xref: /kernel/linux/linux-5.10/arch/arm64/kvm/guest.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012,2013 - ARM Ltd
4 * Author: Marc Zyngier <marc.zyngier@arm.com>
5 *
6 * Derived from arch/arm/kvm/guest.c:
7 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
8 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
9 */
10
11#include <linux/bits.h>
12#include <linux/errno.h>
13#include <linux/err.h>
14#include <linux/nospec.h>
15#include <linux/kvm_host.h>
16#include <linux/module.h>
17#include <linux/stddef.h>
18#include <linux/string.h>
19#include <linux/vmalloc.h>
20#include <linux/fs.h>
21#include <kvm/arm_psci.h>
22#include <asm/cputype.h>
23#include <linux/uaccess.h>
24#include <asm/fpsimd.h>
25#include <asm/kvm.h>
26#include <asm/kvm_emulate.h>
27#include <asm/kvm_coproc.h>
28#include <asm/sigcontext.h>
29
30#include "trace.h"
31
32struct kvm_stats_debugfs_item debugfs_entries[] = {
33	VCPU_STAT("halt_successful_poll", halt_successful_poll),
34	VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
35	VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
36	VCPU_STAT("halt_wakeup", halt_wakeup),
37	VCPU_STAT("hvc_exit_stat", hvc_exit_stat),
38	VCPU_STAT("wfe_exit_stat", wfe_exit_stat),
39	VCPU_STAT("wfi_exit_stat", wfi_exit_stat),
40	VCPU_STAT("mmio_exit_user", mmio_exit_user),
41	VCPU_STAT("mmio_exit_kernel", mmio_exit_kernel),
42	VCPU_STAT("exits", exits),
43	VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
44	VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
45	{ NULL }
46};
47
48static bool core_reg_offset_is_vreg(u64 off)
49{
50	return off >= KVM_REG_ARM_CORE_REG(fp_regs.vregs) &&
51		off < KVM_REG_ARM_CORE_REG(fp_regs.fpsr);
52}
53
54static u64 core_reg_offset_from_id(u64 id)
55{
56	return id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK | KVM_REG_ARM_CORE);
57}
58
59static int core_reg_size_from_offset(const struct kvm_vcpu *vcpu, u64 off)
60{
61	int size;
62
63	switch (off) {
64	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
65	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
66	case KVM_REG_ARM_CORE_REG(regs.sp):
67	case KVM_REG_ARM_CORE_REG(regs.pc):
68	case KVM_REG_ARM_CORE_REG(regs.pstate):
69	case KVM_REG_ARM_CORE_REG(sp_el1):
70	case KVM_REG_ARM_CORE_REG(elr_el1):
71	case KVM_REG_ARM_CORE_REG(spsr[0]) ...
72	     KVM_REG_ARM_CORE_REG(spsr[KVM_NR_SPSR - 1]):
73		size = sizeof(__u64);
74		break;
75
76	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
77	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
78		size = sizeof(__uint128_t);
79		break;
80
81	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
82	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
83		size = sizeof(__u32);
84		break;
85
86	default:
87		return -EINVAL;
88	}
89
90	if (!IS_ALIGNED(off, size / sizeof(__u32)))
91		return -EINVAL;
92
93	/*
94	 * The KVM_REG_ARM64_SVE regs must be used instead of
95	 * KVM_REG_ARM_CORE for accessing the FPSIMD V-registers on
96	 * SVE-enabled vcpus:
97	 */
98	if (vcpu_has_sve(vcpu) && core_reg_offset_is_vreg(off))
99		return -EINVAL;
100
101	return size;
102}
103
104static void *core_reg_addr(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
105{
106	u64 off = core_reg_offset_from_id(reg->id);
107	int size = core_reg_size_from_offset(vcpu, off);
108
109	if (size < 0)
110		return NULL;
111
112	if (KVM_REG_SIZE(reg->id) != size)
113		return NULL;
114
115	switch (off) {
116	case KVM_REG_ARM_CORE_REG(regs.regs[0]) ...
