads (not writes) and fill cache lines with
978c2ecf20Sopenharmony_ci * data.
988c2ecf20Sopenharmony_ci *
998c2ecf20Sopenharmony_ci * Those cache lines will be *clean* cache lines though, so a
1008c2ecf20Sopenharmony_ci * clean+invalidate operation is equivalent to an invalidate
1018c2ecf20Sopenharmony_ci * operation, because no cache lines are marked dirty.
1028c2ecf20Sopenharmony_ci *
1038c2ecf20Sopenharmony_ci * Those clean cache lines could be filled prior to an uncached write
1048c2ecf20Sopenharmony_ci * by the guest, and the cache coherent IO subsystem would therefore
1058c2ecf20Sopenharmony_ci * end up writing old data to disk.
1068c2ecf20Sopenharmony_ci *
1078c2ecf20Sopenharmony_ci * This is why right after unmapping a page/section and invalidating
1088c2ecf20Sopenharmony_ci * the corresponding TLBs, we flush to make sure the IO subsystem will
1098c2ecf20Sopenharmony_ci * never hit in the cache.
1108c2ecf20Sopenharmony_ci *
1118c2ecf20Sopenharmony_ci * This is all avoided on systems that have ARM64_HAS_STAGE2_FWB, as
1128c2ecf20Sopenharmony_ci * we then fully enforce cacheability of RAM, no matter what the guest
1138c2ecf20Sopenharmony_ci * does.
1148c2ecf20Sopenharmony_ci */
1158c2ecf20Sopenharmony_ci/**
1168c2ecf20Sopenharmony_ci * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
1178c2ecf20Sopenharmony_ci * @mmu:   The KVM stage-2 MMU pointer
1188c2ecf20Sopenharmony_ci * @start: The intermediate physical base address of the range to unmap
1198c2ecf20Sopenharmony_ci * @size:  The size of the area to unmap
1208c2ecf20Sopenharmony_ci * @may_block: Whether or not we are permitted to block
1218c2ecf20Sopenharmony_ci *
1228c2ecf20Sopenharmony_ci * Clear a range of stage-2 mappings, lowering the various ref-counts.  Must
1238c2ecf20Sopenharmony_ci * be called while holding mmu_lock (unless for freeing the stage2 pgd before
1248c2ecf20Sopenharmony_ci * destroying the VM), otherwise another faulting VCPU may come in and mess
1258c2ecf20Sopenharmony_ci * with things behind our backs.
1268c2ecf20Sopenharmony_ci */
1278c2ecf20Sopenharmony_cistatic void __unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size,
1288c2ecf20Sopenharmony_ci				 bool may_block)
1298c2ecf20Sopenharmony_ci{
1308c2ecf20Sopenharmony_ci	struct kvm *kvm = mmu->kvm;
1318c2ecf20Sopenharmony_ci	phys_addr_t end = start + size;
1328c2ecf20Sopenharmony_ci
1338c2ecf20Sopenharmony_ci	assert_spin_locked(&kvm->mmu_lock);
1348c2ecf20Sopenharmony_ci	WARN_ON(size & ~PAGE_MASK);
1358c2ecf20Sopenharmony_ci	WARN_ON(stage2_apply_range(kvm, start, end, kvm_pgtable_stage2_unmap,
1368c2ecf20Sopenharmony_ci				   may_block));
1378c2ecf20Sopenharmony_ci}
1388c2ecf20Sopenharmony_ci
1398c2ecf20Sopenharmony_cistatic void unmap_stage2_range(struct kvm_s2_mmu *mmu, phys_addr_t start, u64 size)
1408c2ecf20Sopenharmony_ci{
1418c2ecf20Sopenharmony_ci	__unmap_stage2_range(mmu, start, size, true);
1428c2ecf20Sopenharmony_ci}
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_cistatic void stage2_flush_memslot(struct kvm *kvm,
1458c2ecf20Sopenharmony_ci				 struct kvm_memory_slot *memslot)
1468c2ecf20Sopenharmony_ci{
1478c2ecf20Sopenharmony_ci	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
1488c2ecf20Sopenharmony_ci	phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
1498c2ecf20Sopenharmony_ci
1508c2ecf20Sopenharmony_ci	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_flush);
1518c2ecf20Sopenharmony_ci}
1528c2ecf20Sopenharmony_ci
1538c2ecf20Sopenharmony_ci/**
1548c2ecf20Sopenharmony_ci * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
1558c2ecf20Sopenharmony_ci * @kvm: The struct kvm pointer
1568c2ecf20Sopenharmony_ci *
1578c2ecf20Sopenharmony_ci * Go through the stage 2 page tables and invalidate any cache lines
1588c2ecf20Sopenharmony_ci * backing memory already mapped to the VM.
1598c2ecf20Sopenharmony_ci */
1608c2ecf20Sopenharmony_cistatic void stage2_flush_vm(struct kvm *kvm)
1618c2ecf20Sopenharmony_ci{
1628c2ecf20Sopenharmony_ci	struct kvm_memslots *slots;
1638c2ecf20Sopenharmony_ci	struct kvm_memory_slot *memslot;
1648c2ecf20Sopenharmony_ci	int idx;
1658c2ecf20Sopenharmony_ci
1668c2ecf20Sopenharmony_ci	idx = srcu_read_lock(&kvm->srcu);
1678c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
1688c2ecf20Sopenharmony_ci
1698c2ecf20Sopenharmony_ci	slots = kvm_memslots(kvm);
1708c2ecf20Sopenharmony_ci	kvm_for_each_memslot(memslot, slots)
1718c2ecf20Sopenharmony_ci		stage2_flush_memslot(kvm, memslot);
1728c2ecf20Sopenharmony_ci
1738c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
1748c2ecf20Sopenharmony_ci	srcu_read_unlock(&kvm->srcu, idx);
1758c2ecf20Sopenharmony_ci}
1768c2ecf20Sopenharmony_ci
1778c2ecf20Sopenharmony_ci/**
1788c2ecf20Sopenharmony_ci * free_hyp_pgds - free Hyp-mode page tables
1798c2ecf20Sopenharmony_ci */
1808c2ecf20Sopenharmony_civoid free_hyp_pgds(void)
1818c2ecf20Sopenharmony_ci{
1828c2ecf20Sopenharmony_ci	mutex_lock(&kvm_hyp_pgd_mutex);
1838c2ecf20Sopenharmony_ci	if (hyp_pgtable) {
1848c2ecf20Sopenharmony_ci		kvm_pgtable_hyp_destroy(hyp_pgtable);
1858c2ecf20Sopenharmony_ci		kfree(hyp_pgtable);
1868c2ecf20Sopenharmony_ci	}
1878c2ecf20Sopenharmony_ci	mutex_unlock(&kvm_hyp_pgd_mutex);
1888c2ecf20Sopenharmony_ci}
1898c2ecf20Sopenharmony_ci
1908c2ecf20Sopenharmony_cistatic int __create_hyp_mappings(unsigned long start, unsigned long size,
1918c2ecf20Sopenharmony_ci				 unsigned long phys, enum kvm_pgtable_prot prot)
1928c2ecf20Sopenharmony_ci{
1938c2ecf20Sopenharmony_ci	int err;
1948c2ecf20Sopenharmony_ci
1958c2ecf20Sopenharmony_ci	mutex_lock(&kvm_hyp_pgd_mutex);
1968c2ecf20Sopenharmony_ci	err = kvm_pgtable_hyp_map(hyp_pgtable, start, size, phys, prot);
1978c2ecf20Sopenharmony_ci	mutex_unlock(&kvm_hyp_pgd_mutex);
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	return err;
2008c2ecf20Sopenharmony_ci}
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_cistatic phys_addr_t kvm_kaddr_to_phys(void *kaddr)
2038c2ecf20Sopenharmony_ci{
2048c2ecf20Sopenharmony_ci	if (!is_vmalloc_addr(kaddr)) {
2058c2ecf20Sopenharmony_ci		BUG_ON(!virt_addr_valid(kaddr));
2068c2ecf20Sopenharmony_ci		return __pa(kaddr);
2078c2ecf20Sopenharmony_ci	} else {
2088c2ecf20Sopenharmony_ci		return page_to_phys(vmalloc_to_page(kaddr)) +
2098c2ecf20Sopenharmony_ci		       offset_in_page(kaddr);
2108c2ecf20Sopenharmony_ci	}
2118c2ecf20Sopenharmony_ci}
2128c2ecf20Sopenharmony_ci
2138c2ecf20Sopenharmony_ci/**
2148c2ecf20Sopenharmony_ci * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
2158c2ecf20Sopenharmony_ci * @from:	The virtual kernel start address of the range
2168c2ecf20Sopenharmony_ci * @to:		The virtual kernel end address of the range (exclusive)
2178c2ecf20Sopenharmony_ci * @prot:	The protection to be applied to this range
2188c2ecf20Sopenharmony_ci *
2198c2ecf20Sopenharmony_ci * The same virtual address as the kernel virtual address is also used
2208c2ecf20Sopenharmony_ci * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
2218c2ecf20Sopenharmony_ci * physical pages.
2228c2ecf20Sopenharmony_ci */
2238c2ecf20Sopenharmony_ciint create_hyp_mappings(void *from, void *to, enum kvm_pgtable_prot prot)
2248c2ecf20Sopenharmony_ci{
2258c2ecf20Sopenharmony_ci	phys_addr_t phys_addr;
2268c2ecf20Sopenharmony_ci	unsigned long virt_addr;
2278c2ecf20Sopenharmony_ci	unsigned long start = kern_hyp_va((unsigned long)from);
2288c2ecf20Sopenharmony_ci	unsigned long end = kern_hyp_va((unsigned long)to);
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci	if (is_kernel_in_hyp_mode())
2318c2ecf20Sopenharmony_ci		return 0;
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_ci	start = start & PAGE_MASK;
2348c2ecf20Sopenharmony_ci	end = PAGE_ALIGN(end);
2358c2ecf20Sopenharmony_ci
2368c2ecf20Sopenharmony_ci	for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
2378c2ecf20Sopenharmony_ci		int err;
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci		phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
2408c2ecf20Sopenharmony_ci		err = __create_hyp_mappings(virt_addr, PAGE_SIZE, phys_addr,
2418c2ecf20Sopenharmony_ci					    prot);
2428c2ecf20Sopenharmony_ci		if (err)
2438c2ecf20Sopenharmony_ci			return err;
2448c2ecf20Sopenharmony_ci	}
2458c2ecf20Sopenharmony_ci
2468c2ecf20Sopenharmony_ci	return 0;
2478c2ecf20Sopenharmony_ci}
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_cistatic int __create_hyp_private_mapping(phys_addr_t phys_addr, size_t size,
2508c2ecf20Sopenharmony_ci					unsigned long *haddr,
2518c2ecf20Sopenharmony_ci					enum kvm_pgtable_prot prot)
2528c2ecf20Sopenharmony_ci{
2538c2ecf20Sopenharmony_ci	unsigned long base;
2548c2ecf20Sopenharmony_ci	int ret = 0;
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_ci	mutex_lock(&kvm_hyp_pgd_mutex);
2578c2ecf20Sopenharmony_ci
2588c2ecf20Sopenharmony_ci	/*
2598c2ecf20Sopenharmony_ci	 * This assumes that we have enough space below the idmap
2608c2ecf20Sopenharmony_ci	 * page to allocate our VAs. If not, the check below will
2618c2ecf20Sopenharmony_ci	 * kick. A potential alternative would be to detect that
2628c2ecf20Sopenharmony_ci	 * overflow and switch to an allocation above the idmap.
2638c2ecf20Sopenharmony_ci	 *
2648c2ecf20Sopenharmony_ci	 * The allocated size is always a multiple of PAGE_SIZE.
2658c2ecf20Sopenharmony_ci	 */
2668c2ecf20Sopenharmony_ci	size = PAGE_ALIGN(size + offset_in_page(phys_addr));
2678c2ecf20Sopenharmony_ci	base = io_map_base - size;
2688c2ecf20Sopenharmony_ci
2698c2ecf20Sopenharmony_ci	/*
2708c2ecf20Sopenharmony_ci	 * Verify that BIT(VA_BITS - 1) hasn't been flipped by
2718c2ecf20Sopenharmony_ci	 * allocating the new area, as it would indicate we've
2728c2ecf20Sopenharmony_ci	 * overflowed the idmap/IO address range.
