1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Fault injection for both 32 and 64bit guests.
4 *
5 * Copyright (C) 2012,2013 - ARM Ltd
6 * Author: Marc Zyngier <marc.zyngier@arm.com>
7 *
8 * Based on arch/arm/kvm/emulate.c
9 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
10 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
11 */
12
13#include <linux/kvm_host.h>
14#include <asm/kvm_emulate.h>
15#include <asm/esr.h>
16
17#define CURRENT_EL_SP_EL0_VECTOR	0x0
18#define CURRENT_EL_SP_ELx_VECTOR	0x200
19#define LOWER_EL_AArch64_VECTOR		0x400
20#define LOWER_EL_AArch32_VECTOR		0x600
21
22enum exception_type {
23	except_type_sync	= 0,
24	except_type_irq		= 0x80,
25	except_type_fiq		= 0x100,
26	except_type_serror	= 0x180,
27};
28
29/*
30 * This performs the exception entry at a given EL (@target_mode), stashing PC
31 * and PSTATE into ELR and SPSR respectively, and compute the new PC/PSTATE.
32 * The EL passed to this function *must* be a non-secure, privileged mode with
33 * bit 0 being set (PSTATE.SP == 1).
34 *
35 * When an exception is taken, most PSTATE fields are left unchanged in the
36 * handler. However, some are explicitly overridden (e.g. M[4:0]). Luckily all
37 * of the inherited bits have the same position in the AArch64/AArch32 SPSR_ELx
38 * layouts, so we don't need to shuffle these for exceptions from AArch32 EL0.
39 *
40 * For the SPSR_ELx layout for AArch64, see ARM DDI 0487E.a page C5-429.
41 * For the SPSR_ELx layout for AArch32, see ARM DDI 0487E.a page C5-426.
42 *
43 * Here we manipulate the fields in order of the AArch64 SPSR_ELx layout, from
44 * MSB to LSB.
45 */
46static void enter_exception64(struct kvm_vcpu *vcpu, unsigned long target_mode,
47			      enum exception_type type)
48{
49	unsigned long sctlr, vbar, old, new, mode;
50	u64 exc_offset;
51
52	mode = *vcpu_cpsr(vcpu) & (PSR_MODE_MASK | PSR_MODE32_BIT);
53
54	if      (mode == target_mode)
55		exc_offset = CURRENT_EL_SP_ELx_VECTOR;
56	else if ((mode | PSR_MODE_THREAD_BIT) == target_mode)
57		exc_offset = CURRENT_EL_SP_EL0_VECTOR;
58	else if (!(mode & PSR_MODE32_BIT))
59		exc_offset = LOWER_EL_AArch64_VECTOR;
60	else
61		exc_offset = LOWER_EL_AArch32_VECTOR;
62
63	switch (target_mode) {
64	case PSR_MODE_EL1h:
65		vbar = vcpu_read_sys_reg(vcpu, VBAR_EL1);
66		sctlr = vcpu_read_sys_reg(vcpu, SCTLR_EL1);
67		vcpu_write_sys_reg(vcpu, *vcpu_pc(vcpu), ELR_EL1);
68		break;
69	default:
70		/* Don't do that */
71		BUG();
72	}
73
74	*vcpu_pc(vcpu) = vbar + exc_offset + type;
75
76	old = *vcpu_cpsr(vcpu);
77	new = 0;
78
79	new |= (old & PSR_N_BIT);
80	new |= (old & PSR_Z_BIT);
81	new |= (old & PSR_C_BIT);
82	new |= (old & PSR_V_BIT);
83
84	// TODO: TCO (if/when ARMv8.5-MemTag is exposed to guests)
85
86	new |= (old & PSR_DIT_BIT);
87
88	// PSTATE.UAO is set to zero upon any exception to AArch64
89	// See ARM DDI 0487E.a, page D5-2579.
90
91	// PSTATE.PAN is unchanged unless SCTLR_ELx.SPAN == 0b0
92	// SCTLR_ELx.SPAN is RES1 when ARMv8.1-PAN is not implemented
93	// See ARM DDI 0487E.a, page D5-2578.
94	new |= (old & PSR_PAN_BIT);
95	if (!(sctlr & SCTLR_EL1_SPAN))
96		new |= PSR_PAN_BIT;
97
98	// PSTATE.SS is set to zero upon any exception to AArch64
99	// See ARM DDI 0487E.a, page D2-2452.
100
101	// PSTATE.IL is set to zero upon any exception to AArch64
102	// See ARM DDI 0487E.a, page D1-2306.
103
104	// PSTATE.SSBS is set to SCTLR_ELx.DSSBS upon any exception to AArch64
105	// See ARM DDI 0487E.a, page D13-3258
106	if (sctlr & SCTLR_ELx_DSSBS)
107		new |= PSR_SSBS_BIT;
108
109	// PSTATE.BTYPE is set to zero upon any exception to AArch64
110	// See ARM DDI 0487E.a, pages D1-2293 to D1-2294.