117	     KVM_REG_ARM_CORE_REG(regs.regs[30]):
118		off -= KVM_REG_ARM_CORE_REG(regs.regs[0]);
119		off /= 2;
120		return &vcpu->arch.ctxt.regs.regs[off];
121
122	case KVM_REG_ARM_CORE_REG(regs.sp):
123		return &vcpu->arch.ctxt.regs.sp;
124
125	case KVM_REG_ARM_CORE_REG(regs.pc):
126		return &vcpu->arch.ctxt.regs.pc;
127
128	case KVM_REG_ARM_CORE_REG(regs.pstate):
129		return &vcpu->arch.ctxt.regs.pstate;
130
131	case KVM_REG_ARM_CORE_REG(sp_el1):
132		return __ctxt_sys_reg(&vcpu->arch.ctxt, SP_EL1);
133
134	case KVM_REG_ARM_CORE_REG(elr_el1):
135		return __ctxt_sys_reg(&vcpu->arch.ctxt, ELR_EL1);
136
137	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_EL1]):
138		return __ctxt_sys_reg(&vcpu->arch.ctxt, SPSR_EL1);
139
140	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_ABT]):
141		return &vcpu->arch.ctxt.spsr_abt;
142
143	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_UND]):
144		return &vcpu->arch.ctxt.spsr_und;
145
146	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_IRQ]):
147		return &vcpu->arch.ctxt.spsr_irq;
148
149	case KVM_REG_ARM_CORE_REG(spsr[KVM_SPSR_FIQ]):
150		return &vcpu->arch.ctxt.spsr_fiq;
151
152	case KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]) ...
153	     KVM_REG_ARM_CORE_REG(fp_regs.vregs[31]):
154		off -= KVM_REG_ARM_CORE_REG(fp_regs.vregs[0]);
155		off /= 4;
156		return &vcpu->arch.ctxt.fp_regs.vregs[off];
157
158	case KVM_REG_ARM_CORE_REG(fp_regs.fpsr):
159		return &vcpu->arch.ctxt.fp_regs.fpsr;
160
161	case KVM_REG_ARM_CORE_REG(fp_regs.fpcr):
162		return &vcpu->arch.ctxt.fp_regs.fpcr;
163
164	default:
165		return NULL;
166	}
167}
168
169static int get_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
170{
171	/*
172	 * Because the kvm_regs structure is a mix of 32, 64 and
173	 * 128bit fields, we index it as if it was a 32bit
174	 * array. Hence below, nr_regs is the number of entries, and
175	 * off the index in the "array".
176	 */
177	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
178	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
179	void *addr;
180	u32 off;
181
182	/* Our ID is an index into the kvm_regs struct. */
183	off = core_reg_offset_from_id(reg->id);
184	if (off >= nr_regs ||
185	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
186		return -ENOENT;
187
188	addr = core_reg_addr(vcpu, reg);
189	if (!addr)
190		return -EINVAL;
191
192	if (copy_to_user(uaddr, addr, KVM_REG_SIZE(reg->id)))
193		return -EFAULT;
194
195	return 0;
196}
197
198static int set_core_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
199{
200	__u32 __user *uaddr = (__u32 __user *)(unsigned long)reg->addr;
201	int nr_regs = sizeof(struct kvm_regs) / sizeof(__u32);
202	__uint128_t tmp;
203	void *valp = &tmp, *addr;
204	u64 off;
205	int err = 0;
206
207	/* Our ID is an index into the kvm_regs struct. */
208	off = core_reg_offset_from_id(reg->id);
209	if (off >= nr_regs ||
210	    (off + (KVM_REG_SIZE(reg->id) / sizeof(__u32))) >= nr_regs)
211		return -ENOENT;
212
213	addr = core_reg_addr(vcpu, reg);
214	if (!addr)
215		return -EINVAL;
216
217	if (KVM_REG_SIZE(reg->id) > sizeof(tmp))
218		return -EINVAL;
219
220	if (copy_from_user(valp, uaddr, KVM_REG_SIZE(reg->id))) {
221		err = -EFAULT;
222		goto out;
223	}
224
225	if (off == KVM_REG_ARM_CORE_REG(regs.pstate)) {
226		u64 mode = (*(u64 *)valp) & PSR_AA32_MODE_MASK;
227		switch (mode) {
228		case PSR_AA32_MODE_USR:
229			if (!system_supports_32bit_el0())
230				return -EINVAL;
231			break;
232		case PSR_AA32_MODE_FIQ:
233		case PSR_AA32_MODE_IRQ:
234		case PSR_AA32_MODE_SVC:
235		case PSR_AA32_MODE_ABT:
236		case PSR_AA32_MODE_UND:
237			if (!vcpu_el1_is_32bit(vcpu))
238				return -EINVAL;
239			break;
240		case PSR_MODE_EL0t:
241		case PSR_MODE_EL1t:
242		case PSR_MODE_EL1h:
243			if (vcpu_el1_is_32bit(vcpu))
244				return -EINVAL;
245			break;
246		default:
247			err = -EINVAL;
248			goto out;
249		}
250	}
251
252	memcpy(addr, valp, KVM_REG_SIZE(reg->id));
253
254	if (*vcpu_cpsr(vcpu) & PSR_MODE32_BIT) {
255		int i;
256
257		for (i = 0; i < 16; i++)
258			*vcpu_reg32(vcpu, i) = (u32)*vcpu_reg32(vcpu, i);
259	}
260out:
261	return err;
262}
263
264#define vq_word(vq) (((vq) - SVE_VQ_MIN) / 64)
265#define vq_mask(vq) ((u64)1 << ((vq) - SVE_VQ_MIN) % 64)
266#define vq_present(vqs, vq) (!!((vqs)[vq_word(vq)] & vq_mask(vq)))
267
268static int get_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
269{
270	unsigned int max_vq, vq;
271	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
272
273	if (!vcpu_has_sve(vcpu))
274		return -ENOENT;
275
276	if (WARN_ON(!sve_vl_valid(vcpu->arch.sve_max_vl)))
277		return -EINVAL;
278
279	memset(vqs, 0, sizeof(vqs));
280
281	max_vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
282	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
283		if (sve_vq_available(vq))
284			vqs[vq_word(vq)] |= vq_mask(vq);
285
286	if (copy_to_user((void __user *)reg->addr, vqs, sizeof(vqs)))
287		return -EFAULT;
288
289	return 0;
290}
291
292static int set_sve_vls(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
293{
294	unsigned int max_vq, vq;
295	u64 vqs[KVM_ARM64_SVE_VLS_WORDS];
296
297	if (!vcpu_has_sve(vcpu))
298		return -ENOENT;
299
300	if (kvm_arm_vcpu_sve_finalized(vcpu))
301		return -EPERM; /* too late! */
302
303	if (WARN_ON(vcpu->arch.sve_state))
304		return -EINVAL;
305
306	if (copy_from_user(vqs, (const void __user *)reg->addr, sizeof(vqs)))
307		return -EFAULT;
308
309	max_vq = 0;
310	for (vq = SVE_VQ_MIN; vq <= SVE_VQ_MAX; ++vq)
311		if (vq_present(vqs, vq))
312			max_vq = vq;
313
314	if (max_vq > sve_vq_from_vl(kvm_sve_max_vl))
315		return -EINVAL;
316
317	/*
318	 * Vector lengths supported by the host can't currently be
319	 * hidden from the guest individually: instead we can only set a
320	 * maximum via ZCR_EL2.LEN.  So, make sure the available vector
321	 * lengths match the set requested exactly up to the requested
322	 * maximum:
323	 */
324	for (vq = SVE_VQ_MIN; vq <= max_vq; ++vq)
325		if (vq_present(vqs, vq) != sve_vq_available(vq))
326			return -EINVAL;
327
328	/* Can't run with no vector lengths at all: */
329	if (max_vq < SVE_VQ_MIN)
330		return -EINVAL;
331
332	/* vcpu->arch.sve_state will be alloc'd by kvm_vcpu_finalize_sve() */
333	vcpu->arch.sve_max_vl = sve_vl_from_vq(max_vq);
334
335	return 0;
336}
337
338#define SVE_REG_SLICE_SHIFT	0
339#define SVE_REG_SLICE_BITS	5
340#define SVE_REG_ID_SHIFT	(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS)
341#define SVE_REG_ID_BITS		5
342
343#define SVE_REG_SLICE_MASK					\
344	GENMASK(SVE_REG_SLICE_SHIFT + SVE_REG_SLICE_BITS - 1,	\
345		SVE_REG_SLICE_SHIFT)
346#define SVE_REG_ID_MASK							\
347	GENMASK(SVE_REG_ID_SHIFT + SVE_REG_ID_BITS - 1, SVE_REG_ID_SHIFT)
348
349#define SVE_NUM_SLICES (1 << SVE_REG_SLICE_BITS)
350
351#define KVM_SVE_ZREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_ZREG(0, 0))
352#define KVM_SVE_PREG_SIZE KVM_REG_SIZE(KVM_REG_ARM64_SVE_PREG(0, 0))
353
354/*
355 * Number of register slices required to cover each whole SVE register.