2738c2ecf20Sopenharmony_ci	 */
2748c2ecf20Sopenharmony_ci	if ((base ^ io_map_base) & BIT(VA_BITS - 1))
2758c2ecf20Sopenharmony_ci		ret = -ENOMEM;
2768c2ecf20Sopenharmony_ci	else
2778c2ecf20Sopenharmony_ci		io_map_base = base;
2788c2ecf20Sopenharmony_ci
2798c2ecf20Sopenharmony_ci	mutex_unlock(&kvm_hyp_pgd_mutex);
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci	if (ret)
2828c2ecf20Sopenharmony_ci		goto out;
2838c2ecf20Sopenharmony_ci
2848c2ecf20Sopenharmony_ci	ret = __create_hyp_mappings(base, size, phys_addr, prot);
2858c2ecf20Sopenharmony_ci	if (ret)
2868c2ecf20Sopenharmony_ci		goto out;
2878c2ecf20Sopenharmony_ci
2888c2ecf20Sopenharmony_ci	*haddr = base + offset_in_page(phys_addr);
2898c2ecf20Sopenharmony_ciout:
2908c2ecf20Sopenharmony_ci	return ret;
2918c2ecf20Sopenharmony_ci}
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci/**
2948c2ecf20Sopenharmony_ci * create_hyp_io_mappings - Map IO into both kernel and HYP
2958c2ecf20Sopenharmony_ci * @phys_addr:	The physical start address which gets mapped
2968c2ecf20Sopenharmony_ci * @size:	Size of the region being mapped
2978c2ecf20Sopenharmony_ci * @kaddr:	Kernel VA for this mapping
2988c2ecf20Sopenharmony_ci * @haddr:	HYP VA for this mapping
2998c2ecf20Sopenharmony_ci */
3008c2ecf20Sopenharmony_ciint create_hyp_io_mappings(phys_addr_t phys_addr, size_t size,
3018c2ecf20Sopenharmony_ci			   void __iomem **kaddr,
3028c2ecf20Sopenharmony_ci			   void __iomem **haddr)
3038c2ecf20Sopenharmony_ci{
3048c2ecf20Sopenharmony_ci	unsigned long addr;
3058c2ecf20Sopenharmony_ci	int ret;
3068c2ecf20Sopenharmony_ci
3078c2ecf20Sopenharmony_ci	*kaddr = ioremap(phys_addr, size);
3088c2ecf20Sopenharmony_ci	if (!*kaddr)
3098c2ecf20Sopenharmony_ci		return -ENOMEM;
3108c2ecf20Sopenharmony_ci
3118c2ecf20Sopenharmony_ci	if (is_kernel_in_hyp_mode()) {
3128c2ecf20Sopenharmony_ci		*haddr = *kaddr;
3138c2ecf20Sopenharmony_ci		return 0;
3148c2ecf20Sopenharmony_ci	}
3158c2ecf20Sopenharmony_ci
3168c2ecf20Sopenharmony_ci	ret = __create_hyp_private_mapping(phys_addr, size,
3178c2ecf20Sopenharmony_ci					   &addr, PAGE_HYP_DEVICE);
3188c2ecf20Sopenharmony_ci	if (ret) {
3198c2ecf20Sopenharmony_ci		iounmap(*kaddr);
3208c2ecf20Sopenharmony_ci		*kaddr = NULL;
3218c2ecf20Sopenharmony_ci		*haddr = NULL;
3228c2ecf20Sopenharmony_ci		return ret;
3238c2ecf20Sopenharmony_ci	}
3248c2ecf20Sopenharmony_ci
3258c2ecf20Sopenharmony_ci	*haddr = (void __iomem *)addr;
3268c2ecf20Sopenharmony_ci	return 0;
3278c2ecf20Sopenharmony_ci}
3288c2ecf20Sopenharmony_ci
3298c2ecf20Sopenharmony_ci/**
3308c2ecf20Sopenharmony_ci * create_hyp_exec_mappings - Map an executable range into HYP
3318c2ecf20Sopenharmony_ci * @phys_addr:	The physical start address which gets mapped
3328c2ecf20Sopenharmony_ci * @size:	Size of the region being mapped
3338c2ecf20Sopenharmony_ci * @haddr:	HYP VA for this mapping
3348c2ecf20Sopenharmony_ci */
3358c2ecf20Sopenharmony_ciint create_hyp_exec_mappings(phys_addr_t phys_addr, size_t size,
3368c2ecf20Sopenharmony_ci			     void **haddr)
3378c2ecf20Sopenharmony_ci{
3388c2ecf20Sopenharmony_ci	unsigned long addr;
3398c2ecf20Sopenharmony_ci	int ret;
3408c2ecf20Sopenharmony_ci
3418c2ecf20Sopenharmony_ci	BUG_ON(is_kernel_in_hyp_mode());
3428c2ecf20Sopenharmony_ci
3438c2ecf20Sopenharmony_ci	ret = __create_hyp_private_mapping(phys_addr, size,
3448c2ecf20Sopenharmony_ci					   &addr, PAGE_HYP_EXEC);
3458c2ecf20Sopenharmony_ci	if (ret) {
3468c2ecf20Sopenharmony_ci		*haddr = NULL;
3478c2ecf20Sopenharmony_ci		return ret;
3488c2ecf20Sopenharmony_ci	}
3498c2ecf20Sopenharmony_ci
3508c2ecf20Sopenharmony_ci	*haddr = (void *)addr;
3518c2ecf20Sopenharmony_ci	return 0;
3528c2ecf20Sopenharmony_ci}
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_ci/**
3558c2ecf20Sopenharmony_ci * kvm_init_stage2_mmu - Initialise a S2 MMU strucrure
3568c2ecf20Sopenharmony_ci * @kvm:	The pointer to the KVM structure
3578c2ecf20Sopenharmony_ci * @mmu:	The pointer to the s2 MMU structure
3588c2ecf20Sopenharmony_ci *
3598c2ecf20Sopenharmony_ci * Allocates only the stage-2 HW PGD level table(s).
3608c2ecf20Sopenharmony_ci * Note we don't need locking here as this is only called when the VM is
3618c2ecf20Sopenharmony_ci * created, which can only be done once.
3628c2ecf20Sopenharmony_ci */
3638c2ecf20Sopenharmony_ciint kvm_init_stage2_mmu(struct kvm *kvm, struct kvm_s2_mmu *mmu)
3648c2ecf20Sopenharmony_ci{
3658c2ecf20Sopenharmony_ci	int cpu, err;
3668c2ecf20Sopenharmony_ci	struct kvm_pgtable *pgt;
3678c2ecf20Sopenharmony_ci
3688c2ecf20Sopenharmony_ci	if (mmu->pgt != NULL) {
3698c2ecf20Sopenharmony_ci		kvm_err("kvm_arch already initialized?\n");
3708c2ecf20Sopenharmony_ci		return -EINVAL;
3718c2ecf20Sopenharmony_ci	}
3728c2ecf20Sopenharmony_ci
3738c2ecf20Sopenharmony_ci	pgt = kzalloc(sizeof(*pgt), GFP_KERNEL);
3748c2ecf20Sopenharmony_ci	if (!pgt)
3758c2ecf20Sopenharmony_ci		return -ENOMEM;
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_ci	err = kvm_pgtable_stage2_init(pgt, kvm);
3788c2ecf20Sopenharmony_ci	if (err)
3798c2ecf20Sopenharmony_ci		goto out_free_pgtable;
3808c2ecf20Sopenharmony_ci
3818c2ecf20Sopenharmony_ci	mmu->last_vcpu_ran = alloc_percpu(typeof(*mmu->last_vcpu_ran));
3828c2ecf20Sopenharmony_ci	if (!mmu->last_vcpu_ran) {
3838c2ecf20Sopenharmony_ci		err = -ENOMEM;
3848c2ecf20Sopenharmony_ci		goto out_destroy_pgtable;
3858c2ecf20Sopenharmony_ci	}
3868c2ecf20Sopenharmony_ci
3878c2ecf20Sopenharmony_ci	for_each_possible_cpu(cpu)
3888c2ecf20Sopenharmony_ci		*per_cpu_ptr(mmu->last_vcpu_ran, cpu) = -1;
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci	mmu->kvm = kvm;
3918c2ecf20Sopenharmony_ci	mmu->pgt = pgt;
3928c2ecf20Sopenharmony_ci	mmu->pgd_phys = __pa(pgt->pgd);
3938c2ecf20Sopenharmony_ci	mmu->vmid.vmid_gen = 0;
3948c2ecf20Sopenharmony_ci	return 0;
3958c2ecf20Sopenharmony_ci
3968c2ecf20Sopenharmony_ciout_destroy_pgtable:
3978c2ecf20Sopenharmony_ci	kvm_pgtable_stage2_destroy(pgt);
3988c2ecf20Sopenharmony_ciout_free_pgtable:
3998c2ecf20Sopenharmony_ci	kfree(pgt);
4008c2ecf20Sopenharmony_ci	return err;
4018c2ecf20Sopenharmony_ci}
4028c2ecf20Sopenharmony_ci
4038c2ecf20Sopenharmony_cistatic void stage2_unmap_memslot(struct kvm *kvm,
4048c2ecf20Sopenharmony_ci				 struct kvm_memory_slot *memslot)
4058c2ecf20Sopenharmony_ci{
4068c2ecf20Sopenharmony_ci	hva_t hva = memslot->userspace_addr;
4078c2ecf20Sopenharmony_ci	phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
4088c2ecf20Sopenharmony_ci	phys_addr_t size = PAGE_SIZE * memslot->npages;
4098c2ecf20Sopenharmony_ci	hva_t reg_end = hva + size;
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	/*
4128c2ecf20Sopenharmony_ci	 * A memory region could potentially cover multiple VMAs, and any holes
4138c2ecf20Sopenharmony_ci	 * between them, so iterate over all of them to find out if we should
4148c2ecf20Sopenharmony_ci	 * unmap any of them.
4158c2ecf20Sopenharmony_ci	 *
4168c2ecf20Sopenharmony_ci	 *     +--------------------------------------------+
4178c2ecf20Sopenharmony_ci	 * +---------------+----------------+   +----------------+
4188c2ecf20Sopenharmony_ci	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
4198c2ecf20Sopenharmony_ci	 * +---------------+----------------+   +----------------+
4208c2ecf20Sopenharmony_ci	 *     |               memory region                |
4218c2ecf20Sopenharmony_ci	 *     +--------------------------------------------+
4228c2ecf20Sopenharmony_ci	 */
4238c2ecf20Sopenharmony_ci	do {
4248c2ecf20Sopenharmony_ci		struct vm_area_struct *vma = find_vma(current->mm, hva);
4258c2ecf20Sopenharmony_ci		hva_t vm_start, vm_end;
4268c2ecf20Sopenharmony_ci
4278c2ecf20Sopenharmony_ci		if (!vma || vma->vm_start >= reg_end)
4288c2ecf20Sopenharmony_ci			break;
4298c2ecf20Sopenharmony_ci
4308c2ecf20Sopenharmony_ci		/*
4318c2ecf20Sopenharmony_ci		 * Take the intersection of this VMA with the memory region
4328c2ecf20Sopenharmony_ci		 */
4338c2ecf20Sopenharmony_ci		vm_start = max(hva, vma->vm_start);
4348c2ecf20Sopenharmony_ci		vm_end = min(reg_end, vma->vm_end);
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci		if (!(vma->vm_flags & VM_PFNMAP)) {
4378c2ecf20Sopenharmony_ci			gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
4388c2ecf20Sopenharmony_ci			unmap_stage2_range(&kvm->arch.mmu, gpa, vm_end - vm_start);
4398c2ecf20Sopenharmony_ci		}
4408c2ecf20Sopenharmony_ci		hva = vm_end;
4418c2ecf20Sopenharmony_ci	} while (hva < reg_end);
4428c2ecf20Sopenharmony_ci}
4438c2ecf20Sopenharmony_ci
4448c2ecf20Sopenharmony_ci/**
4458c2ecf20Sopenharmony_ci * stage2_unmap_vm - Unmap Stage-2 RAM mappings
4468c2ecf20Sopenharmony_ci * @kvm: The struct kvm pointer
4478c2ecf20Sopenharmony_ci *
4488c2ecf20Sopenharmony_ci * Go through the memregions and unmap any regular RAM
4498c2ecf20Sopenharmony_ci * backing memory already mapped to the VM.
