xref: /kernel/linux/linux-5.10/arch/arm64/kvm/arm.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
4 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
5 */
6
7#include <linux/bug.h>
8#include <linux/cpu_pm.h>
9#include <linux/errno.h>
10#include <linux/err.h>
11#include <linux/kvm_host.h>
12#include <linux/list.h>
13#include <linux/module.h>
14#include <linux/vmalloc.h>
15#include <linux/fs.h>
16#include <linux/mman.h>
17#include <linux/sched.h>
18#include <linux/kvm.h>
19#include <linux/kvm_irqfd.h>
20#include <linux/irqbypass.h>
21#include <linux/sched/stat.h>
22#include <trace/events/kvm.h>
23
24#define CREATE_TRACE_POINTS
25#include "trace_arm.h"
26
27#include <linux/uaccess.h>
28#include <asm/ptrace.h>
29#include <asm/mman.h>
30#include <asm/tlbflush.h>
31#include <asm/cacheflush.h>
32#include <asm/cpufeature.h>
33#include <asm/virt.h>
34#include <asm/kvm_arm.h>
35#include <asm/kvm_asm.h>
36#include <asm/kvm_mmu.h>
37#include <asm/kvm_emulate.h>
38#include <asm/kvm_coproc.h>
39#include <asm/sections.h>
40
41#include <kvm/arm_hypercalls.h>
42#include <kvm/arm_pmu.h>
43#include <kvm/arm_psci.h>
44
45#ifdef REQUIRES_VIRT
46__asm__(".arch_extension	virt");
47#endif
48
49DECLARE_KVM_HYP_PER_CPU(unsigned long, kvm_hyp_vector);
50
51static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52unsigned long kvm_arm_hyp_percpu_base[NR_CPUS];
53
54/* The VMID used in the VTTBR */
55static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
56static u32 kvm_next_vmid;
57static DEFINE_SPINLOCK(kvm_vmid_lock);
58
59static bool vgic_present;
60
61static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
62DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
63
64int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
65{
66	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
67}
68
69int kvm_arch_hardware_setup(void *opaque)
70{
71	return 0;
72}
73
74int kvm_arch_check_processor_compat(void *opaque)
75{
76	return 0;
77}
78
79int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
80			    struct kvm_enable_cap *cap)
81{
82	int r;
83
84	if (cap->flags)
85		return -EINVAL;
86
87	switch (cap->cap) {
88	case KVM_CAP_ARM_NISV_TO_USER:
89		r = 0;
90		kvm->arch.return_nisv_io_abort_to_user = true;
91		break;
92	default:
93		r = -EINVAL;
94		break;
95	}
96
97	return r;
98}
99
100static int kvm_arm_default_max_vcpus(void)
101{
102	return vgic_present ? kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
103}
104
105static void set_default_csv2(struct kvm *kvm)
106{
107	/*
108	 * The default is to expose CSV2 == 1 if the HW isn't affected.
109	 * Although this is a per-CPU feature, we make it global because
110	 * asymmetric systems are just a nuisance.
111	 *
112	 * Userspace can override this as long as it doesn't promise
113	 * the impossible.
114	 */
115	if (arm64_get_spectre_v2_state() == SPECTRE_UNAFFECTED)
116		kvm->arch.pfr0_csv2 = 1;
117}
118
119/**
120 * kvm_arch_init_vm - initializes a VM data structure
121 * @kvm:	pointer to the KVM struct
122 */
123int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
124{
125	int ret;
126
127	ret = kvm_arm_setup_stage2(kvm, type);
128	if (ret)
129		return ret;
130
131	ret = kvm_init_stage2_mmu(kvm, &kvm->arch.mmu);
132	if (ret)
133		return ret;
134
135	ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
136	if (ret)
137		goto out_free_stage2_pgd;
138
139	kvm_vgic_early_init(kvm);
140
141	/* The maximum number of VCPUs is limited by the host's GIC model */
142	kvm->arch.max_vcpus = kvm_arm_default_max_vcpus();
143
144	set_default_csv2(kvm);
145
146	return ret;
147out_free_stage2_pgd:
148	kvm_free_stage2_pgd(&kvm->arch.mmu);
149	return ret;
150}
151
152vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153{
154	return VM_FAULT_SIGBUS;
155}
156
157
158/**
159 * kvm_arch_destroy_vm - destroy the VM data structure
160 * @kvm:	pointer to the KVM struct
161 */
162void kvm_arch_destroy_vm(struct kvm *kvm)
163{
164	int i;
165
166	bitmap_free(kvm->arch.pmu_filter);
167
168	kvm_vgic_destroy(kvm);
169
170	for (i = 0; i < KVM_MAX_VCPUS; ++i) {
171		if (kvm->vcpus[i]) {
172			kvm_vcpu_destroy(kvm->vcpus[i]);
173			kvm->vcpus[i] = NULL;
174		}
175	}
176	atomic_set(&kvm->online_vcpus, 0);
177}
178
179int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
180{
181	int r;
182	switch (ext) {
183	case KVM_CAP_IRQCHIP:
184		r = vgic_present;
185		break;
186	case KVM_CAP_IOEVENTFD:
187	case KVM_CAP_DEVICE_CTRL:
188	case KVM_CAP_USER_MEMORY:
189	case KVM_CAP_SYNC_MMU:
190	case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
191	case KVM_CAP_ONE_REG:
192	case KVM_CAP_ARM_PSCI:
193	case KVM_CAP_ARM_PSCI_0_2:
194	case KVM_CAP_READONLY_MEM:
195	case KVM_CAP_MP_STATE:
196	case KVM_CAP_IMMEDIATE_EXIT:
197	case KVM_CAP_VCPU_EVENTS:
198	case KVM_CAP_ARM_IRQ_LINE_LAYOUT_2:
199	case KVM_CAP_ARM_NISV_TO_USER:
200	case KVM_CAP_ARM_INJECT_EXT_DABT:
201		r = 1;
202		break;
203	case KVM_CAP_ARM_SET_DEVICE_ADDR:
204		r = 1;
205		break;
206	case KVM_CAP_NR_VCPUS:
207		r = num_online_cpus();
208		break;
209	case KVM_CAP_MAX_VCPUS:
210	case KVM_CAP_MAX_VCPU_ID:
211		if (kvm)
212			r = kvm->arch.max_vcpus;
213		else
214			r = kvm_arm_default_max_vcpus();
215		break;
216	case KVM_CAP_MSI_DEVID:
217		if (!kvm)
218			r = -EINVAL;
219		else
220			r = kvm->arch.vgic.msis_require_devid;
221		break;
222	case KVM_CAP_ARM_USER_IRQ:
223		/*
224		 * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
225		 * (bump this number if adding more devices)
226		 */
227		r = 1;
228		break;
229	case KVM_CAP_STEAL_TIME:
230		r = kvm_arm_pvtime_supported();
231		break;
232	default:
233		r = kvm_arch_vm_ioctl_check_extension(kvm, ext);
234		break;
235	}
236	return r;
237}
238
239long kvm_arch_dev_ioctl(struct file *filp,
240			unsigned int ioctl, unsigned long arg)
241{
242	return -EINVAL;
243}
244
245struct kvm *kvm_arch_alloc_vm(void)
246{
247	if (!has_vhe())
248		return kzalloc(sizeof(struct kvm), GFP_KERNEL);
249
250	return vzalloc(sizeof(struct kvm));
251}
252
253void kvm_arch_free_vm(struct kvm *kvm)