356 * NOTE: Only the first slice every exists, for now.
357 * If you are tempted to modify this, you must also rework sve_reg_to_region()
358 * to match:
359 */
360#define vcpu_sve_slices(vcpu) 1
361
362/* Bounds of a single SVE register slice within vcpu->arch.sve_state */
363struct sve_state_reg_region {
364	unsigned int koffset;	/* offset into sve_state in kernel memory */
365	unsigned int klen;	/* length in kernel memory */
366	unsigned int upad;	/* extra trailing padding in user memory */
367};
368
369/*
370 * Validate SVE register ID and get sanitised bounds for user/kernel SVE
371 * register copy
372 */
373static int sve_reg_to_region(struct sve_state_reg_region *region,
374			     struct kvm_vcpu *vcpu,
375			     const struct kvm_one_reg *reg)
376{
377	/* reg ID ranges for Z- registers */
378	const u64 zreg_id_min = KVM_REG_ARM64_SVE_ZREG(0, 0);
379	const u64 zreg_id_max = KVM_REG_ARM64_SVE_ZREG(SVE_NUM_ZREGS - 1,
380						       SVE_NUM_SLICES - 1);
381
382	/* reg ID ranges for P- registers and FFR (which are contiguous) */
383	const u64 preg_id_min = KVM_REG_ARM64_SVE_PREG(0, 0);
384	const u64 preg_id_max = KVM_REG_ARM64_SVE_FFR(SVE_NUM_SLICES - 1);
385
386	unsigned int vq;
387	unsigned int reg_num;
388
389	unsigned int reqoffset, reqlen; /* User-requested offset and length */
390	unsigned int maxlen; /* Maximum permitted length */
391
392	size_t sve_state_size;
393
394	const u64 last_preg_id = KVM_REG_ARM64_SVE_PREG(SVE_NUM_PREGS - 1,
395							SVE_NUM_SLICES - 1);
396
397	/* Verify that the P-regs and FFR really do have contiguous IDs: */
398	BUILD_BUG_ON(KVM_REG_ARM64_SVE_FFR(0) != last_preg_id + 1);
399
400	/* Verify that we match the UAPI header: */
401	BUILD_BUG_ON(SVE_NUM_SLICES != KVM_ARM64_SVE_MAX_SLICES);
402
403	reg_num = (reg->id & SVE_REG_ID_MASK) >> SVE_REG_ID_SHIFT;
404
405	if (reg->id >= zreg_id_min && reg->id <= zreg_id_max) {
406		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
407			return -ENOENT;
408
409		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
410
411		reqoffset = SVE_SIG_ZREG_OFFSET(vq, reg_num) -
412				SVE_SIG_REGS_OFFSET;
413		reqlen = KVM_SVE_ZREG_SIZE;
414		maxlen = SVE_SIG_ZREG_SIZE(vq);
415	} else if (reg->id >= preg_id_min && reg->id <= preg_id_max) {
416		if (!vcpu_has_sve(vcpu) || (reg->id & SVE_REG_SLICE_MASK) > 0)
417			return -ENOENT;
418
419		vq = sve_vq_from_vl(vcpu->arch.sve_max_vl);
420
421		reqoffset = SVE_SIG_PREG_OFFSET(vq, reg_num) -
422				SVE_SIG_REGS_OFFSET;
423		reqlen = KVM_SVE_PREG_SIZE;
424		maxlen = SVE_SIG_PREG_SIZE(vq);
425	} else {
426		return -EINVAL;
427	}
428
429	sve_state_size = vcpu_sve_state_size(vcpu);
430	if (WARN_ON(!sve_state_size))
431		return -EINVAL;
432
433	region->koffset = array_index_nospec(reqoffset, sve_state_size);
434	region->klen = min(maxlen, reqlen);
435	region->upad = reqlen - region->klen;
436
437	return 0;
438}
439
440static int get_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
441{