4508c2ecf20Sopenharmony_ci */
4518c2ecf20Sopenharmony_civoid stage2_unmap_vm(struct kvm *kvm)
4528c2ecf20Sopenharmony_ci{
4538c2ecf20Sopenharmony_ci	struct kvm_memslots *slots;
4548c2ecf20Sopenharmony_ci	struct kvm_memory_slot *memslot;
4558c2ecf20Sopenharmony_ci	int idx;
4568c2ecf20Sopenharmony_ci
4578c2ecf20Sopenharmony_ci	idx = srcu_read_lock(&kvm->srcu);
4588c2ecf20Sopenharmony_ci	mmap_read_lock(current->mm);
4598c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
4608c2ecf20Sopenharmony_ci
4618c2ecf20Sopenharmony_ci	slots = kvm_memslots(kvm);
4628c2ecf20Sopenharmony_ci	kvm_for_each_memslot(memslot, slots)
4638c2ecf20Sopenharmony_ci		stage2_unmap_memslot(kvm, memslot);
4648c2ecf20Sopenharmony_ci
4658c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
4668c2ecf20Sopenharmony_ci	mmap_read_unlock(current->mm);
4678c2ecf20Sopenharmony_ci	srcu_read_unlock(&kvm->srcu, idx);
4688c2ecf20Sopenharmony_ci}
4698c2ecf20Sopenharmony_ci
4708c2ecf20Sopenharmony_civoid kvm_free_stage2_pgd(struct kvm_s2_mmu *mmu)
4718c2ecf20Sopenharmony_ci{
4728c2ecf20Sopenharmony_ci	struct kvm *kvm = mmu->kvm;
4738c2ecf20Sopenharmony_ci	struct kvm_pgtable *pgt = NULL;
4748c2ecf20Sopenharmony_ci
4758c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
4768c2ecf20Sopenharmony_ci	pgt = mmu->pgt;
4778c2ecf20Sopenharmony_ci	if (pgt) {
4788c2ecf20Sopenharmony_ci		mmu->pgd_phys = 0;
4798c2ecf20Sopenharmony_ci		mmu->pgt = NULL;
4808c2ecf20Sopenharmony_ci		free_percpu(mmu->last_vcpu_ran);
4818c2ecf20Sopenharmony_ci	}
4828c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
4838c2ecf20Sopenharmony_ci
4848c2ecf20Sopenharmony_ci	if (pgt) {
4858c2ecf20Sopenharmony_ci		kvm_pgtable_stage2_destroy(pgt);
4868c2ecf20Sopenharmony_ci		kfree(pgt);
4878c2ecf20Sopenharmony_ci	}
4888c2ecf20Sopenharmony_ci}
4898c2ecf20Sopenharmony_ci
4908c2ecf20Sopenharmony_ci/**
4918c2ecf20Sopenharmony_ci * kvm_phys_addr_ioremap - map a device range to guest IPA
4928c2ecf20Sopenharmony_ci *
4938c2ecf20Sopenharmony_ci * @kvm:	The KVM pointer
4948c2ecf20Sopenharmony_ci * @guest_ipa:	The IPA at which to insert the mapping
4958c2ecf20Sopenharmony_ci * @pa:		The physical address of the device
4968c2ecf20Sopenharmony_ci * @size:	The size of the mapping
4978c2ecf20Sopenharmony_ci * @writable:   Whether or not to create a writable mapping
4988c2ecf20Sopenharmony_ci */
4998c2ecf20Sopenharmony_ciint kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
5008c2ecf20Sopenharmony_ci			  phys_addr_t pa, unsigned long size, bool writable)
5018c2ecf20Sopenharmony_ci{
5028c2ecf20Sopenharmony_ci	phys_addr_t addr;
5038c2ecf20Sopenharmony_ci	int ret = 0;
5048c2ecf20Sopenharmony_ci	struct kvm_mmu_memory_cache cache = { 0, __GFP_ZERO, NULL, };
5058c2ecf20Sopenharmony_ci	struct kvm_pgtable *pgt = kvm->arch.mmu.pgt;
5068c2ecf20Sopenharmony_ci	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_DEVICE |
5078c2ecf20Sopenharmony_ci				     KVM_PGTABLE_PROT_R |
5088c2ecf20Sopenharmony_ci				     (writable ? KVM_PGTABLE_PROT_W : 0);
5098c2ecf20Sopenharmony_ci
5108c2ecf20Sopenharmony_ci	size += offset_in_page(guest_ipa);
5118c2ecf20Sopenharmony_ci	guest_ipa &= PAGE_MASK;
5128c2ecf20Sopenharmony_ci
5138c2ecf20Sopenharmony_ci	for (addr = guest_ipa; addr < guest_ipa + size; addr += PAGE_SIZE) {
5148c2ecf20Sopenharmony_ci		ret = kvm_mmu_topup_memory_cache(&cache,
5158c2ecf20Sopenharmony_ci						 kvm_mmu_cache_min_pages(kvm));
5168c2ecf20Sopenharmony_ci		if (ret)
5178c2ecf20Sopenharmony_ci			break;
5188c2ecf20Sopenharmony_ci
5198c2ecf20Sopenharmony_ci		spin_lock(&kvm->mmu_lock);
5208c2ecf20Sopenharmony_ci		ret = kvm_pgtable_stage2_map(pgt, addr, PAGE_SIZE, pa, prot,
5218c2ecf20Sopenharmony_ci					     &cache);
5228c2ecf20Sopenharmony_ci		spin_unlock(&kvm->mmu_lock);
5238c2ecf20Sopenharmony_ci		if (ret)
5248c2ecf20Sopenharmony_ci			break;
5258c2ecf20Sopenharmony_ci
5268c2ecf20Sopenharmony_ci		pa += PAGE_SIZE;
5278c2ecf20Sopenharmony_ci	}
5288c2ecf20Sopenharmony_ci
5298c2ecf20Sopenharmony_ci	kvm_mmu_free_memory_cache(&cache);
5308c2ecf20Sopenharmony_ci	return ret;
5318c2ecf20Sopenharmony_ci}
5328c2ecf20Sopenharmony_ci
5338c2ecf20Sopenharmony_ci/**
5348c2ecf20Sopenharmony_ci * stage2_wp_range() - write protect stage2 memory region range
5358c2ecf20Sopenharmony_ci * @mmu:        The KVM stage-2 MMU pointer
5368c2ecf20Sopenharmony_ci * @addr:	Start address of range
5378c2ecf20Sopenharmony_ci * @end:	End address of range
5388c2ecf20Sopenharmony_ci */
5398c2ecf20Sopenharmony_cistatic void stage2_wp_range(struct kvm_s2_mmu *mmu, phys_addr_t addr, phys_addr_t end)
5408c2ecf20Sopenharmony_ci{
5418c2ecf20Sopenharmony_ci	struct kvm *kvm = mmu->kvm;
5428c2ecf20Sopenharmony_ci	stage2_apply_range_resched(kvm, addr, end, kvm_pgtable_stage2_wrprotect);
5438c2ecf20Sopenharmony_ci}
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci/**
5468c2ecf20Sopenharmony_ci * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
5478c2ecf20Sopenharmony_ci * @kvm:	The KVM pointer
5488c2ecf20Sopenharmony_ci * @slot:	The memory slot to write protect
5498c2ecf20Sopenharmony_ci *
5508c2ecf20Sopenharmony_ci * Called to start logging dirty pages after memory region
5518c2ecf20Sopenharmony_ci * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
5528c2ecf20Sopenharmony_ci * all present PUD, PMD and PTEs are write protected in the memory region.
5538c2ecf20Sopenharmony_ci * Afterwards read of dirty page log can be called.
5548c2ecf20Sopenharmony_ci *
5558c2ecf20Sopenharmony_ci * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
5568c2ecf20Sopenharmony_ci * serializing operations for VM memory regions.
5578c2ecf20Sopenharmony_ci */
5588c2ecf20Sopenharmony_civoid kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
5598c2ecf20Sopenharmony_ci{
5608c2ecf20Sopenharmony_ci	struct kvm_memslots *slots = kvm_memslots(kvm);
5618c2ecf20Sopenharmony_ci	struct kvm_memory_slot *memslot = id_to_memslot(slots, slot);
5628c2ecf20Sopenharmony_ci	phys_addr_t start, end;
5638c2ecf20Sopenharmony_ci
5648c2ecf20Sopenharmony_ci	if (WARN_ON_ONCE(!memslot))
5658c2ecf20Sopenharmony_ci		return;
5668c2ecf20Sopenharmony_ci
5678c2ecf20Sopenharmony_ci	start = memslot->base_gfn << PAGE_SHIFT;
5688c2ecf20Sopenharmony_ci	end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
5698c2ecf20Sopenharmony_ci
5708c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
5718c2ecf20Sopenharmony_ci	stage2_wp_range(&kvm->arch.mmu, start, end);
5728c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
5738c2ecf20Sopenharmony_ci	kvm_flush_remote_tlbs(kvm);
5748c2ecf20Sopenharmony_ci}
5758c2ecf20Sopenharmony_ci
5768c2ecf20Sopenharmony_ci/**
5778c2ecf20Sopenharmony_ci * kvm_mmu_write_protect_pt_masked() - write protect dirty pages
5788c2ecf20Sopenharmony_ci * @kvm:	The KVM pointer
5798c2ecf20Sopenharmony_ci * @slot:	The memory slot associated with mask
5808c2ecf20Sopenharmony_ci * @gfn_offset:	The gfn offset in memory slot
5818c2ecf20Sopenharmony_ci * @mask:	The mask of dirty pages at offset 'gfn_offset' in this memory
5828c2ecf20Sopenharmony_ci *		slot to be write protected
5838c2ecf20Sopenharmony_ci *
5848c2ecf20Sopenharmony_ci * Walks bits set in mask write protects the associated pte's. Caller must
5858c2ecf20Sopenharmony_ci * acquire kvm_mmu_lock.
5868c2ecf20Sopenharmony_ci */
5878c2ecf20Sopenharmony_cistatic void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5888c2ecf20Sopenharmony_ci		struct kvm_memory_slot *slot,
5898c2ecf20Sopenharmony_ci		gfn_t gfn_offset, unsigned long mask)
5908c2ecf20Sopenharmony_ci{
5918c2ecf20Sopenharmony_ci	phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
5928c2ecf20Sopenharmony_ci	phys_addr_t start = (base_gfn +  __ffs(mask)) << PAGE_SHIFT;
5938c2ecf20Sopenharmony_ci	phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
5948c2ecf20Sopenharmony_ci
5958c2ecf20Sopenharmony_ci	stage2_wp_range(&kvm->arch.mmu, start, end);
5968c2ecf20Sopenharmony_ci}
5978c2ecf20Sopenharmony_ci
5988c2ecf20Sopenharmony_ci/*
5998c2ecf20Sopenharmony_ci * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
6008c2ecf20Sopenharmony_ci * dirty pages.
6018c2ecf20Sopenharmony_ci *
6028c2ecf20Sopenharmony_ci * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
6038c2ecf20Sopenharmony_ci * enable dirty logging for them.
6048c2ecf20Sopenharmony_ci */
6058c2ecf20Sopenharmony_civoid kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
6068c2ecf20Sopenharmony_ci		struct kvm_memory_slot *slot,
6078c2ecf20Sopenharmony_ci		gfn_t gfn_offset, unsigned long mask)
6088c2ecf20Sopenharmony_ci{
6098c2ecf20Sopenharmony_ci	kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
6108c2ecf20Sopenharmony_ci}
6118c2ecf20Sopenharmony_ci
6128c2ecf20Sopenharmony_cistatic void clean_dcache_guest_page(kvm_pfn_t pfn, unsigned long size)
6138c2ecf20Sopenharmony_ci{
6148c2ecf20Sopenharmony_ci	__clean_dcache_guest_page(pfn, size);
6158c2ecf20Sopenharmony_ci}
6168c2ecf20Sopenharmony_ci
6178c2ecf20Sopenharmony_cistatic void invalidate_icache_guest_page(kvm_pfn_t pfn, unsigned long size)
6188c2ecf20Sopenharmony_ci{
6198c2ecf20Sopenharmony_ci	__invalidate_icache_guest_page(pfn, size);
6208c2ecf20Sopenharmony_ci}
6218c2ecf20Sopenharmony_ci
6228c2ecf20Sopenharmony_cistatic void kvm_send_hwpoison_signal(unsigned long address, short lsb)
6238c2ecf20Sopenharmony_ci{
6248c2ecf20Sopenharmony_ci	send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, lsb, current);
6258c2ecf20Sopenharmony_ci}
6268c2ecf20Sopenharmony_ci
6278c2ecf20Sopenharmony_cistatic bool fault_supports_stage2_huge_mapping(struct kvm_memory_slot *memslot,
6288c2ecf20Sopenharmony_ci					       unsigned long hva,
6298c2ecf20Sopenharmony_ci					       unsigned long map_size)
6308c2ecf20Sopenharmony_ci{
6318c2ecf20Sopenharmony_ci	gpa_t gpa_start;
6328c2ecf20Sopenharmony_ci	hva_t uaddr_start, uaddr_end;
6338c2ecf20Sopenharmony_ci	size_t size;
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci	/* The memslot and the VMA are guaranteed to be aligned to PAGE_SIZE */
6368c2ecf20Sopenharmony_ci	if (map_size == PAGE_SIZE)
6378c2ecf20Sopenharmony_ci		return true;
6388c2ecf20Sopenharmony_ci
6398c2ecf20Sopenharmony_ci	size = memslot->npages * PAGE_SIZE;
6408c2ecf20Sopenharmony_ci
6418c2ecf20Sopenharmony_ci	gpa_start = memslot->base_gfn << PAGE_SHIFT;
6428c2ecf20Sopenharmony_ci
6438c2ecf20Sopenharmony_ci	uaddr_start = memslot->userspace_addr;
6448c2ecf20Sopenharmony_ci	uaddr_end = uaddr_start + size;
6458c2ecf20Sopenharmony_ci
6468c2ecf20Sopenharmony_ci	/*
6478c2ecf20Sopenharmony_ci	 * Pages belonging to memslots that don't have the same alignment
6488c2ecf20Sopenharmony_ci	 * within a PMD/PUD for userspace and IPA cannot be mapped with stage-2
6498c2ecf20Sopenharmony_ci	 * PMD/PUD entries, because we'll end up mapping the wrong pages.