254{
255	if (!has_vhe())
256		kfree(kvm);
257	else
258		vfree(kvm);
259}
260
261int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
262{
263	if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
264		return -EBUSY;
265
266	if (id >= kvm->arch.max_vcpus)
267		return -EINVAL;
268
269	return 0;
270}
271
272int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
273{
274	int err;
275
276	/* Force users to call KVM_ARM_VCPU_INIT */
277	vcpu->arch.target = -1;
278	bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
279
280	vcpu->arch.mmu_page_cache.gfp_zero = __GFP_ZERO;
281
282	/* Set up the timer */
283	kvm_timer_vcpu_init(vcpu);
284
285	kvm_pmu_vcpu_init(vcpu);
286
287	kvm_arm_reset_debug_ptr(vcpu);
288
289	kvm_arm_pvtime_vcpu_init(&vcpu->arch);
290
291	vcpu->arch.hw_mmu = &vcpu->kvm->arch.mmu;
292
293	err = kvm_vgic_vcpu_init(vcpu);
294	if (err)
295		return err;
296
297	return create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
298}
299
300void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
301{
302}
303
304void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
305{
306	if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
307		static_branch_dec(&userspace_irqchip_in_use);
308
309	kvm_mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
310	kvm_timer_vcpu_terminate(vcpu);
311	kvm_pmu_vcpu_destroy(vcpu);
312
313	kvm_arm_vcpu_destroy(vcpu);
314}
315
316int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
317{
318	return kvm_timer_is_pending(vcpu);
319}
320
321void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
322{
323	/*
324	 * If we're about to block (most likely because we've just hit a
325	 * WFI), we need to sync back the state of the GIC CPU interface
326	 * so that we have the latest PMR and group enables. This ensures
327	 * that kvm_arch_vcpu_runnable has up-to-date data to decide
328	 * whether we have pending interrupts.
329	 *
330	 * For the same reason, we want to tell GICv4 that we need
331	 * doorbells to be signalled, should an interrupt become pending.
332	 */
333	preempt_disable();
334	kvm_vgic_vmcr_sync(vcpu);
335	vgic_v4_put(vcpu, true);
336	preempt_enable();
337}
338
339void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
340{
341	preempt_disable();
342	vgic_v4_load(vcpu);
343	preempt_enable();
344}
345
346void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
347{
348	struct kvm_s2_mmu *mmu;
349	int *last_ran;
350
351	mmu = vcpu->arch.hw_mmu;
352	last_ran = this_cpu_ptr(mmu->last_vcpu_ran);
353
354	/*
355	 * We guarantee that both TLBs and I-cache are private to each
356	 * vcpu. If detecting that a vcpu from the same VM has
357	 * previously run on the same physical CPU, call into the
358	 * hypervisor code to nuke the relevant contexts.
359	 *
360	 * We might get preempted before the vCPU actually runs, but
361	 * over-invalidation doesn't affect correctness.
362	 */
363	if (*last_ran != vcpu->vcpu_id) {
364		kvm_call_hyp(__kvm_flush_cpu_context, mmu);
365		*last_ran = vcpu->vcpu_id;
366	}
367
368	vcpu->cpu = cpu;
369
370	kvm_vgic_load(vcpu);
371	kvm_timer_vcpu_load(vcpu);
372	if (has_vhe())
373		kvm_vcpu_load_sysregs_vhe(vcpu);
374	kvm_arch_vcpu_load_fp(vcpu);
375	kvm_vcpu_pmu_restore_guest(vcpu);
376	if (kvm_arm_is_pvtime_enabled(&vcpu->arch))
377		kvm_make_request(KVM_REQ_RECORD_STEAL, vcpu);
378
379	if (single_task_running())
380		vcpu_clear_wfx_traps(vcpu);
381	else
382		vcpu_set_wfx_traps(vcpu);
383
384	if (vcpu_has_ptrauth(vcpu))
385		vcpu_ptrauth_disable(vcpu);
386}
387
388void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
389{
390	kvm_arch_vcpu_put_fp(vcpu);
391	if (has_vhe())
392		kvm_vcpu_put_sysregs_vhe(vcpu);
393	kvm_timer_vcpu_put(vcpu);
394	kvm_vgic_put(vcpu);
395	kvm_vcpu_pmu_restore_host(vcpu);
396
397	vcpu->cpu = -1;
398}
399
400static void vcpu_power_off(struct kvm_vcpu *vcpu)
401{
402	vcpu->arch.power_off = true;
403	kvm_make_request(KVM_REQ_SLEEP, vcpu);
404	kvm_vcpu_kick(vcpu);
405}
406
407int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
408				    struct kvm_mp_state *mp_state)
409{
410	if (vcpu->arch.power_off)
411		mp_state->mp_state = KVM_MP_STATE_STOPPED;
412	else
413		mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
414
415	return 0;
416}
417
418int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
419				    struct kvm_mp_state *mp_state)
420{
421	int ret = 0;
422
423	switch (mp_state->mp_state) {
424	case KVM_MP_STATE_RUNNABLE:
425		vcpu->arch.power_off = false;
426		break;
427	case KVM_MP_STATE_STOPPED:
428		vcpu_power_off(vcpu);
429		break;
430	default:
431		ret = -EINVAL;
432	}
433
434	return ret;
435}
436
437/**
438 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
439 * @v:		The VCPU pointer
440 *
441 * If the guest CPU is not waiting for interrupts or an interrupt line is
442 * asserted, the CPU is by definition runnable.
443 */
444int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
445{
446	bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
447	return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
448		&& !v->arch.power_off && !v->arch.pause);
449}
450
451bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
452{
453	return vcpu_mode_priv(vcpu);
454}
455
456/* Just ensure a guest exit from a particular CPU */
457static void exit_vm_noop(void *info)
458{
459}
460
461void force_vm_exit(const cpumask_t *mask)
462{
463	preempt_disable();
464	smp_call_function_many(mask, exit_vm_noop, NULL, true);
465	preempt_enable();
466}
467
468/**
469 * need_new_vmid_gen - check that the VMID is still valid
470 * @vmid: The VMID to check
471 *
472 * return true if there is a new generation of VMIDs being used
473 *
474 * The hardware supports a limited set of values with the value zero reserved
475 * for the host, so we check if an assigned value belongs to a previous
476 * generation, which requires us to assign a new value. If we're the first to
477 * use a VMID for the new generation, we must flush necessary caches and TLBs
478 * on all CPUs.