442	int ret;
443	struct sve_state_reg_region region;
444	char __user *uptr = (char __user *)reg->addr;
445
446	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
447	if (reg->id == KVM_REG_ARM64_SVE_VLS)
448		return get_sve_vls(vcpu, reg);
449
450	/* Try to interpret reg ID as an architectural SVE register... */
451	ret = sve_reg_to_region(&region, vcpu, reg);
452	if (ret)
453		return ret;
454
455	if (!kvm_arm_vcpu_sve_finalized(vcpu))
456		return -EPERM;
457
458	if (copy_to_user(uptr, vcpu->arch.sve_state + region.koffset,
459			 region.klen) ||
460	    clear_user(uptr + region.klen, region.upad))
461		return -EFAULT;
462
463	return 0;
464}
465
466static int set_sve_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
467{
468	int ret;
469	struct sve_state_reg_region region;
470	const char __user *uptr = (const char __user *)reg->addr;
471
472	/* Handle the KVM_REG_ARM64_SVE_VLS pseudo-reg as a special case: */
473	if (reg->id == KVM_REG_ARM64_SVE_VLS)
474		return set_sve_vls(vcpu, reg);
475
476	/* Try to interpret reg ID as an architectural SVE register... */
477	ret = sve_reg_to_region(&region, vcpu, reg);
478	if (ret)
479		return ret;
480
481	if (!kvm_arm_vcpu_sve_finalized(vcpu))
482		return -EPERM;
483
484	if (copy_from_user(vcpu->arch.sve_state + region.koffset, uptr,
485			   region.klen))
486		return -EFAULT;
487
488	return 0;
489}
490
491int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
492{
493	return -EINVAL;
494}
495
496int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
497{
498	return -EINVAL;
499}
500
501static int copy_core_reg_indices(const struct kvm_vcpu *vcpu,
502				 u64 __user *uindices)
503{
504	unsigned int i;
505	int n = 0;
506
507	for (i = 0; i < sizeof(struct kvm_regs) / sizeof(__u32); i++) {
508		u64 reg = KVM_REG_ARM64 | KVM_REG_ARM_CORE | i;
509		int size = core_reg_size_from_offset(vcpu, i);
510
511		if (size < 0)
512			continue;
513
514		switch (size) {
515		case sizeof(__u32):
516			reg |= KVM_REG_SIZE_U32;
517			break;
518
519		case sizeof(__u64):
520			reg |= KVM_REG_SIZE_U64;
521			break;
522
523		case sizeof(__uint128_t):
524			reg |= KVM_REG_SIZE_U128;
525			break;
526
527		default:
528			WARN_ON(1);
529			continue;
530		}
531
532		if (uindices) {
533			if (put_user(reg, uindices))
534				return -EFAULT;
535			uindices++;
536		}
537
538		n++;
539	}
540
541	return n;
542}
543
544static unsigned long num_core_regs(const struct kvm_vcpu *vcpu)
545{
546	return copy_core_reg_indices(vcpu, NULL);
547}
548
549/**
550 * ARM64 versions of the TIMER registers, always available on arm64
551 */
552
553#define NUM_TIMER_REGS 3
554
555static bool is_timer_reg(u64 index)
556{
557	switch (index) {
558	case KVM_REG_ARM_TIMER_CTL:
559	case KVM_REG_ARM_TIMER_CNT:
560	case KVM_REG_ARM_TIMER_CVAL:
561		return true;
562	}
563	return false;
564}
565
566static int copy_timer_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
567{
568	if (put_user(KVM_REG_ARM_TIMER_CTL, uindices))