6508c2ecf20Sopenharmony_ci	 *
6518c2ecf20Sopenharmony_ci	 * Consider a layout like the following:
6528c2ecf20Sopenharmony_ci	 *
6538c2ecf20Sopenharmony_ci	 *    memslot->userspace_addr:
6548c2ecf20Sopenharmony_ci	 *    +-----+--------------------+--------------------+---+
6558c2ecf20Sopenharmony_ci	 *    |abcde|fgh  Stage-1 block  |    Stage-1 block tv|xyz|
6568c2ecf20Sopenharmony_ci	 *    +-----+--------------------+--------------------+---+
6578c2ecf20Sopenharmony_ci	 *
6588c2ecf20Sopenharmony_ci	 *    memslot->base_gfn << PAGE_SHIFT:
6598c2ecf20Sopenharmony_ci	 *      +---+--------------------+--------------------+-----+
6608c2ecf20Sopenharmony_ci	 *      |abc|def  Stage-2 block  |    Stage-2 block   |tvxyz|
6618c2ecf20Sopenharmony_ci	 *      +---+--------------------+--------------------+-----+
6628c2ecf20Sopenharmony_ci	 *
6638c2ecf20Sopenharmony_ci	 * If we create those stage-2 blocks, we'll end up with this incorrect
6648c2ecf20Sopenharmony_ci	 * mapping:
6658c2ecf20Sopenharmony_ci	 *   d -> f
6668c2ecf20Sopenharmony_ci	 *   e -> g
6678c2ecf20Sopenharmony_ci	 *   f -> h
6688c2ecf20Sopenharmony_ci	 */
6698c2ecf20Sopenharmony_ci	if ((gpa_start & (map_size - 1)) != (uaddr_start & (map_size - 1)))
6708c2ecf20Sopenharmony_ci		return false;
6718c2ecf20Sopenharmony_ci
6728c2ecf20Sopenharmony_ci	/*
6738c2ecf20Sopenharmony_ci	 * Next, let's make sure we're not trying to map anything not covered
6748c2ecf20Sopenharmony_ci	 * by the memslot. This means we have to prohibit block size mappings
6758c2ecf20Sopenharmony_ci	 * for the beginning and end of a non-block aligned and non-block sized
6768c2ecf20Sopenharmony_ci	 * memory slot (illustrated by the head and tail parts of the
6778c2ecf20Sopenharmony_ci	 * userspace view above containing pages 'abcde' and 'xyz',
6788c2ecf20Sopenharmony_ci	 * respectively).
6798c2ecf20Sopenharmony_ci	 *
6808c2ecf20Sopenharmony_ci	 * Note that it doesn't matter if we do the check using the
6818c2ecf20Sopenharmony_ci	 * userspace_addr or the base_gfn, as both are equally aligned (per
6828c2ecf20Sopenharmony_ci	 * the check above) and equally sized.
6838c2ecf20Sopenharmony_ci	 */
6848c2ecf20Sopenharmony_ci	return (hva & ~(map_size - 1)) >= uaddr_start &&
6858c2ecf20Sopenharmony_ci	       (hva & ~(map_size - 1)) + map_size <= uaddr_end;
6868c2ecf20Sopenharmony_ci}
6878c2ecf20Sopenharmony_ci
6888c2ecf20Sopenharmony_ci/*
6898c2ecf20Sopenharmony_ci * Check if the given hva is backed by a transparent huge page (THP) and
6908c2ecf20Sopenharmony_ci * whether it can be mapped using block mapping in stage2. If so, adjust
6918c2ecf20Sopenharmony_ci * the stage2 PFN and IPA accordingly. Only PMD_SIZE THPs are currently
6928c2ecf20Sopenharmony_ci * supported. This will need to be updated to support other THP sizes.
6938c2ecf20Sopenharmony_ci *
6948c2ecf20Sopenharmony_ci * Returns the size of the mapping.
6958c2ecf20Sopenharmony_ci */
6968c2ecf20Sopenharmony_cistatic unsigned long
6978c2ecf20Sopenharmony_citransparent_hugepage_adjust(struct kvm_memory_slot *memslot,
6988c2ecf20Sopenharmony_ci			    unsigned long hva, kvm_pfn_t *pfnp,
6998c2ecf20Sopenharmony_ci			    phys_addr_t *ipap)
7008c2ecf20Sopenharmony_ci{
7018c2ecf20Sopenharmony_ci	kvm_pfn_t pfn = *pfnp;
7028c2ecf20Sopenharmony_ci
7038c2ecf20Sopenharmony_ci	/*
7048c2ecf20Sopenharmony_ci	 * Make sure the adjustment is done only for THP pages. Also make
7058c2ecf20Sopenharmony_ci	 * sure that the HVA and IPA are sufficiently aligned and that the
7068c2ecf20Sopenharmony_ci	 * block map is contained within the memslot.
7078c2ecf20Sopenharmony_ci	 */
7088c2ecf20Sopenharmony_ci	if (kvm_is_transparent_hugepage(pfn) &&
7098c2ecf20Sopenharmony_ci	    fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE)) {
7108c2ecf20Sopenharmony_ci		/*
7118c2ecf20Sopenharmony_ci		 * The address we faulted on is backed by a transparent huge
7128c2ecf20Sopenharmony_ci		 * page.  However, because we map the compound huge page and
7138c2ecf20Sopenharmony_ci		 * not the individual tail page, we need to transfer the
7148c2ecf20Sopenharmony_ci		 * refcount to the head page.  We have to be careful that the
7158c2ecf20Sopenharmony_ci		 * THP doesn't start to split while we are adjusting the
7168c2ecf20Sopenharmony_ci		 * refcounts.
7178c2ecf20Sopenharmony_ci		 *
7188c2ecf20Sopenharmony_ci		 * We are sure this doesn't happen, because mmu_notifier_retry
7198c2ecf20Sopenharmony_ci		 * was successful and we are holding the mmu_lock, so if this
7208c2ecf20Sopenharmony_ci		 * THP is trying to split, it will be blocked in the mmu
7218c2ecf20Sopenharmony_ci		 * notifier before touching any of the pages, specifically
7228c2ecf20Sopenharmony_ci		 * before being able to call __split_huge_page_refcount().
7238c2ecf20Sopenharmony_ci		 *
7248c2ecf20Sopenharmony_ci		 * We can therefore safely transfer the refcount from PG_tail
7258c2ecf20Sopenharmony_ci		 * to PG_head and switch the pfn from a tail page to the head
7268c2ecf20Sopenharmony_ci		 * page accordingly.
7278c2ecf20Sopenharmony_ci		 */
7288c2ecf20Sopenharmony_ci		*ipap &= PMD_MASK;
7298c2ecf20Sopenharmony_ci		kvm_release_pfn_clean(pfn);
7308c2ecf20Sopenharmony_ci		pfn &= ~(PTRS_PER_PMD - 1);
7318c2ecf20Sopenharmony_ci		kvm_get_pfn(pfn);
7328c2ecf20Sopenharmony_ci		*pfnp = pfn;
7338c2ecf20Sopenharmony_ci
7348c2ecf20Sopenharmony_ci		return PMD_SIZE;
7358c2ecf20Sopenharmony_ci	}
7368c2ecf20Sopenharmony_ci
7378c2ecf20Sopenharmony_ci	/* Use page mapping if we cannot use block mapping. */
7388c2ecf20Sopenharmony_ci	return PAGE_SIZE;
7398c2ecf20Sopenharmony_ci}
7408c2ecf20Sopenharmony_ci
7418c2ecf20Sopenharmony_cistatic int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
7428c2ecf20Sopenharmony_ci			  struct kvm_memory_slot *memslot, unsigned long hva,
7438c2ecf20Sopenharmony_ci			  unsigned long fault_status)
7448c2ecf20Sopenharmony_ci{
7458c2ecf20Sopenharmony_ci	int ret = 0;
7468c2ecf20Sopenharmony_ci	bool write_fault, writable, force_pte = false;
7478c2ecf20Sopenharmony_ci	bool exec_fault;
7488c2ecf20Sopenharmony_ci	bool device = false;
7498c2ecf20Sopenharmony_ci	unsigned long mmu_seq;
7508c2ecf20Sopenharmony_ci	struct kvm *kvm = vcpu->kvm;
7518c2ecf20Sopenharmony_ci	struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
7528c2ecf20Sopenharmony_ci	struct vm_area_struct *vma;
7538c2ecf20Sopenharmony_ci	short vma_shift;
7548c2ecf20Sopenharmony_ci	gfn_t gfn;
7558c2ecf20Sopenharmony_ci	kvm_pfn_t pfn;
7568c2ecf20Sopenharmony_ci	bool logging_active = memslot_is_logging(memslot);
7578c2ecf20Sopenharmony_ci	unsigned long fault_level = kvm_vcpu_trap_get_fault_level(vcpu);
7588c2ecf20Sopenharmony_ci	unsigned long vma_pagesize, fault_granule;
7598c2ecf20Sopenharmony_ci	enum kvm_pgtable_prot prot = KVM_PGTABLE_PROT_R;
7608c2ecf20Sopenharmony_ci	struct kvm_pgtable *pgt;
7618c2ecf20Sopenharmony_ci
7628c2ecf20Sopenharmony_ci	fault_granule = 1UL << ARM64_HW_PGTABLE_LEVEL_SHIFT(fault_level);
7638c2ecf20Sopenharmony_ci	write_fault = kvm_is_write_fault(vcpu);
7648c2ecf20Sopenharmony_ci	exec_fault = kvm_vcpu_trap_is_exec_fault(vcpu);
7658c2ecf20Sopenharmony_ci	VM_BUG_ON(write_fault && exec_fault);
7668c2ecf20Sopenharmony_ci
7678c2ecf20Sopenharmony_ci	if (fault_status == FSC_PERM && !write_fault && !exec_fault) {
7688c2ecf20Sopenharmony_ci		kvm_err("Unexpected L2 read permission error\n");
7698c2ecf20Sopenharmony_ci		return -EFAULT;
7708c2ecf20Sopenharmony_ci	}
7718c2ecf20Sopenharmony_ci
7728c2ecf20Sopenharmony_ci	/* Let's check if we will get back a huge page backed by hugetlbfs */
7738c2ecf20Sopenharmony_ci	mmap_read_lock(current->mm);
7748c2ecf20Sopenharmony_ci	vma = find_vma_intersection(current->mm, hva, hva + 1);
7758c2ecf20Sopenharmony_ci	if (unlikely(!vma)) {
7768c2ecf20Sopenharmony_ci		kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
7778c2ecf20Sopenharmony_ci		mmap_read_unlock(current->mm);
7788c2ecf20Sopenharmony_ci		return -EFAULT;
7798c2ecf20Sopenharmony_ci	}
7808c2ecf20Sopenharmony_ci
7818c2ecf20Sopenharmony_ci	if (is_vm_hugetlb_page(vma))
7828c2ecf20Sopenharmony_ci		vma_shift = huge_page_shift(hstate_vma(vma));
7838c2ecf20Sopenharmony_ci	else
7848c2ecf20Sopenharmony_ci		vma_shift = PAGE_SHIFT;
7858c2ecf20Sopenharmony_ci
7868c2ecf20Sopenharmony_ci	if (logging_active ||
7878c2ecf20Sopenharmony_ci	    (vma->vm_flags & VM_PFNMAP)) {
7888c2ecf20Sopenharmony_ci		force_pte = true;
7898c2ecf20Sopenharmony_ci		vma_shift = PAGE_SHIFT;
7908c2ecf20Sopenharmony_ci	}
7918c2ecf20Sopenharmony_ci
7928c2ecf20Sopenharmony_ci	switch (vma_shift) {
7938c2ecf20Sopenharmony_ci#ifndef __PAGETABLE_PMD_FOLDED
7948c2ecf20Sopenharmony_ci	case PUD_SHIFT:
7958c2ecf20Sopenharmony_ci		if (fault_supports_stage2_huge_mapping(memslot, hva, PUD_SIZE))
7968c2ecf20Sopenharmony_ci			break;
7978c2ecf20Sopenharmony_ci		fallthrough;
7988c2ecf20Sopenharmony_ci#endif
7998c2ecf20Sopenharmony_ci	case CONT_PMD_SHIFT:
8008c2ecf20Sopenharmony_ci		vma_shift = PMD_SHIFT;
8018c2ecf20Sopenharmony_ci		fallthrough;
8028c2ecf20Sopenharmony_ci	case PMD_SHIFT:
8038c2ecf20Sopenharmony_ci		if (fault_supports_stage2_huge_mapping(memslot, hva, PMD_SIZE))
8048c2ecf20Sopenharmony_ci			break;
8058c2ecf20Sopenharmony_ci		fallthrough;
8068c2ecf20Sopenharmony_ci	case CONT_PTE_SHIFT:
8078c2ecf20Sopenharmony_ci		vma_shift = PAGE_SHIFT;
8088c2ecf20Sopenharmony_ci		force_pte = true;
8098c2ecf20Sopenharmony_ci		fallthrough;
8108c2ecf20Sopenharmony_ci	case PAGE_SHIFT:
8118c2ecf20Sopenharmony_ci		break;
8128c2ecf20Sopenharmony_ci	default:
8138c2ecf20Sopenharmony_ci		WARN_ONCE(1, "Unknown vma_shift %d", vma_shift);
8148c2ecf20Sopenharmony_ci	}
8158c2ecf20Sopenharmony_ci
8168c2ecf20Sopenharmony_ci	vma_pagesize = 1UL << vma_shift;
8178c2ecf20Sopenharmony_ci	if (vma_pagesize == PMD_SIZE || vma_pagesize == PUD_SIZE)
8188c2ecf20Sopenharmony_ci		fault_ipa &= ~(vma_pagesize - 1);
8198c2ecf20Sopenharmony_ci
8208c2ecf20Sopenharmony_ci	gfn = fault_ipa >> PAGE_SHIFT;
8218c2ecf20Sopenharmony_ci	mmap_read_unlock(current->mm);
8228c2ecf20Sopenharmony_ci
8238c2ecf20Sopenharmony_ci	/*
8248c2ecf20Sopenharmony_ci	 * Permission faults just need to update the existing leaf entry,
8258c2ecf20Sopenharmony_ci	 * and so normally don't require allocations from the memcache. The
8268c2ecf20Sopenharmony_ci	 * only exception to this is when dirty logging is enabled at runtime
8278c2ecf20Sopenharmony_ci	 * and a write fault needs to collapse a block entry into a table.