479 */
480static bool need_new_vmid_gen(struct kvm_vmid *vmid)
481{
482	u64 current_vmid_gen = atomic64_read(&kvm_vmid_gen);
483	smp_rmb(); /* Orders read of kvm_vmid_gen and kvm->arch.vmid */
484	return unlikely(READ_ONCE(vmid->vmid_gen) != current_vmid_gen);
485}
486
487/**
488 * update_vmid - Update the vmid with a valid VMID for the current generation
489 * @vmid: The stage-2 VMID information struct
490 */
491static void update_vmid(struct kvm_vmid *vmid)
492{
493	if (!need_new_vmid_gen(vmid))
494		return;
495
496	spin_lock(&kvm_vmid_lock);
497
498	/*
499	 * We need to re-check the vmid_gen here to ensure that if another vcpu
500	 * already allocated a valid vmid for this vm, then this vcpu should
501	 * use the same vmid.
502	 */
503	if (!need_new_vmid_gen(vmid)) {
504		spin_unlock(&kvm_vmid_lock);
505		return;
506	}
507
508	/* First user of a new VMID generation? */
509	if (unlikely(kvm_next_vmid == 0)) {
510		atomic64_inc(&kvm_vmid_gen);
511		kvm_next_vmid = 1;
512
513		/*
514		 * On SMP we know no other CPUs can use this CPU's or each
515		 * other's VMID after force_vm_exit returns since the
516		 * kvm_vmid_lock blocks them from reentry to the guest.
517		 */
518		force_vm_exit(cpu_all_mask);
519		/*
520		 * Now broadcast TLB + ICACHE invalidation over the inner
521		 * shareable domain to make sure all data structures are
522		 * clean.
523		 */
524		kvm_call_hyp(__kvm_flush_vm_context);
525	}
526
527	vmid->vmid = kvm_next_vmid;
528	kvm_next_vmid++;
529	kvm_next_vmid &= (1 << kvm_get_vmid_bits()) - 1;
530
531	smp_wmb();
532	WRITE_ONCE(vmid->vmid_gen, atomic64_read(&kvm_vmid_gen));
533
534	spin_unlock(&kvm_vmid_lock);
535}
536
537static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
538{
539	struct kvm *kvm = vcpu->kvm;
540	int ret = 0;
541
542	if (likely(vcpu->arch.has_run_once))
543		return 0;
544
545	if (!kvm_arm_vcpu_is_finalized(vcpu))
546		return -EPERM;
547
548	vcpu->arch.has_run_once = true;
549
550	kvm_arm_vcpu_init_debug(vcpu);
551
552	if (likely(irqchip_in_kernel(kvm))) {
553		/*
554		 * Map the VGIC hardware resources before running a vcpu the
555		 * first time on this VM.
556		 */
557		if (unlikely(!vgic_ready(kvm))) {
558			ret = kvm_vgic_map_resources(kvm);
559			if (ret)
560				return ret;
561		}
562	} else {
563		/*
564		 * Tell the rest of the code that there are userspace irqchip
565		 * VMs in the wild.
566		 */
567		static_branch_inc(&userspace_irqchip_in_use);
568	}
569
570	ret = kvm_timer_enable(vcpu);
571	if (ret)
572		return ret;
573
574	ret = kvm_arm_pmu_v3_enable(vcpu);
575
576	return ret;
577}
578
579bool kvm_arch_intc_initialized(struct kvm *kvm)
580{
581	return vgic_initialized(kvm);
582}
583
584void kvm_arm_halt_guest(struct kvm *kvm)
585{
586	int i;
587	struct kvm_vcpu *vcpu;
588
589	kvm_for_each_vcpu(i, vcpu, kvm)
590		vcpu->arch.pause = true;
591	kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
592}
593
594void kvm_arm_resume_guest(struct kvm *kvm)
595{
596	int i;
597	struct kvm_vcpu *vcpu;
598
599	kvm_for_each_vcpu(i, vcpu, kvm) {
600		vcpu->arch.pause = false;
601		rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
602	}
603}
604
605static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
606{
607	struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
608
609	rcuwait_wait_event(wait,
610			   (!vcpu->arch.power_off) &&(!vcpu->arch.pause),
611			   TASK_INTERRUPTIBLE);
612
613	if (vcpu->arch.power_off || vcpu->arch.pause) {
614		/* Awaken to handle a signal, request we sleep again later. */
615		kvm_make_request(KVM_REQ_SLEEP, vcpu);
616	}
617
618	/*
619	 * Make sure we will observe a potential reset request if we've
620	 * observed a change to the power state. Pairs with the smp_wmb() in
621	 * kvm_psci_vcpu_on().
622	 */
623	smp_rmb();
624}
625
626static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
627{
628	return vcpu->arch.target >= 0;
629}
630
631static void check_vcpu_requests(struct kvm_vcpu *vcpu)
632{
633	if (kvm_request_pending(vcpu)) {
634		if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
635			vcpu_req_sleep(vcpu);
636
637		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
638			kvm_reset_vcpu(vcpu);
639
640		/*
641		 * Clear IRQ_PENDING requests that were made to guarantee
642		 * that a VCPU sees new virtual interrupts.
643		 */
644		kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
645
646		if (kvm_check_request(KVM_REQ_RECORD_STEAL, vcpu))
647			kvm_update_stolen_time(vcpu);
648
649		if (kvm_check_request(KVM_REQ_RELOAD_GICv4, vcpu)) {
650			/* The distributor enable bits were changed */
651			preempt_disable();
652			vgic_v4_put(vcpu, false);
653			vgic_v4_load(vcpu);
654			preempt_enable();
655		}
656	}
657}
658
659/**
660 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
661 * @vcpu:	The VCPU pointer
662 *
663 * This function is called through the VCPU_RUN ioctl called from user space. It
664 * will execute VM code in a loop until the time slice for the process is used
665 * or some emulation is needed from user space in which case the function will
666 * return with return value 0 and with the kvm_run structure filled in with the
667 * required data for the requested emulation.
668 */
669int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
670{
671	struct kvm_run *run = vcpu->run;
672	int ret;
673
674	if (unlikely(!kvm_vcpu_initialized(vcpu)))
675		return -ENOEXEC;
676
677	ret = kvm_vcpu_first_run_init(vcpu);
678	if (ret)
679		return ret;
680
681	if (run->exit_reason == KVM_EXIT_MMIO) {
682		ret = kvm_handle_mmio_return(vcpu);
683		if (ret)
684			return ret;
685	}
686
687	if (run->immediate_exit)
688		return -EINTR;
689
690	vcpu_load(vcpu);
691
692	kvm_sigset_activate(vcpu);
693
694	ret = 1;
695	run->exit_reason = KVM_EXIT_UNKNOWN;
696	while (ret > 0) {
697		/*
698		 * Check conditions before entering the guest
699		 */
700		cond_resched();
701
702		update_vmid(&vcpu->arch.hw_mmu->vmid);
703
704		check_vcpu_requests(vcpu);
705
706		/*
707		 * Preparing the interrupts to be injected also
708		 * involves poking the GIC, which must be done in a
709		 * non-preemptible context.