569		return -EFAULT;
570	uindices++;
571	if (put_user(KVM_REG_ARM_TIMER_CNT, uindices))
572		return -EFAULT;
573	uindices++;
574	if (put_user(KVM_REG_ARM_TIMER_CVAL, uindices))
575		return -EFAULT;
576
577	return 0;
578}
579
580static int set_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
581{
582	void __user *uaddr = (void __user *)(long)reg->addr;
583	u64 val;
584	int ret;
585
586	ret = copy_from_user(&val, uaddr, KVM_REG_SIZE(reg->id));
587	if (ret != 0)
588		return -EFAULT;
589
590	return kvm_arm_timer_set_reg(vcpu, reg->id, val);
591}
592
593static int get_timer_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
594{
595	void __user *uaddr = (void __user *)(long)reg->addr;
596	u64 val;
597
598	val = kvm_arm_timer_get_reg(vcpu, reg->id);
599	return copy_to_user(uaddr, &val, KVM_REG_SIZE(reg->id)) ? -EFAULT : 0;
600}
601
602static unsigned long num_sve_regs(const struct kvm_vcpu *vcpu)
603{
604	const unsigned int slices = vcpu_sve_slices(vcpu);
605
606	if (!vcpu_has_sve(vcpu))
607		return 0;
608
609	/* Policed by KVM_GET_REG_LIST: */
610	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
611
612	return slices * (SVE_NUM_PREGS + SVE_NUM_ZREGS + 1 /* FFR */)
613		+ 1; /* KVM_REG_ARM64_SVE_VLS */
614}
615
616static int copy_sve_reg_indices(const struct kvm_vcpu *vcpu,
617				u64 __user *uindices)
618{
619	const unsigned int slices = vcpu_sve_slices(vcpu);
620	u64 reg;
621	unsigned int i, n;
622	int num_regs = 0;
623
624	if (!vcpu_has_sve(vcpu))
625		return 0;
626
627	/* Policed by KVM_GET_REG_LIST: */
628	WARN_ON(!kvm_arm_vcpu_sve_finalized(vcpu));
629
630	/*
631	 * Enumerate this first, so that userspace can save/restore in
632	 * the order reported by KVM_GET_REG_LIST:
633	 */
634	reg = KVM_REG_ARM64_SVE_VLS;
635	if (put_user(reg, uindices++))
636		return -EFAULT;
637	++num_regs;
638
639	for (i = 0; i < slices; i++) {
640		for (n = 0; n < SVE_NUM_ZREGS; n++) {
641			reg = KVM_REG_ARM64_SVE_ZREG(n, i);
642			if (put_user(reg, uindices++))
643				return -EFAULT;
644			num_regs++;
645		}
646
647		for (n = 0; n < SVE_NUM_PREGS; n++) {
648			reg = KVM_REG_ARM64_SVE_PREG(n, i);
649			if (put_user(reg, uindices++))
650				return -EFAULT;
651			num_regs++;
652		}
653
654		reg = KVM_REG_ARM64_SVE_FFR(i);
655		if (put_user(reg, uindices++))
656			return -EFAULT;
657		num_regs++;
658	}
659
660	return num_regs;
661}
662
663/**
664 * kvm_arm_num_regs - how many registers do we present via KVM_GET_ONE_REG
665 *
666 * This is for all registers.
667 */
668unsigned long kvm_arm_num_regs(struct kvm_vcpu *vcpu)
669{
670	unsigned long res = 0;
671
672	res += num_core_regs(vcpu);
673	res += num_sve_regs(vcpu);
674	res += kvm_arm_num_sys_reg_descs(vcpu);
675	res += kvm_arm_get_fw_num_regs(vcpu);
676	res += NUM_TIMER_REGS;
677
678	return res;
679}
680
681/**
682 * kvm_arm_copy_reg_indices - get indices of all registers.
683 *
684 * We do core registers right here, then we append system regs.