8288c2ecf20Sopenharmony_ci	 */
8298c2ecf20Sopenharmony_ci	if (fault_status != FSC_PERM || (logging_active && write_fault)) {
8308c2ecf20Sopenharmony_ci		ret = kvm_mmu_topup_memory_cache(memcache,
8318c2ecf20Sopenharmony_ci						 kvm_mmu_cache_min_pages(kvm));
8328c2ecf20Sopenharmony_ci		if (ret)
8338c2ecf20Sopenharmony_ci			return ret;
8348c2ecf20Sopenharmony_ci	}
8358c2ecf20Sopenharmony_ci
8368c2ecf20Sopenharmony_ci	mmu_seq = vcpu->kvm->mmu_notifier_seq;
8378c2ecf20Sopenharmony_ci	/*
8388c2ecf20Sopenharmony_ci	 * Ensure the read of mmu_notifier_seq happens before we call
8398c2ecf20Sopenharmony_ci	 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
8408c2ecf20Sopenharmony_ci	 * the page we just got a reference to gets unmapped before we have a
8418c2ecf20Sopenharmony_ci	 * chance to grab the mmu_lock, which ensure that if the page gets
8428c2ecf20Sopenharmony_ci	 * unmapped afterwards, the call to kvm_unmap_hva will take it away
8438c2ecf20Sopenharmony_ci	 * from us again properly. This smp_rmb() interacts with the smp_wmb()
8448c2ecf20Sopenharmony_ci	 * in kvm_mmu_notifier_invalidate_<page|range_end>.
8458c2ecf20Sopenharmony_ci	 */
8468c2ecf20Sopenharmony_ci	smp_rmb();
8478c2ecf20Sopenharmony_ci
8488c2ecf20Sopenharmony_ci	pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
8498c2ecf20Sopenharmony_ci	if (pfn == KVM_PFN_ERR_HWPOISON) {
8508c2ecf20Sopenharmony_ci		kvm_send_hwpoison_signal(hva, vma_shift);
8518c2ecf20Sopenharmony_ci		return 0;
8528c2ecf20Sopenharmony_ci	}
8538c2ecf20Sopenharmony_ci	if (is_error_noslot_pfn(pfn))
8548c2ecf20Sopenharmony_ci		return -EFAULT;
8558c2ecf20Sopenharmony_ci
8568c2ecf20Sopenharmony_ci	if (kvm_is_device_pfn(pfn)) {
8578c2ecf20Sopenharmony_ci		device = true;
8588c2ecf20Sopenharmony_ci		force_pte = true;
8598c2ecf20Sopenharmony_ci	} else if (logging_active && !write_fault) {
8608c2ecf20Sopenharmony_ci		/*
8618c2ecf20Sopenharmony_ci		 * Only actually map the page as writable if this was a write
8628c2ecf20Sopenharmony_ci		 * fault.
8638c2ecf20Sopenharmony_ci		 */
8648c2ecf20Sopenharmony_ci		writable = false;
8658c2ecf20Sopenharmony_ci	}
8668c2ecf20Sopenharmony_ci
8678c2ecf20Sopenharmony_ci	if (exec_fault && device)
8688c2ecf20Sopenharmony_ci		return -ENOEXEC;
8698c2ecf20Sopenharmony_ci
8708c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
8718c2ecf20Sopenharmony_ci	pgt = vcpu->arch.hw_mmu->pgt;
8728c2ecf20Sopenharmony_ci	if (mmu_notifier_retry(kvm, mmu_seq))
8738c2ecf20Sopenharmony_ci		goto out_unlock;
8748c2ecf20Sopenharmony_ci
8758c2ecf20Sopenharmony_ci	/*
8768c2ecf20Sopenharmony_ci	 * If we are not forced to use page mapping, check if we are
8778c2ecf20Sopenharmony_ci	 * backed by a THP and thus use block mapping if possible.
8788c2ecf20Sopenharmony_ci	 */
8798c2ecf20Sopenharmony_ci	if (vma_pagesize == PAGE_SIZE && !force_pte)
8808c2ecf20Sopenharmony_ci		vma_pagesize = transparent_hugepage_adjust(memslot, hva,
8818c2ecf20Sopenharmony_ci							   &pfn, &fault_ipa);
8828c2ecf20Sopenharmony_ci	if (writable) {
8838c2ecf20Sopenharmony_ci		prot |= KVM_PGTABLE_PROT_W;
8848c2ecf20Sopenharmony_ci		kvm_set_pfn_dirty(pfn);
8858c2ecf20Sopenharmony_ci		mark_page_dirty(kvm, gfn);
8868c2ecf20Sopenharmony_ci	}
8878c2ecf20Sopenharmony_ci
8888c2ecf20Sopenharmony_ci	if (fault_status != FSC_PERM && !device)
8898c2ecf20Sopenharmony_ci		clean_dcache_guest_page(pfn, vma_pagesize);
8908c2ecf20Sopenharmony_ci
8918c2ecf20Sopenharmony_ci	if (exec_fault) {
8928c2ecf20Sopenharmony_ci		prot |= KVM_PGTABLE_PROT_X;
8938c2ecf20Sopenharmony_ci		invalidate_icache_guest_page(pfn, vma_pagesize);
8948c2ecf20Sopenharmony_ci	}
8958c2ecf20Sopenharmony_ci
8968c2ecf20Sopenharmony_ci	if (device)
8978c2ecf20Sopenharmony_ci		prot |= KVM_PGTABLE_PROT_DEVICE;
8988c2ecf20Sopenharmony_ci	else if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
8998c2ecf20Sopenharmony_ci		prot |= KVM_PGTABLE_PROT_X;
9008c2ecf20Sopenharmony_ci
9018c2ecf20Sopenharmony_ci	/*
9028c2ecf20Sopenharmony_ci	 * Under the premise of getting a FSC_PERM fault, we just need to relax
9038c2ecf20Sopenharmony_ci	 * permissions only if vma_pagesize equals fault_granule. Otherwise,
9048c2ecf20Sopenharmony_ci	 * kvm_pgtable_stage2_map() should be called to change block size.
9058c2ecf20Sopenharmony_ci	 */
9068c2ecf20Sopenharmony_ci	if (fault_status == FSC_PERM && vma_pagesize == fault_granule) {
9078c2ecf20Sopenharmony_ci		ret = kvm_pgtable_stage2_relax_perms(pgt, fault_ipa, prot);
9088c2ecf20Sopenharmony_ci	} else {
9098c2ecf20Sopenharmony_ci		ret = kvm_pgtable_stage2_map(pgt, fault_ipa, vma_pagesize,
9108c2ecf20Sopenharmony_ci					     __pfn_to_phys(pfn), prot,
9118c2ecf20Sopenharmony_ci					     memcache);
9128c2ecf20Sopenharmony_ci	}
9138c2ecf20Sopenharmony_ci
9148c2ecf20Sopenharmony_ciout_unlock:
9158c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
9168c2ecf20Sopenharmony_ci	kvm_set_pfn_accessed(pfn);
9178c2ecf20Sopenharmony_ci	kvm_release_pfn_clean(pfn);
9188c2ecf20Sopenharmony_ci	return ret;
9198c2ecf20Sopenharmony_ci}
9208c2ecf20Sopenharmony_ci
9218c2ecf20Sopenharmony_ci/* Resolve the access fault by making the page young again. */
9228c2ecf20Sopenharmony_cistatic void handle_access_fault(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa)
9238c2ecf20Sopenharmony_ci{
9248c2ecf20Sopenharmony_ci	pte_t pte;
9258c2ecf20Sopenharmony_ci	kvm_pte_t kpte;
9268c2ecf20Sopenharmony_ci	struct kvm_s2_mmu *mmu;
9278c2ecf20Sopenharmony_ci
9288c2ecf20Sopenharmony_ci	trace_kvm_access_fault(fault_ipa);
9298c2ecf20Sopenharmony_ci
9308c2ecf20Sopenharmony_ci	spin_lock(&vcpu->kvm->mmu_lock);
9318c2ecf20Sopenharmony_ci	mmu = vcpu->arch.hw_mmu;
9328c2ecf20Sopenharmony_ci	kpte = kvm_pgtable_stage2_mkyoung(mmu->pgt, fault_ipa);
9338c2ecf20Sopenharmony_ci	spin_unlock(&vcpu->kvm->mmu_lock);
9348c2ecf20Sopenharmony_ci
9358c2ecf20Sopenharmony_ci	pte = __pte(kpte);
9368c2ecf20Sopenharmony_ci	if (pte_valid(pte))
9378c2ecf20Sopenharmony_ci		kvm_set_pfn_accessed(pte_pfn(pte));
9388c2ecf20Sopenharmony_ci}
9398c2ecf20Sopenharmony_ci
9408c2ecf20Sopenharmony_ci/**
9418c2ecf20Sopenharmony_ci * kvm_handle_guest_abort - handles all 2nd stage aborts
9428c2ecf20Sopenharmony_ci * @vcpu:	the VCPU pointer
9438c2ecf20Sopenharmony_ci *
9448c2ecf20Sopenharmony_ci * Any abort that gets to the host is almost guaranteed to be caused by a
9458c2ecf20Sopenharmony_ci * missing second stage translation table entry, which can mean that either the
9468c2ecf20Sopenharmony_ci * guest simply needs more memory and we must allocate an appropriate page or it
9478c2ecf20Sopenharmony_ci * can mean that the guest tried to access I/O memory, which is emulated by user
9488c2ecf20Sopenharmony_ci * space. The distinction is based on the IPA causing the fault and whether this
9498c2ecf20Sopenharmony_ci * memory region has been registered as standard RAM by user space.
9508c2ecf20Sopenharmony_ci */
9518c2ecf20Sopenharmony_ciint kvm_handle_guest_abort(struct kvm_vcpu *vcpu)
9528c2ecf20Sopenharmony_ci{
9538c2ecf20Sopenharmony_ci	unsigned long fault_status;
9548c2ecf20Sopenharmony_ci	phys_addr_t fault_ipa;
9558c2ecf20Sopenharmony_ci	struct kvm_memory_slot *memslot;
9568c2ecf20Sopenharmony_ci	unsigned long hva;
9578c2ecf20Sopenharmony_ci	bool is_iabt, write_fault, writable;
9588c2ecf20Sopenharmony_ci	gfn_t gfn;
9598c2ecf20Sopenharmony_ci	int ret, idx;
9608c2ecf20Sopenharmony_ci
9618c2ecf20Sopenharmony_ci	fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
9628c2ecf20Sopenharmony_ci
9638c2ecf20Sopenharmony_ci	fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
9648c2ecf20Sopenharmony_ci	is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
9658c2ecf20Sopenharmony_ci
9668c2ecf20Sopenharmony_ci	/* Synchronous External Abort? */
9678c2ecf20Sopenharmony_ci	if (kvm_vcpu_abt_issea(vcpu)) {
9688c2ecf20Sopenharmony_ci		/*
9698c2ecf20Sopenharmony_ci		 * For RAS the host kernel may handle this abort.