710		 */
711		preempt_disable();
712
713		kvm_pmu_flush_hwstate(vcpu);
714
715		local_irq_disable();
716
717		kvm_vgic_flush_hwstate(vcpu);
718
719		/*
720		 * Exit if we have a signal pending so that we can deliver the
721		 * signal to user space.
722		 */
723		if (signal_pending(current)) {
724			ret = -EINTR;
725			run->exit_reason = KVM_EXIT_INTR;
726		}
727
728		/*
729		 * If we're using a userspace irqchip, then check if we need
730		 * to tell a userspace irqchip about timer or PMU level
731		 * changes and if so, exit to userspace (the actual level
732		 * state gets updated in kvm_timer_update_run and
733		 * kvm_pmu_update_run below).
734		 */
735		if (static_branch_unlikely(&userspace_irqchip_in_use)) {
736			if (kvm_timer_should_notify_user(vcpu) ||
737			    kvm_pmu_should_notify_user(vcpu)) {
738				ret = -EINTR;
739				run->exit_reason = KVM_EXIT_INTR;
740			}
741		}
742
743		/*
744		 * Ensure we set mode to IN_GUEST_MODE after we disable
745		 * interrupts and before the final VCPU requests check.
746		 * See the comment in kvm_vcpu_exiting_guest_mode() and
747		 * Documentation/virt/kvm/vcpu-requests.rst
748		 */
749		smp_store_mb(vcpu->mode, IN_GUEST_MODE);
750
751		if (ret <= 0 || need_new_vmid_gen(&vcpu->arch.hw_mmu->vmid) ||
752		    kvm_request_pending(vcpu)) {
753			vcpu->mode = OUTSIDE_GUEST_MODE;
754			isb(); /* Ensure work in x_flush_hwstate is committed */
755			kvm_pmu_sync_hwstate(vcpu);
756			if (static_branch_unlikely(&userspace_irqchip_in_use))
757				kvm_timer_sync_user(vcpu);
758			kvm_vgic_sync_hwstate(vcpu);
759			local_irq_enable();
760			preempt_enable();
761			continue;
762		}
763
764		kvm_arm_setup_debug(vcpu);
765
766		/**************************************************************
767		 * Enter the guest
768		 */
769		trace_kvm_entry(*vcpu_pc(vcpu));
770		guest_enter_irqoff();
771
772		ret = kvm_call_hyp_ret(__kvm_vcpu_run, vcpu);
773
774		vcpu->mode = OUTSIDE_GUEST_MODE;
775		vcpu->stat.exits++;
776		/*
777		 * Back from guest
778		 *************************************************************/
779
780		kvm_arm_clear_debug(vcpu);
781
782		/*
783		 * We must sync the PMU state before the vgic state so
784		 * that the vgic can properly sample the updated state of the
785		 * interrupt line.
786		 */
787		kvm_pmu_sync_hwstate(vcpu);
788
789		/*
790		 * Sync the vgic state before syncing the timer state because
791		 * the timer code needs to know if the virtual timer
792		 * interrupts are active.
793		 */
794		kvm_vgic_sync_hwstate(vcpu);
795
796		/*
797		 * Sync the timer hardware state before enabling interrupts as
798		 * we don't want vtimer interrupts to race with syncing the
799		 * timer virtual interrupt state.
800		 */
801		if (static_branch_unlikely(&userspace_irqchip_in_use))
802			kvm_timer_sync_user(vcpu);
803
804		kvm_arch_vcpu_ctxsync_fp(vcpu);
805
806		/*
807		 * We may have taken a host interrupt in HYP mode (ie
808		 * while executing the guest). This interrupt is still
809		 * pending, as we haven't serviced it yet!
810		 *
811		 * We're now back in SVC mode, with interrupts
812		 * disabled.  Enabling the interrupts now will have
813		 * the effect of taking the interrupt again, in SVC
814		 * mode this time.
815		 */
816		local_irq_enable();
817
818		/*
819		 * We do local_irq_enable() before calling guest_exit() so
820		 * that if a timer interrupt hits while running the guest we
821		 * account that tick as being spent in the guest.  We enable
822		 * preemption after calling guest_exit() so that if we get
823		 * preempted we make sure ticks after that is not counted as
824		 * guest time.
825		 */
826		guest_exit();
827		trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
828
829		/* Exit types that need handling before we can be preempted */
830		handle_exit_early(vcpu, ret);
831
832		preempt_enable();
833
834		/*
835		 * The ARMv8 architecture doesn't give the hypervisor
836		 * a mechanism to prevent a guest from dropping to AArch32 EL0
837		 * if implemented by the CPU. If we spot the guest in such
838		 * state and that we decided it wasn't supposed to do so (like
839		 * with the asymmetric AArch32 case), return to userspace with
840		 * a fatal error.
841		 */
842		if (!system_supports_32bit_el0() && vcpu_mode_is_32bit(vcpu)) {
843			/*
844			 * As we have caught the guest red-handed, decide that
845			 * it isn't fit for purpose anymore by making the vcpu
846			 * invalid. The VMM can try and fix it by issuing  a
847			 * KVM_ARM_VCPU_INIT if it really wants to.
848			 */
849			vcpu->arch.target = -1;
850			ret = ARM_EXCEPTION_IL;
851		}
852
853		ret = handle_exit(vcpu, ret);
854	}
855
856	/* Tell userspace about in-kernel device output levels */
857	if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
858		kvm_timer_update_run(vcpu);
859		kvm_pmu_update_run(vcpu);
860	}
861
862	kvm_sigset_deactivate(vcpu);
863
864	vcpu_put(vcpu);
865	return ret;
866}
867
868static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
869{
870	int bit_index;
871	bool set;
872	unsigned long *hcr;
873
874	if (number == KVM_ARM_IRQ_CPU_IRQ)
875		bit_index = __ffs(HCR_VI);
876	else /* KVM_ARM_IRQ_CPU_FIQ */
877		bit_index = __ffs(HCR_VF);
878
879	hcr = vcpu_hcr(vcpu);
880	if (level)
881		set = test_and_set_bit(bit_index, hcr);
882	else
883		set = test_and_clear_bit(bit_index, hcr);
884
885	/*
886	 * If we didn't change anything, no need to wake up or kick other CPUs
887	 */
888	if (set == level)
889		return 0;
890
891	/*
892	 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
893	 * trigger a world-switch round on the running physical CPU to set the
894	 * virtual IRQ/FIQ fields in the HCR appropriately.
