1// SPDX-License-Identifier: GPL-2.0-only
2/*:
3 * Hibernate support specific for ARM64
4 *
5 * Derived from work on ARM hibernation support by:
6 *
7 * Ubuntu project, hibernation support for mach-dove
8 * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu)
9 * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.)
10 *  https://lkml.org/lkml/2010/6/18/4
11 *  https://lists.linux-foundation.org/pipermail/linux-pm/2010-June/027422.html
12 *  https://patchwork.kernel.org/patch/96442/
13 *
14 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
15 */
16#define pr_fmt(x) "hibernate: " x
17#include <linux/cpu.h>
18#include <linux/kvm_host.h>
19#include <linux/mm.h>
20#include <linux/pm.h>
21#include <linux/sched.h>
22#include <linux/suspend.h>
23#include <linux/utsname.h>
24
25#include <asm/barrier.h>
26#include <asm/cacheflush.h>
27#include <asm/cputype.h>
28#include <asm/daifflags.h>
29#include <asm/irqflags.h>
30#include <asm/kexec.h>
31#include <asm/memory.h>
32#include <asm/mmu_context.h>
33#include <asm/mte.h>
34#include <asm/pgalloc.h>
35#include <asm/pgtable-hwdef.h>
36#include <asm/sections.h>
37#include <asm/smp.h>
38#include <asm/smp_plat.h>
39#include <asm/suspend.h>
40#include <asm/sysreg.h>
41#include <asm/virt.h>
42
43/*
44 * Hibernate core relies on this value being 0 on resume, and marks it
45 * __nosavedata assuming it will keep the resume kernel's '0' value. This
46 * doesn't happen with either KASLR.
47 *
48 * defined as "__visible int in_suspend __nosavedata" in
49 * kernel/power/hibernate.c
50 */
51extern int in_suspend;
52
53/* Do we need to reset el2? */
54#define el2_reset_needed() (is_hyp_mode_available() && !is_kernel_in_hyp_mode())
55
56/* temporary el2 vectors in the __hibernate_exit_text section. */
57extern char hibernate_el2_vectors[];
58
59/* hyp-stub vectors, used to restore el2 during resume from hibernate. */
60extern char __hyp_stub_vectors[];
61
62/*
63 * The logical cpu number we should resume on, initialised to a non-cpu
64 * number.
65 */
66static int sleep_cpu = -EINVAL;
67
68/*
69 * Values that may not change over hibernate/resume. We put the build number
70 * and date in here so that we guarantee not to resume with a different
71 * kernel.
72 */
73struct arch_hibernate_hdr_invariants {
74	char		uts_version[__NEW_UTS_LEN + 1];
75};
76
77/* These values need to be know across a hibernate/restore. */
78static struct arch_hibernate_hdr {
79	struct arch_hibernate_hdr_invariants invariants;
80
81	/* These are needed to find the relocated kernel if built with kaslr */
82	phys_addr_t	ttbr1_el1;
83	void		(*reenter_kernel)(void);
84
85	/*
86	 * We need to know where the __hyp_stub_vectors are after restore to
87	 * re-configure el2.
88	 */
89	phys_addr_t	__hyp_stub_vectors;
90
91	u64		sleep_cpu_mpidr;
92} resume_hdr;
93
94static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i)
95{
96	memset(i, 0, sizeof(*i));
97	memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version));
98}
99
100int pfn_is_nosave(unsigned long pfn)
101{
102	unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin);
103	unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1);
104
105	return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) ||
106		crash_is_nosave(pfn);
107}
108
109void notrace save_processor_state(void)
110{
111	WARN_ON(num_online_cpus() != 1);
112}
113
114void notrace restore_processor_state(void)
115{
116}
117
118int arch_hibernation_header_save(void *addr, unsigned int max_size)
119{
120	struct arch_hibernate_hdr *hdr = addr;
121
122	if (max_size < sizeof(*hdr))
123		return -EOVERFLOW;
124
125	arch_hdr_invariants(&hdr->invariants);
126	hdr->ttbr1_el1		= __pa_symbol(swapper_pg_dir);
127	hdr->reenter_kernel	= _cpu_resume;
128
129	/* We can't use __hyp_get_vectors() because kvm may still be loaded */
130	if (el2_reset_needed())
131		hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors);
132	else
133		hdr->__hyp_stub_vectors = 0;
134
135	/* Save the mpidr of the cpu we called cpu_suspend() on... */
136	if (sleep_cpu < 0) {
137		pr_err("Failing to hibernate on an unknown CPU.\n");