9708c2ecf20Sopenharmony_ci		 * There is no need to pass the error into the guest.
9718c2ecf20Sopenharmony_ci		 */
9728c2ecf20Sopenharmony_ci		if (kvm_handle_guest_sea(fault_ipa, kvm_vcpu_get_esr(vcpu)))
9738c2ecf20Sopenharmony_ci			kvm_inject_vabt(vcpu);
9748c2ecf20Sopenharmony_ci
9758c2ecf20Sopenharmony_ci		return 1;
9768c2ecf20Sopenharmony_ci	}
9778c2ecf20Sopenharmony_ci
9788c2ecf20Sopenharmony_ci	trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_esr(vcpu),
9798c2ecf20Sopenharmony_ci			      kvm_vcpu_get_hfar(vcpu), fault_ipa);
9808c2ecf20Sopenharmony_ci
9818c2ecf20Sopenharmony_ci	/* Check the stage-2 fault is trans. fault or write fault */
9828c2ecf20Sopenharmony_ci	if (fault_status != FSC_FAULT && fault_status != FSC_PERM &&
9838c2ecf20Sopenharmony_ci	    fault_status != FSC_ACCESS) {
9848c2ecf20Sopenharmony_ci		kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
9858c2ecf20Sopenharmony_ci			kvm_vcpu_trap_get_class(vcpu),
9868c2ecf20Sopenharmony_ci			(unsigned long)kvm_vcpu_trap_get_fault(vcpu),
9878c2ecf20Sopenharmony_ci			(unsigned long)kvm_vcpu_get_esr(vcpu));
9888c2ecf20Sopenharmony_ci		return -EFAULT;
9898c2ecf20Sopenharmony_ci	}
9908c2ecf20Sopenharmony_ci
9918c2ecf20Sopenharmony_ci	idx = srcu_read_lock(&vcpu->kvm->srcu);
9928c2ecf20Sopenharmony_ci
9938c2ecf20Sopenharmony_ci	gfn = fault_ipa >> PAGE_SHIFT;
9948c2ecf20Sopenharmony_ci	memslot = gfn_to_memslot(vcpu->kvm, gfn);
9958c2ecf20Sopenharmony_ci	hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
9968c2ecf20Sopenharmony_ci	write_fault = kvm_is_write_fault(vcpu);
9978c2ecf20Sopenharmony_ci	if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
9988c2ecf20Sopenharmony_ci		/*
9998c2ecf20Sopenharmony_ci		 * The guest has put either its instructions or its page-tables
10008c2ecf20Sopenharmony_ci		 * somewhere it shouldn't have. Userspace won't be able to do
10018c2ecf20Sopenharmony_ci		 * anything about this (there's no syndrome for a start), so
10028c2ecf20Sopenharmony_ci		 * re-inject the abort back into the guest.
10038c2ecf20Sopenharmony_ci		 */
10048c2ecf20Sopenharmony_ci		if (is_iabt) {
10058c2ecf20Sopenharmony_ci			ret = -ENOEXEC;
10068c2ecf20Sopenharmony_ci			goto out;
10078c2ecf20Sopenharmony_ci		}
10088c2ecf20Sopenharmony_ci
10098c2ecf20Sopenharmony_ci		if (kvm_vcpu_abt_iss1tw(vcpu)) {
10108c2ecf20Sopenharmony_ci			kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
10118c2ecf20Sopenharmony_ci			ret = 1;
10128c2ecf20Sopenharmony_ci			goto out_unlock;
10138c2ecf20Sopenharmony_ci		}
10148c2ecf20Sopenharmony_ci
10158c2ecf20Sopenharmony_ci		/*
10168c2ecf20Sopenharmony_ci		 * Check for a cache maintenance operation. Since we
10178c2ecf20Sopenharmony_ci		 * ended-up here, we know it is outside of any memory
10188c2ecf20Sopenharmony_ci		 * slot. But we can't find out if that is for a device,
10198c2ecf20Sopenharmony_ci		 * or if the guest is just being stupid. The only thing
10208c2ecf20Sopenharmony_ci		 * we know for sure is that this range cannot be cached.
10218c2ecf20Sopenharmony_ci		 *
10228c2ecf20Sopenharmony_ci		 * So let's assume that the guest is just being
10238c2ecf20Sopenharmony_ci		 * cautious, and skip the instruction.
10248c2ecf20Sopenharmony_ci		 */
10258c2ecf20Sopenharmony_ci		if (kvm_is_error_hva(hva) && kvm_vcpu_dabt_is_cm(vcpu)) {
10268c2ecf20Sopenharmony_ci			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
10278c2ecf20Sopenharmony_ci			ret = 1;
10288c2ecf20Sopenharmony_ci			goto out_unlock;
10298c2ecf20Sopenharmony_ci		}
10308c2ecf20Sopenharmony_ci
10318c2ecf20Sopenharmony_ci		/*
10328c2ecf20Sopenharmony_ci		 * The IPA is reported as [MAX:12], so we need to
10338c2ecf20Sopenharmony_ci		 * complement it with the bottom 12 bits from the
10348c2ecf20Sopenharmony_ci		 * faulting VA. This is always 12 bits, irrespective
10358c2ecf20Sopenharmony_ci		 * of the page size.
10368c2ecf20Sopenharmony_ci		 */
10378c2ecf20Sopenharmony_ci		fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
10388c2ecf20Sopenharmony_ci		ret = io_mem_abort(vcpu, fault_ipa);
10398c2ecf20Sopenharmony_ci		goto out_unlock;
10408c2ecf20Sopenharmony_ci	}
10418c2ecf20Sopenharmony_ci
10428c2ecf20Sopenharmony_ci	/* Userspace should not be able to register out-of-bounds IPAs */
10438c2ecf20Sopenharmony_ci	VM_BUG_ON(fault_ipa >= kvm_phys_size(vcpu->kvm));
10448c2ecf20Sopenharmony_ci
10458c2ecf20Sopenharmony_ci	if (fault_status == FSC_ACCESS) {
10468c2ecf20Sopenharmony_ci		handle_access_fault(vcpu, fault_ipa);
10478c2ecf20Sopenharmony_ci		ret = 1;
10488c2ecf20Sopenharmony_ci		goto out_unlock;
10498c2ecf20Sopenharmony_ci	}
10508c2ecf20Sopenharmony_ci
10518c2ecf20Sopenharmony_ci	ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
10528c2ecf20Sopenharmony_ci	if (ret == 0)
10538c2ecf20Sopenharmony_ci		ret = 1;
10548c2ecf20Sopenharmony_ciout:
10558c2ecf20Sopenharmony_ci	if (ret == -ENOEXEC) {
10568c2ecf20Sopenharmony_ci		kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
10578c2ecf20Sopenharmony_ci		ret = 1;
10588c2ecf20Sopenharmony_ci	}
10598c2ecf20Sopenharmony_ciout_unlock:
10608c2ecf20Sopenharmony_ci	srcu_read_unlock(&vcpu->kvm->srcu, idx);
10618c2ecf20Sopenharmony_ci	return ret;
10628c2ecf20Sopenharmony_ci}
10638c2ecf20Sopenharmony_ci
10648c2ecf20Sopenharmony_cistatic int handle_hva_to_gpa(struct kvm *kvm,
10658c2ecf20Sopenharmony_ci			     unsigned long start,
10668c2ecf20Sopenharmony_ci			     unsigned long end,
10678c2ecf20Sopenharmony_ci			     int (*handler)(struct kvm *kvm,
10688c2ecf20Sopenharmony_ci					    gpa_t gpa, u64 size,
10698c2ecf20Sopenharmony_ci					    void *data),
10708c2ecf20Sopenharmony_ci			     void *data)
10718c2ecf20Sopenharmony_ci{
10728c2ecf20Sopenharmony_ci	struct kvm_memslots *slots;
10738c2ecf20Sopenharmony_ci	struct kvm_memory_slot *memslot;
10748c2ecf20Sopenharmony_ci	int ret = 0;
10758c2ecf20Sopenharmony_ci
10768c2ecf20Sopenharmony_ci	slots = kvm_memslots(kvm);
10778c2ecf20Sopenharmony_ci
10788c2ecf20Sopenharmony_ci	/* we only care about the pages that the guest sees */
10798c2ecf20Sopenharmony_ci	kvm_for_each_memslot(memslot, slots) {
10808c2ecf20Sopenharmony_ci		unsigned long hva_start, hva_end;
10818c2ecf20Sopenharmony_ci		gfn_t gpa;
10828c2ecf20Sopenharmony_ci
10838c2ecf20Sopenharmony_ci		hva_start = max(start, memslot->userspace_addr);
10848c2ecf20Sopenharmony_ci		hva_end = min(end, memslot->userspace_addr +
10858c2ecf20Sopenharmony_ci					(memslot->npages << PAGE_SHIFT));
10868c2ecf20Sopenharmony_ci		if (hva_start >= hva_end)
10878c2ecf20Sopenharmony_ci			continue;
10888c2ecf20Sopenharmony_ci
10898c2ecf20Sopenharmony_ci		gpa = hva_to_gfn_memslot(hva_start, memslot) << PAGE_SHIFT;
10908c2ecf20Sopenharmony_ci		ret |= handler(kvm, gpa, (u64)(hva_end - hva_start), data);
10918c2ecf20Sopenharmony_ci	}
10928c2ecf20Sopenharmony_ci
10938c2ecf20Sopenharmony_ci	return ret;
10948c2ecf20Sopenharmony_ci}
10958c2ecf20Sopenharmony_ci
10968c2ecf20Sopenharmony_cistatic int kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
10978c2ecf20Sopenharmony_ci{
10988c2ecf20Sopenharmony_ci	unsigned flags = *(unsigned *)data;
10998c2ecf20Sopenharmony_ci	bool may_block = flags & MMU_NOTIFIER_RANGE_BLOCKABLE;
11008c2ecf20Sopenharmony_ci
11018c2ecf20Sopenharmony_ci	__unmap_stage2_range(&kvm->arch.mmu, gpa, size, may_block);
11028c2ecf20Sopenharmony_ci	return 0;
11038c2ecf20Sopenharmony_ci}
11048c2ecf20Sopenharmony_ci
11058c2ecf20Sopenharmony_ciint kvm_unmap_hva_range(struct kvm *kvm,
11068c2ecf20Sopenharmony_ci			unsigned long start, unsigned long end, unsigned flags)
11078c2ecf20Sopenharmony_ci{
11088c2ecf20Sopenharmony_ci	if (!kvm->arch.mmu.pgt)
11098c2ecf20Sopenharmony_ci		return 0;
11108c2ecf20Sopenharmony_ci
11118c2ecf20Sopenharmony_ci	trace_kvm_unmap_hva_range(start, end);
11128c2ecf20Sopenharmony_ci	handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, &flags);
11138c2ecf20Sopenharmony_ci	return 0;
11148c2ecf20Sopenharmony_ci}
11158c2ecf20Sopenharmony_ci
11168c2ecf20Sopenharmony_cistatic int kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
11178c2ecf20Sopenharmony_ci{
11188c2ecf20Sopenharmony_ci	kvm_pfn_t *pfn = (kvm_pfn_t *)data;
11198c2ecf20Sopenharmony_ci
11208c2ecf20Sopenharmony_ci	WARN_ON(size != PAGE_SIZE);
11218c2ecf20Sopenharmony_ci
11228c2ecf20Sopenharmony_ci	/*
11238c2ecf20Sopenharmony_ci	 * The MMU notifiers will have unmapped a huge PMD before calling
11248c2ecf20Sopenharmony_ci	 * ->change_pte() (which in turn calls kvm_set_spte_hva()) and
11258c2ecf20Sopenharmony_ci	 * therefore we never need to clear out a huge PMD through this
11268c2ecf20Sopenharmony_ci	 * calling path and a memcache is not required.