895	 */
896	kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
897	kvm_vcpu_kick(vcpu);
898
899	return 0;
900}
901
902int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
903			  bool line_status)
904{
905	u32 irq = irq_level->irq;
906	unsigned int irq_type, vcpu_idx, irq_num;
907	int nrcpus = atomic_read(&kvm->online_vcpus);
908	struct kvm_vcpu *vcpu = NULL;
909	bool level = irq_level->level;
910
911	irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
912	vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
913	vcpu_idx += ((irq >> KVM_ARM_IRQ_VCPU2_SHIFT) & KVM_ARM_IRQ_VCPU2_MASK) * (KVM_ARM_IRQ_VCPU_MASK + 1);
914	irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
915
916	trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
917
918	switch (irq_type) {
919	case KVM_ARM_IRQ_TYPE_CPU:
920		if (irqchip_in_kernel(kvm))
921			return -ENXIO;
922
923		if (vcpu_idx >= nrcpus)
924			return -EINVAL;
925
926		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
927		if (!vcpu)
928			return -EINVAL;
929
930		if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
931			return -EINVAL;
932
933		return vcpu_interrupt_line(vcpu, irq_num, level);
934	case KVM_ARM_IRQ_TYPE_PPI:
935		if (!irqchip_in_kernel(kvm))
936			return -ENXIO;
937
938		if (vcpu_idx >= nrcpus)
939			return -EINVAL;
940
941		vcpu = kvm_get_vcpu(kvm, vcpu_idx);
942		if (!vcpu)
943			return -EINVAL;
944
945		if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
946			return -EINVAL;
947
948		return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
949	case KVM_ARM_IRQ_TYPE_SPI:
950		if (!irqchip_in_kernel(kvm))
951			return -ENXIO;
952
953		if (irq_num < VGIC_NR_PRIVATE_IRQS)
954			return -EINVAL;
955
956		return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
957	}
958
959	return -EINVAL;
960}
961
962static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
963			       const struct kvm_vcpu_init *init)
964{
965	unsigned int i, ret;
966	int phys_target = kvm_target_cpu();
967
968	if (init->target != phys_target)
969		return -EINVAL;
970
971	/*
972	 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
973	 * use the same target.
974	 */
975	if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
976		return -EINVAL;
977
978	/* -ENOENT for unknown features, -EINVAL for invalid combinations. */
979	for (i = 0; i < sizeof(init->features) * 8; i++) {
980		bool set = (init->features[i / 32] & (1 << (i % 32)));
981
982		if (set && i >= KVM_VCPU_MAX_FEATURES)
983			return -ENOENT;
984
985		/*
986		 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
987		 * use the same feature set.
988		 */
989		if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
990		    test_bit(i, vcpu->arch.features) != set)
991			return -EINVAL;
992
993		if (set)
994			set_bit(i, vcpu->arch.features);
995	}
996
997	vcpu->arch.target = phys_target;
998
999	/* Now we know what it is, we can reset it. */
1000	ret = kvm_reset_vcpu(vcpu);
1001	if (ret) {
1002		vcpu->arch.target = -1;
1003		bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
1004	}
1005
1006	return ret;
1007}
1008
1009static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
1010					 struct kvm_vcpu_init *init)
1011{
1012	int ret;
1013
1014	ret = kvm_vcpu_set_target(vcpu, init);
1015	if (ret)
1016		return ret;
1017
1018	/*
1019	 * Ensure a rebooted VM will fault in RAM pages and detect if the
1020	 * guest MMU is turned off and flush the caches as needed.
1021	 *
1022	 * S2FWB enforces all memory accesses to RAM being cacheable,
1023	 * ensuring that the data side is always coherent. We still
1024	 * need to invalidate the I-cache though, as FWB does *not*
1025	 * imply CTR_EL0.DIC.
1026	 */
1027	if (vcpu->arch.has_run_once) {
1028		if (!cpus_have_final_cap(ARM64_HAS_STAGE2_FWB))
1029			stage2_unmap_vm(vcpu->kvm);
1030		else
1031			__flush_icache_all();
1032	}
1033
1034	vcpu_reset_hcr(vcpu);
1035
1036	/*
1037	 * Handle the "start in power-off" case.
1038	 */
1039	if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1040		vcpu_power_off(vcpu);
1041	else
1042		vcpu->arch.power_off = false;
1043
1044	return 0;
1045}
1046
1047static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1048				 struct kvm_device_attr *attr)
1049{
1050	int ret = -ENXIO;
1051
1052	switch (attr->group) {
1053	default:
1054		ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1055		break;
1056	}
1057
1058	return ret;
1059}
1060
1061static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1062				 struct kvm_device_attr *attr)
1063{
1064	int ret = -ENXIO;
1065
1066	switch (attr->group) {
1067	default:
1068		ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1069		break;
1070	}
1071
1072	return ret;
1073}
1074
1075static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1076				 struct kvm_device_attr *attr)
1077{
1078	int ret = -ENXIO;
1079
1080	switch (attr->group) {
1081	default:
1082		ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1083		break;
1084	}
1085
1086	return ret;
1087}
1088
1089static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1090				   struct kvm_vcpu_events *events)
1091{
1092	memset(events, 0, sizeof(*events));
1093
1094	return __kvm_arm_vcpu_get_events(vcpu, events);
1095}
1096
1097static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1098				   struct kvm_vcpu_events *events)
1099{
1100	int i;
1101
1102	/* check whether the reserved field is zero */
1103	for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1104		if (events->reserved[i])
1105			return -EINVAL;
1106
1107	/* check whether the pad field is zero */
1108	for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1109		if (events->exception.pad[i])
1110			return -EINVAL;
1111
1112	return __kvm_arm_vcpu_set_events(vcpu, events);
1113}
1114
1115long kvm_arch_vcpu_ioctl(struct file *filp,
1116			 unsigned int ioctl, unsigned long arg)
1117{
1118	struct kvm_vcpu *vcpu = filp->private_data;
1119	void __user *argp = (void __user *)arg;
1120	struct kvm_device_attr attr;
1121	long r;
1122
1123	switch (ioctl) {
1124	case KVM_ARM_VCPU_INIT: {
1125		struct kvm_vcpu_init init;
1126
1127		r = -EFAULT;
1128		if (copy_from_user(&init, argp, sizeof(init)))
1129			break;
1130
1131		r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1132		break;
1133	}
1134	case KVM_SET_ONE_REG:
1135	case KVM_GET_ONE_REG: {
1136		struct kvm_one_reg reg;
1137
1138		r = -ENOEXEC;
1139		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1140			break;
1141
1142		r = -EFAULT;
1143		if (copy_from_user(&reg, argp, sizeof(reg)))
1144			break;
1145
1146		/*
1147		 * We could owe a reset due to PSCI. Handle the pending reset
1148		 * here to ensure userspace register accesses are ordered after
1149		 * the reset.