138		return -ENODEV;
139	}
140	hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu);
141	pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
142		hdr->sleep_cpu_mpidr);
143
144	return 0;
145}
146EXPORT_SYMBOL(arch_hibernation_header_save);
147
148int arch_hibernation_header_restore(void *addr)
149{
150	int ret;
151	struct arch_hibernate_hdr_invariants invariants;
152	struct arch_hibernate_hdr *hdr = addr;
153
154	arch_hdr_invariants(&invariants);
155	if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) {
156		pr_crit("Hibernate image not generated by this kernel!\n");
157		return -EINVAL;
158	}
159
160	sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr);
161	pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu,
162		hdr->sleep_cpu_mpidr);
163	if (sleep_cpu < 0) {
164		pr_crit("Hibernated on a CPU not known to this kernel!\n");
165		sleep_cpu = -EINVAL;
166		return -EINVAL;
167	}
168
169	ret = bringup_hibernate_cpu(sleep_cpu);
170	if (ret) {
171		sleep_cpu = -EINVAL;
172		return ret;
173	}
174
175	resume_hdr = *hdr;
176
177	return 0;
178}
179EXPORT_SYMBOL(arch_hibernation_header_restore);
180
181static int trans_pgd_map_page(pgd_t *trans_pgd, void *page,
182		       unsigned long dst_addr,
183		       pgprot_t pgprot)
184{
185	pgd_t *pgdp;
186	p4d_t *p4dp;
187	pud_t *pudp;
188	pmd_t *pmdp;
189	pte_t *ptep;
190
191	pgdp = pgd_offset_pgd(trans_pgd, dst_addr);
192	if (pgd_none(READ_ONCE(*pgdp))) {
193		pudp = (void *)get_safe_page(GFP_ATOMIC);
194		if (!pudp)
195			return -ENOMEM;
196		pgd_populate(&init_mm, pgdp, pudp);
197	}
198
199	p4dp = p4d_offset(pgdp, dst_addr);
200	if (p4d_none(READ_ONCE(*p4dp))) {
201		pudp = (void *)get_safe_page(GFP_ATOMIC);
202		if (!pudp)
203			return -ENOMEM;
204		p4d_populate(&init_mm, p4dp, pudp);
205	}
206
207	pudp = pud_offset(p4dp, dst_addr);
208	if (pud_none(READ_ONCE(*pudp))) {
209		pmdp = (void *)get_safe_page(GFP_ATOMIC);
210		if (!pmdp)
211			return -ENOMEM;
212		pud_populate(&init_mm, pudp, pmdp);
213	}
214
215	pmdp = pmd_offset(pudp, dst_addr);
216	if (pmd_none(READ_ONCE(*pmdp))) {
217		ptep = (void *)get_safe_page(GFP_ATOMIC);
218		if (!ptep)
219			return -ENOMEM;
220		pmd_populate_kernel(&init_mm, pmdp, ptep);
221	}
222
223	ptep = pte_offset_kernel(pmdp, dst_addr);
224	set_pte(ptep, pfn_pte(virt_to_pfn(page), PAGE_KERNEL_EXEC));
225
226	return 0;
227}
228
229/*
230 * Copies length bytes, starting at src_start into an new page,
231 * perform cache maintenance, then maps it at the specified address low
232 * address as executable.
233 *
234 * This is used by hibernate to copy the code it needs to execute when
235 * overwriting the kernel text. This function generates a new set of page
236 * tables, which it loads into ttbr0.
237 *
238 * Length is provided as we probably only want 4K of data, even on a 64K
239 * page system.
240 */
241static int create_safe_exec_page(void *src_start, size_t length,
242				 unsigned long dst_addr,
243				 phys_addr_t *phys_dst_addr)
244{
245	void *page = (void *)get_safe_page(GFP_ATOMIC);
246	pgd_t *trans_pgd;
247	int rc;
248
249	if (!page)
250		return -ENOMEM;
251
252	memcpy(page, src_start, length);
253	__flush_icache_range((unsigned long)page, (unsigned long)page + length);
254
255	trans_pgd = (void *)get_safe_page(GFP_ATOMIC);
256	if (!trans_pgd)
257		return -ENOMEM;
258
259	rc = trans_pgd_map_page(trans_pgd, page, dst_addr,
260				PAGE_KERNEL_EXEC);
261	if (rc)
262		return rc;
263
264	/*
265	 * Load our new page tables. A strict BBM approach requires that we
266	 * ensure that TLBs are free of any entries that may overlap with the
267	 * global mappings we are about to install.
268	 *
269	 * For a real hibernate/resume cycle TTBR0 currently points to a zero
270	 * page, but TLBs may contain stale ASID-tagged entries (e.g. for EFI
271	 * runtime services), while for a userspace-driven test_resume cycle it
272	 * points to userspace page tables (and we must point it at a zero page
273	 * ourselves). Elsewhere we only (un)install the idmap with preemption
274	 * disabled, so T0SZ should be as required regardless.