11278c2ecf20Sopenharmony_ci	 */
11288c2ecf20Sopenharmony_ci	kvm_pgtable_stage2_map(kvm->arch.mmu.pgt, gpa, PAGE_SIZE,
11298c2ecf20Sopenharmony_ci			       __pfn_to_phys(*pfn), KVM_PGTABLE_PROT_R, NULL);
11308c2ecf20Sopenharmony_ci	return 0;
11318c2ecf20Sopenharmony_ci}
11328c2ecf20Sopenharmony_ci
11338c2ecf20Sopenharmony_ciint kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
11348c2ecf20Sopenharmony_ci{
11358c2ecf20Sopenharmony_ci	unsigned long end = hva + PAGE_SIZE;
11368c2ecf20Sopenharmony_ci	kvm_pfn_t pfn = pte_pfn(pte);
11378c2ecf20Sopenharmony_ci
11388c2ecf20Sopenharmony_ci	if (!kvm->arch.mmu.pgt)
11398c2ecf20Sopenharmony_ci		return 0;
11408c2ecf20Sopenharmony_ci
11418c2ecf20Sopenharmony_ci	trace_kvm_set_spte_hva(hva);
11428c2ecf20Sopenharmony_ci
11438c2ecf20Sopenharmony_ci	/*
11448c2ecf20Sopenharmony_ci	 * We've moved a page around, probably through CoW, so let's treat it
11458c2ecf20Sopenharmony_ci	 * just like a translation fault and clean the cache to the PoC.
11468c2ecf20Sopenharmony_ci	 */
11478c2ecf20Sopenharmony_ci	clean_dcache_guest_page(pfn, PAGE_SIZE);
11488c2ecf20Sopenharmony_ci	handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &pfn);
11498c2ecf20Sopenharmony_ci	return 0;
11508c2ecf20Sopenharmony_ci}
11518c2ecf20Sopenharmony_ci
11528c2ecf20Sopenharmony_cistatic int kvm_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
11538c2ecf20Sopenharmony_ci{
11548c2ecf20Sopenharmony_ci	pte_t pte;
11558c2ecf20Sopenharmony_ci	kvm_pte_t kpte;
11568c2ecf20Sopenharmony_ci
11578c2ecf20Sopenharmony_ci	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
11588c2ecf20Sopenharmony_ci	kpte = kvm_pgtable_stage2_mkold(kvm->arch.mmu.pgt, gpa);
11598c2ecf20Sopenharmony_ci	pte = __pte(kpte);
11608c2ecf20Sopenharmony_ci	return pte_valid(pte) && pte_young(pte);
11618c2ecf20Sopenharmony_ci}
11628c2ecf20Sopenharmony_ci
11638c2ecf20Sopenharmony_cistatic int kvm_test_age_hva_handler(struct kvm *kvm, gpa_t gpa, u64 size, void *data)
11648c2ecf20Sopenharmony_ci{
11658c2ecf20Sopenharmony_ci	WARN_ON(size != PAGE_SIZE && size != PMD_SIZE && size != PUD_SIZE);
11668c2ecf20Sopenharmony_ci	return kvm_pgtable_stage2_is_young(kvm->arch.mmu.pgt, gpa);
11678c2ecf20Sopenharmony_ci}
11688c2ecf20Sopenharmony_ci
11698c2ecf20Sopenharmony_ciint kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
11708c2ecf20Sopenharmony_ci{
11718c2ecf20Sopenharmony_ci	if (!kvm->arch.mmu.pgt)
11728c2ecf20Sopenharmony_ci		return 0;
11738c2ecf20Sopenharmony_ci	trace_kvm_age_hva(start, end);
11748c2ecf20Sopenharmony_ci	return handle_hva_to_gpa(kvm, start, end, kvm_age_hva_handler, NULL);
11758c2ecf20Sopenharmony_ci}
11768c2ecf20Sopenharmony_ci
11778c2ecf20Sopenharmony_ciint kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
11788c2ecf20Sopenharmony_ci{
11798c2ecf20Sopenharmony_ci	if (!kvm->arch.mmu.pgt)
11808c2ecf20Sopenharmony_ci		return 0;
11818c2ecf20Sopenharmony_ci	trace_kvm_test_age_hva(hva);
11828c2ecf20Sopenharmony_ci	return handle_hva_to_gpa(kvm, hva, hva + PAGE_SIZE,
11838c2ecf20Sopenharmony_ci				 kvm_test_age_hva_handler, NULL);
11848c2ecf20Sopenharmony_ci}
11858c2ecf20Sopenharmony_ci
11868c2ecf20Sopenharmony_ciphys_addr_t kvm_mmu_get_httbr(void)
11878c2ecf20Sopenharmony_ci{
11888c2ecf20Sopenharmony_ci	return __pa(hyp_pgtable->pgd);
11898c2ecf20Sopenharmony_ci}
11908c2ecf20Sopenharmony_ci
11918c2ecf20Sopenharmony_ciphys_addr_t kvm_get_idmap_vector(void)
11928c2ecf20Sopenharmony_ci{
11938c2ecf20Sopenharmony_ci	return hyp_idmap_vector;
11948c2ecf20Sopenharmony_ci}
11958c2ecf20Sopenharmony_ci
11968c2ecf20Sopenharmony_cistatic int kvm_map_idmap_text(void)
11978c2ecf20Sopenharmony_ci{
11988c2ecf20Sopenharmony_ci	unsigned long size = hyp_idmap_end - hyp_idmap_start;
11998c2ecf20Sopenharmony_ci	int err = __create_hyp_mappings(hyp_idmap_start, size, hyp_idmap_start,
12008c2ecf20Sopenharmony_ci					PAGE_HYP_EXEC);
12018c2ecf20Sopenharmony_ci	if (err)
12028c2ecf20Sopenharmony_ci		kvm_err("Failed to idmap %lx-%lx\n",
12038c2ecf20Sopenharmony_ci			hyp_idmap_start, hyp_idmap_end);
12048c2ecf20Sopenharmony_ci
12058c2ecf20Sopenharmony_ci	return err;
12068c2ecf20Sopenharmony_ci}
12078c2ecf20Sopenharmony_ci
12088c2ecf20Sopenharmony_ciint kvm_mmu_init(void)
12098c2ecf20Sopenharmony_ci{
12108c2ecf20Sopenharmony_ci	int err;
12118c2ecf20Sopenharmony_ci	u32 hyp_va_bits;
12128c2ecf20Sopenharmony_ci
12138c2ecf20Sopenharmony_ci	hyp_idmap_start = __pa_symbol(__hyp_idmap_text_start);
12148c2ecf20Sopenharmony_ci	hyp_idmap_start = ALIGN_DOWN(hyp_idmap_start, PAGE_SIZE);
12158c2ecf20Sopenharmony_ci	hyp_idmap_end = __pa_symbol(__hyp_idmap_text_end);
12168c2ecf20Sopenharmony_ci	hyp_idmap_end = ALIGN(hyp_idmap_end, PAGE_SIZE);
12178c2ecf20Sopenharmony_ci	hyp_idmap_vector = __pa_symbol(__kvm_hyp_init);
12188c2ecf20Sopenharmony_ci
12198c2ecf20Sopenharmony_ci	/*
12208c2ecf20Sopenharmony_ci	 * We rely on the linker script to ensure at build time that the HYP
12218c2ecf20Sopenharmony_ci	 * init code does not cross a page boundary.
12228c2ecf20Sopenharmony_ci	 */
12238c2ecf20Sopenharmony_ci	BUG_ON((hyp_idmap_start ^ (hyp_idmap_end - 1)) & PAGE_MASK);
12248c2ecf20Sopenharmony_ci
12258c2ecf20Sopenharmony_ci	hyp_va_bits = 64 - ((idmap_t0sz & TCR_T0SZ_MASK) >> TCR_T0SZ_OFFSET);
12268c2ecf20Sopenharmony_ci	kvm_debug("Using %u-bit virtual addresses at EL2\n", hyp_va_bits);
12278c2ecf20Sopenharmony_ci	kvm_debug("IDMAP page: %lx\n", hyp_idmap_start);
12288c2ecf20Sopenharmony_ci	kvm_debug("HYP VA range: %lx:%lx\n",
12298c2ecf20Sopenharmony_ci		  kern_hyp_va(PAGE_OFFSET),
12308c2ecf20Sopenharmony_ci		  kern_hyp_va((unsigned long)high_memory - 1));
12318c2ecf20Sopenharmony_ci
12328c2ecf20Sopenharmony_ci	if (hyp_idmap_start >= kern_hyp_va(PAGE_OFFSET) &&
12338c2ecf20Sopenharmony_ci	    hyp_idmap_start <  kern_hyp_va((unsigned long)high_memory - 1) &&
12348c2ecf20Sopenharmony_ci	    hyp_idmap_start != (unsigned long)__hyp_idmap_text_start) {
12358c2ecf20Sopenharmony_ci		/*
12368c2ecf20Sopenharmony_ci		 * The idmap page is intersecting with the VA space,
12378c2ecf20Sopenharmony_ci		 * it is not safe to continue further.
12388c2ecf20Sopenharmony_ci		 */
12398c2ecf20Sopenharmony_ci		kvm_err("IDMAP intersecting with HYP VA, unable to continue\n");
12408c2ecf20Sopenharmony_ci		err = -EINVAL;
12418c2ecf20Sopenharmony_ci		goto out;
12428c2ecf20Sopenharmony_ci	}
12438c2ecf20Sopenharmony_ci
12448c2ecf20Sopenharmony_ci	hyp_pgtable = kzalloc(sizeof(*hyp_pgtable), GFP_KERNEL);
12458c2ecf20Sopenharmony_ci	if (!hyp_pgtable) {
12468c2ecf20Sopenharmony_ci		kvm_err("Hyp mode page-table not allocated\n");
12478c2ecf20Sopenharmony_ci		err = -ENOMEM;
12488c2ecf20Sopenharmony_ci		goto out;
12498c2ecf20Sopenharmony_ci	}
12508c2ecf20Sopenharmony_ci
12518c2ecf20Sopenharmony_ci	err = kvm_pgtable_hyp_init(hyp_pgtable, hyp_va_bits);
12528c2ecf20Sopenharmony_ci	if (err)
12538c2ecf20Sopenharmony_ci		goto out_free_pgtable;
12548c2ecf20Sopenharmony_ci
12558c2ecf20Sopenharmony_ci	err = kvm_map_idmap_text();
12568c2ecf20Sopenharmony_ci	if (err)
12578c2ecf20Sopenharmony_ci		goto out_destroy_pgtable;
12588c2ecf20Sopenharmony_ci
12598c2ecf20Sopenharmony_ci	io_map_base = hyp_idmap_start;
12608c2ecf20Sopenharmony_ci	return 0;
12618c2ecf20Sopenharmony_ci
12628c2ecf20Sopenharmony_ciout_destroy_pgtable:
12638c2ecf20Sopenharmony_ci	kvm_pgtable_hyp_destroy(hyp_pgtable);
12648c2ecf20Sopenharmony_ciout_free_pgtable:
12658c2ecf20Sopenharmony_ci	kfree(hyp_pgtable);
12668c2ecf20Sopenharmony_ci	hyp_pgtable = NULL;
12678c2ecf20Sopenharmony_ciout:
12688c2ecf20Sopenharmony_ci	return err;
12698c2ecf20Sopenharmony_ci}
12708c2ecf20Sopenharmony_ci
12718c2ecf20Sopenharmony_civoid kvm_arch_commit_memory_region(struct kvm *kvm,
12728c2ecf20Sopenharmony_ci				   const struct kvm_userspace_memory_region *mem,
12738c2ecf20Sopenharmony_ci				   struct kvm_memory_slot *old,
12748c2ecf20Sopenharmony_ci				   const struct kvm_memory_slot *new,
12758c2ecf20Sopenharmony_ci				   enum kvm_mr_change change)
12768c2ecf20Sopenharmony_ci{
12778c2ecf20Sopenharmony_ci	/*
12788c2ecf20Sopenharmony_ci	 * At this point memslot has been committed and there is an
12798c2ecf20Sopenharmony_ci	 * allocated dirty_bitmap[], dirty pages will be tracked while the
12808c2ecf20Sopenharmony_ci	 * memory slot is write protected.
12818c2ecf20Sopenharmony_ci	 */
12828c2ecf20Sopenharmony_ci	if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES) {
12838c2ecf20Sopenharmony_ci		/*
12848c2ecf20Sopenharmony_ci		 * If we're with initial-all-set, we don't need to write
12858c2ecf20Sopenharmony_ci		 * protect any pages because they're all reported as dirty.
12868c2ecf20Sopenharmony_ci		 * Huge pages and normal pages will be write protect gradually.