1150		 */
1151		if (kvm_check_request(KVM_REQ_VCPU_RESET, vcpu))
1152			kvm_reset_vcpu(vcpu);
1153
1154		if (ioctl == KVM_SET_ONE_REG)
1155			r = kvm_arm_set_reg(vcpu, &reg);
1156		else
1157			r = kvm_arm_get_reg(vcpu, &reg);
1158		break;
1159	}
1160	case KVM_GET_REG_LIST: {
1161		struct kvm_reg_list __user *user_list = argp;
1162		struct kvm_reg_list reg_list;
1163		unsigned n;
1164
1165		r = -ENOEXEC;
1166		if (unlikely(!kvm_vcpu_initialized(vcpu)))
1167			break;
1168
1169		r = -EPERM;
1170		if (!kvm_arm_vcpu_is_finalized(vcpu))
1171			break;
1172
1173		r = -EFAULT;
1174		if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1175			break;
1176		n = reg_list.n;
1177		reg_list.n = kvm_arm_num_regs(vcpu);
1178		if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1179			break;
1180		r = -E2BIG;
1181		if (n < reg_list.n)
1182			break;
1183		r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1184		break;
1185	}
1186	case KVM_SET_DEVICE_ATTR: {
1187		r = -EFAULT;
1188		if (copy_from_user(&attr, argp, sizeof(attr)))
1189			break;
1190		r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1191		break;
1192	}
1193	case KVM_GET_DEVICE_ATTR: {
1194		r = -EFAULT;
1195		if (copy_from_user(&attr, argp, sizeof(attr)))
1196			break;
1197		r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1198		break;
1199	}
1200	case KVM_HAS_DEVICE_ATTR: {
1201		r = -EFAULT;
1202		if (copy_from_user(&attr, argp, sizeof(attr)))
1203			break;
1204		r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1205		break;
1206	}
1207	case KVM_GET_VCPU_EVENTS: {
1208		struct kvm_vcpu_events events;
1209
1210		if (kvm_arm_vcpu_get_events(vcpu, &events))
1211			return -EINVAL;
1212
1213		if (copy_to_user(argp, &events, sizeof(events)))
1214			return -EFAULT;
1215
1216		return 0;
1217	}
1218	case KVM_SET_VCPU_EVENTS: {
1219		struct kvm_vcpu_events events;
1220
1221		if (copy_from_user(&events, argp, sizeof(events)))
1222			return -EFAULT;
1223
1224		return kvm_arm_vcpu_set_events(vcpu, &events);
1225	}
1226	case KVM_ARM_VCPU_FINALIZE: {
1227		int what;
1228
1229		if (!kvm_vcpu_initialized(vcpu))
1230			return -ENOEXEC;
1231
1232		if (get_user(what, (const int __user *)argp))
1233			return -EFAULT;
1234
1235		return kvm_arm_vcpu_finalize(vcpu, what);
1236	}
1237	default:
1238		r = -EINVAL;
1239	}
1240
1241	return r;
1242}
1243
1244void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
1245{
1246
1247}
1248
1249void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1250					struct kvm_memory_slot *memslot)
1251{
1252	kvm_flush_remote_tlbs(kvm);
1253}
1254
1255static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1256					struct kvm_arm_device_addr *dev_addr)
1257{
1258	unsigned long dev_id, type;
1259
1260	dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1261		KVM_ARM_DEVICE_ID_SHIFT;
1262	type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1263		KVM_ARM_DEVICE_TYPE_SHIFT;
1264
1265	switch (dev_id) {
1266	case KVM_ARM_DEVICE_VGIC_V2:
1267		if (!vgic_present)
1268			return -ENXIO;
1269		return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1270	default:
1271		return -ENODEV;
1272	}
1273}
1274
1275long kvm_arch_vm_ioctl(struct file *filp,
1276		       unsigned int ioctl, unsigned long arg)
1277{
1278	struct kvm *kvm = filp->private_data;
1279	void __user *argp = (void __user *)arg;
1280
1281	switch (ioctl) {
1282	case KVM_CREATE_IRQCHIP: {
1283		int ret;
1284		if (!vgic_present)
1285			return -ENXIO;
1286		mutex_lock(&kvm->lock);
1287		ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1288		mutex_unlock(&kvm->lock);
1289		return ret;
1290	}
1291	case KVM_ARM_SET_DEVICE_ADDR: {
1292		struct kvm_arm_device_addr dev_addr;
1293
1294		if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1295			return -EFAULT;
1296		return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1297	}
1298	case KVM_ARM_PREFERRED_TARGET: {
1299		int err;
1300		struct kvm_vcpu_init init;
1301
1302		err = kvm_vcpu_preferred_target(&init);
1303		if (err)
1304			return err;
1305
1306		if (copy_to_user(argp, &init, sizeof(init)))
1307			return -EFAULT;
1308
1309		return 0;
1310	}
1311	default:
1312		return -EINVAL;
1313	}
1314}
1315
1316static unsigned long nvhe_percpu_size(void)
1317{
1318	return (unsigned long)CHOOSE_NVHE_SYM(__per_cpu_end) -
1319		(unsigned long)CHOOSE_NVHE_SYM(__per_cpu_start);
1320}
1321
1322static unsigned long nvhe_percpu_order(void)
1323{
1324	unsigned long size = nvhe_percpu_size();
1325
1326	return size ? get_order(size) : 0;
1327}
1328
1329static int kvm_map_vectors(void)
1330{
1331	/*
1332	 * SV2  = ARM64_SPECTRE_V2
1333	 * HEL2 = ARM64_HARDEN_EL2_VECTORS
1334	 *
1335	 * !SV2 + !HEL2 -> use direct vectors
1336	 *  SV2 + !HEL2 -> use hardened vectors in place
1337	 * !SV2 +  HEL2 -> allocate one vector slot and use exec mapping
1338	 *  SV2 +  HEL2 -> use hardened vectors and use exec mapping
1339	 */
1340	if (cpus_have_const_cap(ARM64_SPECTRE_V2) ||
1341	    cpus_have_const_cap(ARM64_SPECTRE_BHB)) {
1342		__kvm_bp_vect_base = kvm_ksym_ref(__bp_harden_hyp_vecs);
1343		__kvm_bp_vect_base = kern_hyp_va(__kvm_bp_vect_base);
1344	}
1345
1346	if (cpus_have_const_cap(ARM64_HARDEN_EL2_VECTORS)) {
1347		phys_addr_t vect_pa = __pa_symbol(__bp_harden_hyp_vecs);
1348		unsigned long size = __BP_HARDEN_HYP_VECS_SZ;
1349
1350		/*
1351		 * Always allocate a spare vector slot, as we don't
1352		 * know yet which CPUs have a BP hardening slot that
1353		 * we can reuse.
1354		 */
1355		__kvm_harden_el2_vector_slot = atomic_inc_return(&arm64_el2_vector_last_slot);
1356		BUG_ON(__kvm_harden_el2_vector_slot >= BP_HARDEN_EL2_SLOTS);
1357		return create_hyp_exec_mappings(vect_pa, size,
1358						&__kvm_bp_vect_base);
1359	}
1360
1361	return 0;
1362}
1363
1364static void cpu_init_hyp_mode(void)
1365{
1366	phys_addr_t pgd_ptr;
1367	unsigned long hyp_stack_ptr;
1368	unsigned long vector_ptr;
1369	unsigned long tpidr_el2;
1370	struct arm_smccc_res res;
1371
1372	/* Switch from the HYP stub to our own HYP init vector */
1373	__hyp_set_vectors(kvm_get_idmap_vector());
1374
1375	/*
1376	 * Calculate the raw per-cpu offset without a translation from the
1377	 * kernel's mapping to the linear mapping, and store it in tpidr_el2
1378	 * so that we can use adr_l to access per-cpu variables in EL2.