685 */
686int kvm_arm_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
687{
688	int ret;
689
690	ret = copy_core_reg_indices(vcpu, uindices);
691	if (ret < 0)
692		return ret;
693	uindices += ret;
694
695	ret = copy_sve_reg_indices(vcpu, uindices);
696	if (ret < 0)
697		return ret;
698	uindices += ret;
699
700	ret = kvm_arm_copy_fw_reg_indices(vcpu, uindices);
701	if (ret < 0)
702		return ret;
703	uindices += kvm_arm_get_fw_num_regs(vcpu);
704
705	ret = copy_timer_indices(vcpu, uindices);
706	if (ret < 0)
707		return ret;
708	uindices += NUM_TIMER_REGS;
709
710	return kvm_arm_copy_sys_reg_indices(vcpu, uindices);
711}
712
713int kvm_arm_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
714{
715	/* We currently use nothing arch-specific in upper 32 bits */
716	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
717		return -EINVAL;
718
719	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
720	case KVM_REG_ARM_CORE:	return get_core_reg(vcpu, reg);
721	case KVM_REG_ARM_FW:	return kvm_arm_get_fw_reg(vcpu, reg);
722	case KVM_REG_ARM64_SVE:	return get_sve_reg(vcpu, reg);
723	}
724
725	if (is_timer_reg(reg->id))
726		return get_timer_reg(vcpu, reg);
727
728	return kvm_arm_sys_reg_get_reg(vcpu, reg);
729}
730
731int kvm_arm_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
732{
733	/* We currently use nothing arch-specific in upper 32 bits */
734	if ((reg->id & ~KVM_REG_SIZE_MASK) >> 32 != KVM_REG_ARM64 >> 32)
735		return -EINVAL;
736
737	switch (reg->id & KVM_REG_ARM_COPROC_MASK) {
738	case KVM_REG_ARM_CORE:	return set_core_reg(vcpu, reg);
739	case KVM_REG_ARM_FW:	return kvm_arm_set_fw_reg(vcpu, reg);
740	case KVM_REG_ARM64_SVE:	return set_sve_reg(vcpu, reg);
741	}
742
743	if (is_timer_reg(reg->id))
744		return set_timer_reg(vcpu, reg);
745
746	return kvm_arm_sys_reg_set_reg(vcpu, reg);
747}
748
749int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
750				  struct kvm_sregs *sregs)
751{
752	return -EINVAL;
753}
754
755int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
756				  struct kvm_sregs *sregs)
757{
758	return -EINVAL;
759}
760
761int __kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
762			      struct kvm_vcpu_events *events)
763{
764	events->exception.serror_pending = !!(vcpu->arch.hcr_el2 & HCR_VSE);
765	events->exception.serror_has_esr = cpus_have_const_cap(ARM64_HAS_RAS_EXTN);
766
767	if (events->exception.serror_pending && events->exception.serror_has_esr)
768		events->exception.serror_esr = vcpu_get_vsesr(vcpu);
769
770	/*
771	 * We never return a pending ext_dabt here because we deliver it to
772	 * the virtual CPU directly when setting the event and it's no longer
773	 * 'pending' at this point.
774	 */
775
776	return 0;
777}
778
779int __kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
780			      struct kvm_vcpu_events *events)
781{
782	bool serror_pending = events->exception.serror_pending;
783	bool has_esr = events->exception.serror_has_esr;
784	bool ext_dabt_pending = events->exception.ext_dabt_pending;
785
786	if (serror_pending && has_esr) {
787		if (!cpus_have_const_cap(ARM64_HAS_RAS_EXTN))
788			return -EINVAL;
789
790		if (!((events->exception.serror_esr) & ~ESR_ELx_ISS_MASK))
791			kvm_set_sei_esr(vcpu, events->exception.serror_esr);
792		else
793			return -EINVAL;
794	} else if (serror_pending) {
795		kvm_inject_vabt(vcpu);
796	}
797
798	if (ext_dabt_pending)
799		kvm_inject_dabt(vcpu, kvm_vcpu_get_hfar(vcpu));
800
801	return 0;
802}
803
804int __attribute_const__ kvm_target_cpu(void)
805{
806	unsigned long implementor = read_cpuid_implementor();
807	unsigned long part_number = read_cpuid_part_number();
808
809	switch (implementor) {
810	case ARM_CPU_IMP_ARM:
811		switch (part_number) {
812		case ARM_CPU_PART_AEM_V8:
813			return KVM_ARM_TARGET_AEM_V8;
814		case ARM_CPU_PART_FOUNDATION:
815			return KVM_ARM_TARGET_FOUNDATION_V8;
816		case ARM_CPU_PART_CORTEX_A53:
817			return KVM_ARM_TARGET_CORTEX_A53;
818		case ARM_CPU_PART_CORTEX_A57:
819			return KVM_ARM_TARGET_CORTEX_A57;
820		}
821		break;
822	case ARM_CPU_IMP_APM:
823		switch (part_number) {
824		case APM_CPU_PART_POTENZA:
825			return KVM_ARM_TARGET_XGENE_POTENZA;
826		}
827		break;
828	}
829
830	/* Return a default generic target */
831	return KVM_ARM_TARGET_GENERIC_V8;
832}
833
834int kvm_vcpu_preferred_target(struct kvm_vcpu_init *init)
835{
836	int target = kvm_target_cpu();
837
838	if (target < 0)
839		return -ENODEV;
840
841	memset(init, 0, sizeof(*init));
842
843	/*
844	 * For now, we don't return any features.