12878c2ecf20Sopenharmony_ci		 */
12888c2ecf20Sopenharmony_ci		if (!kvm_dirty_log_manual_protect_and_init_set(kvm)) {
12898c2ecf20Sopenharmony_ci			kvm_mmu_wp_memory_region(kvm, mem->slot);
12908c2ecf20Sopenharmony_ci		}
12918c2ecf20Sopenharmony_ci	}
12928c2ecf20Sopenharmony_ci}
12938c2ecf20Sopenharmony_ci
12948c2ecf20Sopenharmony_ciint kvm_arch_prepare_memory_region(struct kvm *kvm,
12958c2ecf20Sopenharmony_ci				   struct kvm_memory_slot *memslot,
12968c2ecf20Sopenharmony_ci				   const struct kvm_userspace_memory_region *mem,
12978c2ecf20Sopenharmony_ci				   enum kvm_mr_change change)
12988c2ecf20Sopenharmony_ci{
12998c2ecf20Sopenharmony_ci	hva_t hva = mem->userspace_addr;
13008c2ecf20Sopenharmony_ci	hva_t reg_end = hva + mem->memory_size;
13018c2ecf20Sopenharmony_ci	bool writable = !(mem->flags & KVM_MEM_READONLY);
13028c2ecf20Sopenharmony_ci	int ret = 0;
13038c2ecf20Sopenharmony_ci
13048c2ecf20Sopenharmony_ci	if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
13058c2ecf20Sopenharmony_ci			change != KVM_MR_FLAGS_ONLY)
13068c2ecf20Sopenharmony_ci		return 0;
13078c2ecf20Sopenharmony_ci
13088c2ecf20Sopenharmony_ci	/*
13098c2ecf20Sopenharmony_ci	 * Prevent userspace from creating a memory region outside of the IPA
13108c2ecf20Sopenharmony_ci	 * space addressable by the KVM guest IPA space.
13118c2ecf20Sopenharmony_ci	 */
13128c2ecf20Sopenharmony_ci	if ((memslot->base_gfn + memslot->npages) > (kvm_phys_size(kvm) >> PAGE_SHIFT))
13138c2ecf20Sopenharmony_ci		return -EFAULT;
13148c2ecf20Sopenharmony_ci
13158c2ecf20Sopenharmony_ci	mmap_read_lock(current->mm);
13168c2ecf20Sopenharmony_ci	/*
13178c2ecf20Sopenharmony_ci	 * A memory region could potentially cover multiple VMAs, and any holes
13188c2ecf20Sopenharmony_ci	 * between them, so iterate over all of them to find out if we can map
13198c2ecf20Sopenharmony_ci	 * any of them right now.
13208c2ecf20Sopenharmony_ci	 *
13218c2ecf20Sopenharmony_ci	 *     +--------------------------------------------+
13228c2ecf20Sopenharmony_ci	 * +---------------+----------------+   +----------------+
13238c2ecf20Sopenharmony_ci	 * |   : VMA 1     |      VMA 2     |   |    VMA 3  :    |
13248c2ecf20Sopenharmony_ci	 * +---------------+----------------+   +----------------+
13258c2ecf20Sopenharmony_ci	 *     |               memory region                |
13268c2ecf20Sopenharmony_ci	 *     +--------------------------------------------+
13278c2ecf20Sopenharmony_ci	 */
13288c2ecf20Sopenharmony_ci	do {
13298c2ecf20Sopenharmony_ci		struct vm_area_struct *vma = find_vma(current->mm, hva);
13308c2ecf20Sopenharmony_ci		hva_t vm_start, vm_end;
13318c2ecf20Sopenharmony_ci
13328c2ecf20Sopenharmony_ci		if (!vma || vma->vm_start >= reg_end)
13338c2ecf20Sopenharmony_ci			break;
13348c2ecf20Sopenharmony_ci
13358c2ecf20Sopenharmony_ci		/*
13368c2ecf20Sopenharmony_ci		 * Take the intersection of this VMA with the memory region
13378c2ecf20Sopenharmony_ci		 */
13388c2ecf20Sopenharmony_ci		vm_start = max(hva, vma->vm_start);
13398c2ecf20Sopenharmony_ci		vm_end = min(reg_end, vma->vm_end);
13408c2ecf20Sopenharmony_ci
13418c2ecf20Sopenharmony_ci		if (vma->vm_flags & VM_PFNMAP) {
13428c2ecf20Sopenharmony_ci			gpa_t gpa = mem->guest_phys_addr +
13438c2ecf20Sopenharmony_ci				    (vm_start - mem->userspace_addr);
13448c2ecf20Sopenharmony_ci			phys_addr_t pa;
13458c2ecf20Sopenharmony_ci
13468c2ecf20Sopenharmony_ci			pa = (phys_addr_t)vma->vm_pgoff << PAGE_SHIFT;
13478c2ecf20Sopenharmony_ci			pa += vm_start - vma->vm_start;
13488c2ecf20Sopenharmony_ci
13498c2ecf20Sopenharmony_ci			/* IO region dirty page logging not allowed */
13508c2ecf20Sopenharmony_ci			if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES) {
13518c2ecf20Sopenharmony_ci				ret = -EINVAL;
13528c2ecf20Sopenharmony_ci				goto out;
13538c2ecf20Sopenharmony_ci			}
13548c2ecf20Sopenharmony_ci
13558c2ecf20Sopenharmony_ci			ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
13568c2ecf20Sopenharmony_ci						    vm_end - vm_start,
13578c2ecf20Sopenharmony_ci						    writable);
13588c2ecf20Sopenharmony_ci			if (ret)
13598c2ecf20Sopenharmony_ci				break;
13608c2ecf20Sopenharmony_ci		}
13618c2ecf20Sopenharmony_ci		hva = vm_end;
13628c2ecf20Sopenharmony_ci	} while (hva < reg_end);
13638c2ecf20Sopenharmony_ci
13648c2ecf20Sopenharmony_ci	if (change == KVM_MR_FLAGS_ONLY)
13658c2ecf20Sopenharmony_ci		goto out;
13668c2ecf20Sopenharmony_ci
13678c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
13688c2ecf20Sopenharmony_ci	if (ret)
13698c2ecf20Sopenharmony_ci		unmap_stage2_range(&kvm->arch.mmu, mem->guest_phys_addr, mem->memory_size);
13708c2ecf20Sopenharmony_ci	else if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
13718c2ecf20Sopenharmony_ci		stage2_flush_memslot(kvm, memslot);
13728c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
13738c2ecf20Sopenharmony_ciout:
13748c2ecf20Sopenharmony_ci	mmap_read_unlock(current->mm);
13758c2ecf20Sopenharmony_ci	return ret;
13768c2ecf20Sopenharmony_ci}
13778c2ecf20Sopenharmony_ci
13788c2ecf20Sopenharmony_civoid kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
13798c2ecf20Sopenharmony_ci{
13808c2ecf20Sopenharmony_ci}
13818c2ecf20Sopenharmony_ci
13828c2ecf20Sopenharmony_civoid kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
13838c2ecf20Sopenharmony_ci{
13848c2ecf20Sopenharmony_ci}
13858c2ecf20Sopenharmony_ci
13868c2ecf20Sopenharmony_civoid kvm_arch_flush_shadow_all(struct kvm *kvm)
13878c2ecf20Sopenharmony_ci{
13888c2ecf20Sopenharmony_ci	kvm_free_stage2_pgd(&kvm->arch.mmu);
13898c2ecf20Sopenharmony_ci}
13908c2ecf20Sopenharmony_ci
13918c2ecf20Sopenharmony_civoid kvm_arch_flush_shadow_memslot(struct kvm *kvm,
13928c2ecf20Sopenharmony_ci				   struct kvm_memory_slot *slot)
13938c2ecf20Sopenharmony_ci{
13948c2ecf20Sopenharmony_ci	gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
13958c2ecf20Sopenharmony_ci	phys_addr_t size = slot->npages << PAGE_SHIFT;
13968c2ecf20Sopenharmony_ci
13978c2ecf20Sopenharmony_ci	spin_lock(&kvm->mmu_lock);
13988c2ecf20Sopenharmony_ci	unmap_stage2_range(&kvm->arch.mmu, gpa, size);
13998c2ecf20Sopenharmony_ci	spin_unlock(&kvm->mmu_lock);
14008c2ecf20Sopenharmony_ci}
14018c2ecf20Sopenharmony_ci
14028c2ecf20Sopenharmony_ci/*
14038c2ecf20Sopenharmony_ci * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
14048c2ecf20Sopenharmony_ci *
14058c2ecf20Sopenharmony_ci * Main problems:
14068c2ecf20Sopenharmony_ci * - S/W ops are local to a CPU (not broadcast)
14078c2ecf20Sopenharmony_ci * - We have line migration behind our back (speculation)
14088c2ecf20Sopenharmony_ci * - System caches don't support S/W at all (damn!)
14098c2ecf20Sopenharmony_ci *
14108c2ecf20Sopenharmony_ci * In the face of the above, the best we can do is to try and convert
14118c2ecf20Sopenharmony_ci * S/W ops to VA ops. Because the guest is not allowed to infer the
14128c2ecf20Sopenharmony_ci * S/W to PA mapping, it can only use S/W to nuke the whole cache,
14138c2ecf20Sopenharmony_ci * which is a rather good thing for us.
14148c2ecf20Sopenharmony_ci *
14158c2ecf20Sopenharmony_ci * Also, it is only used when turning caches on/off ("The expected
14168c2ecf20Sopenharmony_ci * usage of the cache maintenance instructions that operate by set/way
14178c2ecf20Sopenharmony_ci * is associated with the cache maintenance instructions associated
14188c2ecf20Sopenharmony_ci * with the powerdown and powerup of caches, if this is required by
14198c2ecf20Sopenharmony_ci * the implementation.").
14208c2ecf20Sopenharmony_ci *
14218c2ecf20Sopenharmony_ci * We use the following policy:
14228c2ecf20Sopenharmony_ci *
14238c2ecf20Sopenharmony_ci * - If we trap a S/W operation, we enable VM trapping to detect
14248c2ecf20Sopenharmony_ci *   caches being turned on/off, and do a full clean.
14258c2ecf20Sopenharmony_ci *
14268c2ecf20Sopenharmony_ci * - We flush the caches on both caches being turned on and off.
14278c2ecf20Sopenharmony_ci *
14288c2ecf20Sopenharmony_ci * - Once the caches are enabled, we stop trapping VM ops.
14298c2ecf20Sopenharmony_ci */
14308c2ecf20Sopenharmony_civoid kvm_set_way_flush(struct kvm_vcpu *vcpu)
14318c2ecf20Sopenharmony_ci{
14328c2ecf20Sopenharmony_ci	unsigned long hcr = *vcpu_hcr(vcpu);
14338c2ecf20Sopenharmony_ci
14348c2ecf20Sopenharmony_ci	/*
14358c2ecf20Sopenharmony_ci	 * If this is the first time we do a S/W operation
14368c2ecf20Sopenharmony_ci	 * (i.e. HCR_TVM not set) flush the whole memory, and set the
14378c2ecf20Sopenharmony_ci	 * VM trapping.
14388c2ecf20Sopenharmony_ci	 *
14398c2ecf20Sopenharmony_ci	 * Otherwise, rely on the VM trapping to wait for the MMU +
14408c2ecf20Sopenharmony_ci	 * Caches to be turned off. At that point, we'll be able to
14418c2ecf20Sopenharmony_ci	 * clean the caches again.
14428c2ecf20Sopenharmony_ci	 */
14438c2ecf20Sopenharmony_ci	if (!(hcr & HCR_TVM)) {
14448c2ecf20Sopenharmony_ci		trace_kvm_set_way_flush(*vcpu_pc(vcpu),
14458c2ecf20Sopenharmony_ci					vcpu_has_cache_enabled(vcpu));
14468c2ecf20Sopenharmony_ci		stage2_flush_vm(vcpu->kvm);
14478c2ecf20Sopenharmony_ci		*vcpu_hcr(vcpu) = hcr | HCR_TVM;
14488c2ecf20Sopenharmony_ci	}
14498c2ecf20Sopenharmony_ci}
14508c2ecf20Sopenharmony_ci
14518c2ecf20Sopenharmony_civoid kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled)
14528c2ecf20Sopenharmony_ci{
14538c2ecf20Sopenharmony_ci	bool now_enabled = vcpu_has_cache_enabled(vcpu);
14548c2ecf20Sopenharmony_ci
14558c2ecf20Sopenharmony_ci	/*
14568c2ecf20Sopenharmony_ci	 * If switching the MMU+caches on, need to invalidate the caches.
14578c2ecf20Sopenharmony_ci	 * If switching it off, need to clean the caches.
14588c2ecf20Sopenharmony_ci	 * Clean + invalidate does the trick always.
14598c2ecf20Sopenharmony_ci	 */
14608c2ecf20Sopenharmony_ci	if (now_enabled != was_enabled)
14618c2ecf20Sopenharmony_ci		stage2_flush_vm(vcpu->kvm);
14628c2ecf20Sopenharmony_ci
14638c2ecf20Sopenharmony_ci	/* Caches are now on, stop trapping VM ops (until a S/W op) */
14648c2ecf20Sopenharmony_ci	if (now_enabled)
14658c2ecf20Sopenharmony_ci		*vcpu_hcr(vcpu) &= ~HCR_TVM;
14668c2ecf20Sopenharmony_ci
14678c2ecf20Sopenharmony_ci	trace_kvm_toggle_cache(*vcpu_pc(vcpu), was_enabled, now_enabled);
14688c2ecf20Sopenharmony_ci}
1469