1379	 */
1380	tpidr_el2 = (unsigned long)this_cpu_ptr_nvhe_sym(__per_cpu_start) -
1381		    (unsigned long)kvm_ksym_ref(CHOOSE_NVHE_SYM(__per_cpu_start));
1382
1383	pgd_ptr = kvm_mmu_get_httbr();
1384	hyp_stack_ptr = __this_cpu_read(kvm_arm_hyp_stack_page) + PAGE_SIZE;
1385	hyp_stack_ptr = kern_hyp_va(hyp_stack_ptr);
1386	vector_ptr = (unsigned long)kern_hyp_va(kvm_ksym_ref(__kvm_hyp_host_vector));
1387
1388	/*
1389	 * Call initialization code, and switch to the full blown HYP code.
1390	 * If the cpucaps haven't been finalized yet, something has gone very
1391	 * wrong, and hyp will crash and burn when it uses any
1392	 * cpus_have_const_cap() wrapper.
1393	 */
1394	BUG_ON(!system_capabilities_finalized());
1395	arm_smccc_1_1_hvc(KVM_HOST_SMCCC_FUNC(__kvm_hyp_init),
1396			  pgd_ptr, tpidr_el2, hyp_stack_ptr, vector_ptr, &res);
1397	WARN_ON(res.a0 != SMCCC_RET_SUCCESS);
1398
1399	/*
1400	 * Disabling SSBD on a non-VHE system requires us to enable SSBS
1401	 * at EL2.
1402	 */
1403	if (this_cpu_has_cap(ARM64_SSBS) &&
1404	    arm64_get_spectre_v4_state() == SPECTRE_VULNERABLE) {
1405		kvm_call_hyp_nvhe(__kvm_enable_ssbs);
1406	}
1407}
1408
1409static void cpu_hyp_reset(void)
1410{
1411	if (!is_kernel_in_hyp_mode())
1412		__hyp_reset_vectors();
1413}
1414
1415static void cpu_hyp_reinit(void)
1416{
1417	kvm_init_host_cpu_context(&this_cpu_ptr_hyp_sym(kvm_host_data)->host_ctxt);
1418
1419	cpu_hyp_reset();
1420
1421	*this_cpu_ptr_hyp_sym(kvm_hyp_vector) = (unsigned long)kvm_get_hyp_vector();
1422
1423	if (is_kernel_in_hyp_mode())
1424		kvm_timer_init_vhe();
1425	else
1426		cpu_init_hyp_mode();
1427
1428	kvm_arm_init_debug();
1429
1430	if (vgic_present)
1431		kvm_vgic_init_cpu_hardware();
1432}
1433
1434static void _kvm_arch_hardware_enable(void *discard)
1435{
1436	if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1437		cpu_hyp_reinit();
1438		__this_cpu_write(kvm_arm_hardware_enabled, 1);
1439	}
1440}
1441
1442int kvm_arch_hardware_enable(void)
1443{
1444	_kvm_arch_hardware_enable(NULL);
1445	return 0;
1446}
1447
1448static void _kvm_arch_hardware_disable(void *discard)
1449{
1450	if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1451		cpu_hyp_reset();
1452		__this_cpu_write(kvm_arm_hardware_enabled, 0);
1453	}
1454}
1455
1456void kvm_arch_hardware_disable(void)
1457{
1458	_kvm_arch_hardware_disable(NULL);
1459}
1460
1461#ifdef CONFIG_CPU_PM
1462static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1463				    unsigned long cmd,
1464				    void *v)
1465{
1466	/*
1467	 * kvm_arm_hardware_enabled is left with its old value over
1468	 * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1469	 * re-enable hyp.
1470	 */
1471	switch (cmd) {
1472	case CPU_PM_ENTER:
1473		if (__this_cpu_read(kvm_arm_hardware_enabled))
1474			/*
1475			 * don't update kvm_arm_hardware_enabled here
1476			 * so that the hardware will be re-enabled
1477			 * when we resume. See below.
1478			 */
1479			cpu_hyp_reset();
1480
1481		return NOTIFY_OK;
1482	case CPU_PM_ENTER_FAILED:
1483	case CPU_PM_EXIT:
1484		if (__this_cpu_read(kvm_arm_hardware_enabled))
1485			/* The hardware was enabled before suspend. */
1486			cpu_hyp_reinit();
1487
1488		return NOTIFY_OK;
1489
1490	default:
1491		return NOTIFY_DONE;
1492	}
1493}
1494
1495static struct notifier_block hyp_init_cpu_pm_nb = {
1496	.notifier_call = hyp_init_cpu_pm_notifier,
1497};
1498
1499static void __init hyp_cpu_pm_init(void)
1500{
1501	cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1502}
1503static void __init hyp_cpu_pm_exit(void)
1504{
1505	cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1506}
1507#else
1508static inline void hyp_cpu_pm_init(void)
1509{
1510}
1511static inline void hyp_cpu_pm_exit(void)
1512{
1513}
1514#endif
1515
1516static int init_common_resources(void)
1517{
1518	return kvm_set_ipa_limit();
1519}
1520
1521static int init_subsystems(void)
1522{
1523	int err = 0;
1524
1525	/*
1526	 * Enable hardware so that subsystem initialisation can access EL2.
1527	 */
1528	on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1529
1530	/*
1531	 * Register CPU lower-power notifier
1532	 */
1533	hyp_cpu_pm_init();
1534
1535	/*
1536	 * Init HYP view of VGIC
1537	 */
1538	err = kvm_vgic_hyp_init();
1539	switch (err) {
1540	case 0:
1541		vgic_present = true;
1542		break;
1543	case -ENODEV:
1544	case -ENXIO:
1545		vgic_present = false;
1546		err = 0;
1547		break;
1548	default:
1549		goto out;
1550	}
1551
1552	/*
1553	 * Init HYP architected timer support
1554	 */
1555	err = kvm_timer_hyp_init(vgic_present);
1556	if (err)
1557		goto out;
1558
1559	kvm_perf_init();
1560	kvm_coproc_table_init();
1561
1562out:
1563	on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1564
1565	return err;
1566}
1567
1568static void teardown_hyp_mode(void)
1569{
1570	int cpu;
1571
1572	free_hyp_pgds();
1573	for_each_possible_cpu(cpu) {
1574		free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1575		free_pages(kvm_arm_hyp_percpu_base[cpu], nvhe_percpu_order());
1576	}
1577}
1578
1579/**
1580 * Inits Hyp-mode on all online CPUs
1581 */
1582static int init_hyp_mode(void)
1583{
1584	int cpu;
1585	int err = 0;
1586
1587	/*
1588	 * Allocate Hyp PGD and setup Hyp identity mapping
1589	 */
1590	err = kvm_mmu_init();
1591	if (err)
1592		goto out_err;
1593
1594	/*
1595	 * Allocate stack pages for Hypervisor-mode
1596	 */
1597	for_each_possible_cpu(cpu) {
1598		unsigned long stack_page;
1599
1600		stack_page = __get_free_page(GFP_KERNEL);
1601		if (!stack_page) {
1602			err = -ENOMEM;
1603			goto out_err;
1604		}
1605
1606		per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1607	}
1608
1609	/*
1610	 * Allocate and initialize pages for Hypervisor-mode percpu regions.