111
112	new |= PSR_D_BIT;
113	new |= PSR_A_BIT;
114	new |= PSR_I_BIT;
115	new |= PSR_F_BIT;
116
117	new |= target_mode;
118
119	*vcpu_cpsr(vcpu) = new;
120	vcpu_write_spsr(vcpu, old);
121}
122
123static void inject_abt64(struct kvm_vcpu *vcpu, bool is_iabt, unsigned long addr)
124{
125	unsigned long cpsr = *vcpu_cpsr(vcpu);
126	bool is_aarch32 = vcpu_mode_is_32bit(vcpu);
127	u32 esr = 0;
128
129	enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
130
131	vcpu_write_sys_reg(vcpu, addr, FAR_EL1);
132
133	/*
134	 * Build an {i,d}abort, depending on the level and the
135	 * instruction set. Report an external synchronous abort.
136	 */
137	if (kvm_vcpu_trap_il_is32bit(vcpu))
138		esr |= ESR_ELx_IL;
139
140	/*
141	 * Here, the guest runs in AArch64 mode when in EL1. If we get
142	 * an AArch32 fault, it means we managed to trap an EL0 fault.
143	 */
144	if (is_aarch32 || (cpsr & PSR_MODE_MASK) == PSR_MODE_EL0t)
145		esr |= (ESR_ELx_EC_IABT_LOW << ESR_ELx_EC_SHIFT);
146	else
147		esr |= (ESR_ELx_EC_IABT_CUR << ESR_ELx_EC_SHIFT);
148
149	if (!is_iabt)
150		esr |= ESR_ELx_EC_DABT_LOW << ESR_ELx_EC_SHIFT;
151
152	vcpu_write_sys_reg(vcpu, esr | ESR_ELx_FSC_EXTABT, ESR_EL1);
153}
154
155static void inject_undef64(struct kvm_vcpu *vcpu)
156{
157	u32 esr = (ESR_ELx_EC_UNKNOWN << ESR_ELx_EC_SHIFT);
158
159	enter_exception64(vcpu, PSR_MODE_EL1h, except_type_sync);
160
161	/*
162	 * Build an unknown exception, depending on the instruction
163	 * set.
164	 */
165	if (kvm_vcpu_trap_il_is32bit(vcpu))
166		esr |= ESR_ELx_IL;
167
168	vcpu_write_sys_reg(vcpu, esr, ESR_EL1);
169}
170
171/**
172 * kvm_inject_dabt - inject a data abort into the guest
173 * @vcpu: The VCPU to receive the data abort
174 * @addr: The address to report in the DFAR
175 *
176 * It is assumed that this code is called from the VCPU thread and that the
177 * VCPU therefore is not currently executing guest code.
178 */
179void kvm_inject_dabt(struct kvm_vcpu *vcpu, unsigned long addr)
180{
181	if (vcpu_el1_is_32bit(vcpu))
182		kvm_inject_dabt32(vcpu, addr);
183	else
184		inject_abt64(vcpu, false, addr);
185}
186
187/**
188 * kvm_inject_pabt - inject a prefetch abort into the guest
189 * @vcpu: The VCPU to receive the prefetch abort
190 * @addr: The address to report in the DFAR
191 *
192 * It is assumed that this code is called from the VCPU thread and that the
193 * VCPU therefore is not currently executing guest code.
194 */
195void kvm_inject_pabt(struct kvm_vcpu *vcpu, unsigned long addr)
196{
197	if (vcpu_el1_is_32bit(vcpu))
198		kvm_inject_pabt32(vcpu, addr);
199	else
200		inject_abt64(vcpu, true, addr);
201}
202
203/**
204 * kvm_inject_undefined - inject an undefined instruction into the guest
205 * @vcpu: The vCPU in which to inject the exception
206 *
207 * It is assumed that this code is called from the VCPU thread and that the
208 * VCPU therefore is not currently executing guest code.
209 */
210void kvm_inject_undefined(struct kvm_vcpu *vcpu)
211{
212	if (vcpu_el1_is_32bit(vcpu))
213		kvm_inject_undef32(vcpu);
214	else
215		inject_undef64(vcpu);
216}
217
218void kvm_set_sei_esr(struct kvm_vcpu *vcpu, u64 esr)
219{
220	vcpu_set_vsesr(vcpu, esr & ESR_ELx_ISS_MASK);
221	*vcpu_hcr(vcpu) |= HCR_VSE;
222}
223
224/**
225 * kvm_inject_vabt - inject an async abort / SError into the guest
226 * @vcpu: The VCPU to receive the exception
227 *
228 * It is assumed that this code is called from the VCPU thread and that the
229 * VCPU therefore is not currently executing guest code.
230 *
231 * Systems with the RAS Extensions specify an imp-def ESR (ISV/IDS = 1) with
232 * the remaining ISS all-zeros so that this error is not interpreted as an
233 * uncategorized RAS error. Without the RAS Extensions we can't specify an ESR
234 * value, so the CPU generates an imp-def value.
235 */
236void kvm_inject_vabt(struct kvm_vcpu *vcpu)
237{
238	kvm_set_sei_esr(vcpu, ESR_ELx_ISV);
239}
240