845	 * In future, we might use features to return target
846	 * specific features available for the preferred
847	 * target type.
848	 */
849	init->target = (__u32)target;
850
851	return 0;
852}
853
854int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
855{
856	return -EINVAL;
857}
858
859int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
860{
861	return -EINVAL;
862}
863
864int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
865				  struct kvm_translation *tr)
866{
867	return -EINVAL;
868}
869
870#define KVM_GUESTDBG_VALID_MASK (KVM_GUESTDBG_ENABLE |    \
871			    KVM_GUESTDBG_USE_SW_BP | \
872			    KVM_GUESTDBG_USE_HW | \
873			    KVM_GUESTDBG_SINGLESTEP)
874
875/**
876 * kvm_arch_vcpu_ioctl_set_guest_debug - set up guest debugging
877 * @kvm:	pointer to the KVM struct
878 * @kvm_guest_debug: the ioctl data buffer
879 *
880 * This sets up and enables the VM for guest debugging. Userspace
881 * passes in a control flag to enable different debug types and
882 * potentially other architecture specific information in the rest of
883 * the structure.
884 */
885int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
886					struct kvm_guest_debug *dbg)
887{
888	int ret = 0;
889
890	trace_kvm_set_guest_debug(vcpu, dbg->control);
891
892	if (dbg->control & ~KVM_GUESTDBG_VALID_MASK) {
893		ret = -EINVAL;
894		goto out;
895	}
896
897	if (dbg->control & KVM_GUESTDBG_ENABLE) {
898		vcpu->guest_debug = dbg->control;
899
900		/* Hardware assisted Break and Watch points */
901		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW) {
902			vcpu->arch.external_debug_state = dbg->arch;
903		}
904
905	} else {
906		/* If not enabled clear all flags */
907		vcpu->guest_debug = 0;
908	}
909
910out:
911	return ret;
912}
913
914int kvm_arm_vcpu_arch_set_attr(struct kvm_vcpu *vcpu,
915			       struct kvm_device_attr *attr)
916{
917	int ret;
918
919	switch (attr->group) {
920	case KVM_ARM_VCPU_PMU_V3_CTRL:
921		ret = kvm_arm_pmu_v3_set_attr(vcpu, attr);
922		break;
923	case KVM_ARM_VCPU_TIMER_CTRL:
924		ret = kvm_arm_timer_set_attr(vcpu, attr);
925		break;
926	case KVM_ARM_VCPU_PVTIME_CTRL:
927		ret = kvm_arm_pvtime_set_attr(vcpu, attr);
928		break;
929	default:
930		ret = -ENXIO;
931		break;
932	}
933
934	return ret;
935}
936
937int kvm_arm_vcpu_arch_get_attr(struct kvm_vcpu *vcpu,
938			       struct kvm_device_attr *attr)
939{
940	int ret;
941
942	switch (attr->group) {
943	case KVM_ARM_VCPU_PMU_V3_CTRL:
944		ret = kvm_arm_pmu_v3_get_attr(vcpu, attr);
945		break;
946	case KVM_ARM_VCPU_TIMER_CTRL:
947		ret = kvm_arm_timer_get_attr(vcpu, attr);
948		break;
949	case KVM_ARM_VCPU_PVTIME_CTRL:
950		ret = kvm_arm_pvtime_get_attr(vcpu, attr);
951		break;
952	default:
953		ret = -ENXIO;
954		break;
955	}
956
957	return ret;
958}
959
960int kvm_arm_vcpu_arch_has_attr(struct kvm_vcpu *vcpu,
961			       struct kvm_device_attr *attr)
962{
963	int ret;
964
965	switch (attr->group) {
966	case KVM_ARM_VCPU_PMU_V3_CTRL:
967		ret = kvm_arm_pmu_v3_has_attr(vcpu, attr);
968		break;
969	case KVM_ARM_VCPU_TIMER_CTRL:
970		ret = kvm_arm_timer_has_attr(vcpu, attr);
971		break;
972	case KVM_ARM_VCPU_PVTIME_CTRL:
973		ret = kvm_arm_pvtime_has_attr(vcpu, attr);
974		break;
975	default:
976		ret = -ENXIO;
977		break;
978	}
979
980	return ret;
981}
982