1611	 */
1612	for_each_possible_cpu(cpu) {
1613		struct page *page;
1614		void *page_addr;
1615
1616		page = alloc_pages(GFP_KERNEL, nvhe_percpu_order());
1617		if (!page) {
1618			err = -ENOMEM;
1619			goto out_err;
1620		}
1621
1622		page_addr = page_address(page);
1623		memcpy(page_addr, CHOOSE_NVHE_SYM(__per_cpu_start), nvhe_percpu_size());
1624		kvm_arm_hyp_percpu_base[cpu] = (unsigned long)page_addr;
1625	}
1626
1627	/*
1628	 * Map the Hyp-code called directly from the host
1629	 */
1630	err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1631				  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1632	if (err) {
1633		kvm_err("Cannot map world-switch code\n");
1634		goto out_err;
1635	}
1636
1637	err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1638				  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1639	if (err) {
1640		kvm_err("Cannot map rodata section\n");
1641		goto out_err;
1642	}
1643
1644	err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1645				  kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1646	if (err) {
1647		kvm_err("Cannot map bss section\n");
1648		goto out_err;
1649	}
1650
1651	err = kvm_map_vectors();
1652	if (err) {
1653		kvm_err("Cannot map vectors\n");
1654		goto out_err;
1655	}
1656
1657	/*
1658	 * Map the Hyp stack pages
1659	 */
1660	for_each_possible_cpu(cpu) {
1661		char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1662		err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1663					  PAGE_HYP);
1664
1665		if (err) {
1666			kvm_err("Cannot map hyp stack\n");
1667			goto out_err;
1668		}
1669	}
1670
1671	/*
1672	 * Map Hyp percpu pages
1673	 */
1674	for_each_possible_cpu(cpu) {
1675		char *percpu_begin = (char *)kvm_arm_hyp_percpu_base[cpu];
1676		char *percpu_end = percpu_begin + nvhe_percpu_size();
1677
1678		err = create_hyp_mappings(percpu_begin, percpu_end, PAGE_HYP);
1679
1680		if (err) {
1681			kvm_err("Cannot map hyp percpu region\n");
1682			goto out_err;
1683		}
1684	}
1685
1686	return 0;
1687
1688out_err:
1689	teardown_hyp_mode();
1690	kvm_err("error initializing Hyp mode: %d\n", err);
1691	return err;
1692}
1693
1694static void check_kvm_target_cpu(void *ret)
1695{
1696	*(int *)ret = kvm_target_cpu();
1697}
1698
1699struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1700{
1701	struct kvm_vcpu *vcpu;
1702	int i;
1703
1704	mpidr &= MPIDR_HWID_BITMASK;
1705	kvm_for_each_vcpu(i, vcpu, kvm) {
1706		if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1707			return vcpu;
1708	}
1709	return NULL;
1710}
1711
1712bool kvm_arch_has_irq_bypass(void)
1713{
1714	return true;
1715}
1716
1717int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1718				      struct irq_bypass_producer *prod)
1719{
1720	struct kvm_kernel_irqfd *irqfd =
1721		container_of(cons, struct kvm_kernel_irqfd, consumer);
1722
1723	return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1724					  &irqfd->irq_entry);
1725}
1726void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1727				      struct irq_bypass_producer *prod)
1728{
1729	struct kvm_kernel_irqfd *irqfd =
1730		container_of(cons, struct kvm_kernel_irqfd, consumer);
1731
1732	kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1733				     &irqfd->irq_entry);
1734}
1735
1736void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1737{
1738	struct kvm_kernel_irqfd *irqfd =
1739		container_of(cons, struct kvm_kernel_irqfd, consumer);
1740
1741	kvm_arm_halt_guest(irqfd->kvm);
1742}
1743
1744void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1745{
1746	struct kvm_kernel_irqfd *irqfd =
1747		container_of(cons, struct kvm_kernel_irqfd, consumer);
1748
1749	kvm_arm_resume_guest(irqfd->kvm);
1750}
1751
1752/**
1753 * Initialize Hyp-mode and memory mappings on all CPUs.
1754 */
1755int kvm_arch_init(void *opaque)
1756{
1757	int err;
1758	int ret, cpu;
1759	bool in_hyp_mode;
1760
1761	if (!is_hyp_mode_available()) {
1762		kvm_info("HYP mode not available\n");
1763		return -ENODEV;
1764	}
1765
1766	in_hyp_mode = is_kernel_in_hyp_mode();
1767
1768	if (!in_hyp_mode && kvm_arch_requires_vhe()) {
1769		kvm_pr_unimpl("CPU unsupported in non-VHE mode, not initializing\n");
1770		return -ENODEV;
1771	}
1772
1773	if (cpus_have_final_cap(ARM64_WORKAROUND_DEVICE_LOAD_ACQUIRE) ||
1774	    cpus_have_final_cap(ARM64_WORKAROUND_1508412))
1775		kvm_info("Guests without required CPU erratum workarounds can deadlock system!\n" \
1776			 "Only trusted guests should be used on this system.\n");
1777
1778	for_each_online_cpu(cpu) {
1779		smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1780		if (ret < 0) {
1781			kvm_err("Error, CPU %d not supported!\n", cpu);
1782			return -ENODEV;
1783		}
1784	}
1785
1786	err = init_common_resources();
1787	if (err)
1788		return err;
1789
1790	err = kvm_arm_init_sve();
1791	if (err)
1792		return err;
1793
1794	if (!in_hyp_mode) {
1795		err = init_hyp_mode();
1796		if (err)
1797			goto out_err;
1798	}
1799
1800	err = init_subsystems();
1801	if (err)
1802		goto out_hyp;
1803
1804	if (in_hyp_mode)
1805		kvm_info("VHE mode initialized successfully\n");
1806	else
1807		kvm_info("Hyp mode initialized successfully\n");
1808
1809	return 0;
1810
1811out_hyp:
1812	hyp_cpu_pm_exit();
1813	if (!in_hyp_mode)
1814		teardown_hyp_mode();
1815out_err:
1816	return err;
1817}
1818
1819/* NOP: Compiling as a module not supported */
1820void kvm_arch_exit(void)
1821{
1822	kvm_perf_teardown();
1823}
1824
1825static int arm_init(void)
1826{
1827	int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1828	return rc;
1829}
1830
1831module_init(arm_init);
1832