275	 */
276	cpu_set_reserved_ttbr0();
277	local_flush_tlb_all();
278	write_sysreg(phys_to_ttbr(virt_to_phys(trans_pgd)), ttbr0_el1);
279	isb();
280
281	*phys_dst_addr = virt_to_phys(page);
282
283	return 0;
284}
285
286#define dcache_clean_range(start, end)	__flush_dcache_area(start, (end - start))
287
288#ifdef CONFIG_ARM64_MTE
289
290static DEFINE_XARRAY(mte_pages);
291
292static int save_tags(struct page *page, unsigned long pfn)
293{
294	void *tag_storage, *ret;
295
296	tag_storage = mte_allocate_tag_storage();
297	if (!tag_storage)
298		return -ENOMEM;
299
300	mte_save_page_tags(page_address(page), tag_storage);
301
302	ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL);
303	if (WARN(xa_is_err(ret), "Failed to store MTE tags")) {
304		mte_free_tag_storage(tag_storage);
305		return xa_err(ret);
306	} else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) {
307		mte_free_tag_storage(ret);
308	}
309
310	return 0;
311}
312
313static void swsusp_mte_free_storage(void)
314{
315	XA_STATE(xa_state, &mte_pages, 0);
316	void *tags;
317
318	xa_lock(&mte_pages);
319	xas_for_each(&xa_state, tags, ULONG_MAX) {
320		mte_free_tag_storage(tags);
321	}
322	xa_unlock(&mte_pages);
323
324	xa_destroy(&mte_pages);
325}
326
327static int swsusp_mte_save_tags(void)
328{
329	struct zone *zone;
330	unsigned long pfn, max_zone_pfn;
331	int ret = 0;
332	int n = 0;
333
334	if (!system_supports_mte())
335		return 0;
336
337	for_each_populated_zone(zone) {
338		max_zone_pfn = zone_end_pfn(zone);
339		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
340			struct page *page = pfn_to_online_page(pfn);
341
342			if (!page)
343				continue;
344
345			if (!test_bit(PG_mte_tagged, &page->flags))
346				continue;
347
348			ret = save_tags(page, pfn);
349			if (ret) {
350				swsusp_mte_free_storage();
351				goto out;
352			}
353
354			n++;
355		}
356	}
357	pr_info("Saved %d MTE pages\n", n);
358
359out:
360	return ret;
361}
362
363static void swsusp_mte_restore_tags(void)
364{
365	XA_STATE(xa_state, &mte_pages, 0);
366	int n = 0;
367	void *tags;
368
369	xa_lock(&mte_pages);
370	xas_for_each(&xa_state, tags, ULONG_MAX) {
371		unsigned long pfn = xa_state.xa_index;
372		struct page *page = pfn_to_online_page(pfn);
373
374		mte_restore_page_tags(page_address(page), tags);
375
376		mte_free_tag_storage(tags);
377		n++;
378	}
379	xa_unlock(&mte_pages);
380
381	pr_info("Restored %d MTE pages\n", n);
382
383	xa_destroy(&mte_pages);
384}
385
386#else	/* CONFIG_ARM64_MTE */
387
388static int swsusp_mte_save_tags(void)
389{
390	return 0;
391}
392
393static void swsusp_mte_restore_tags(void)
394{
395}
396
397#endif	/* CONFIG_ARM64_MTE */
398
399int swsusp_arch_suspend(void)
400{
401	int ret = 0;
402	unsigned long flags;
403	struct sleep_stack_data state;
404
405	if (cpus_are_stuck_in_kernel()) {
406		pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n");
407		return -EBUSY;
408	}
409
410	flags = local_daif_save();
411
412	if (__cpu_suspend_enter(&state)) {
413		/* make the crash dump kernel image visible/saveable */
414		crash_prepare_suspend();
415
416		ret = swsusp_mte_save_tags();
417		if (ret)
418			return ret;
419
420		sleep_cpu = smp_processor_id();
421		ret = swsusp_save();
422	} else {
423		/* Clean kernel core startup/idle code to PoC*/
424		dcache_clean_range(__mmuoff_data_start, __mmuoff_data_end);
425		dcache_clean_range(__idmap_text_start, __idmap_text_end);
426
427		/* Clean kvm setup code to PoC? */
428		if (el2_reset_needed()) {
429			dcache_clean_range(__hyp_idmap_text_start, __hyp_idmap_text_end);
430			dcache_clean_range(__hyp_text_start, __hyp_text_end);
431		}
432
433		swsusp_mte_restore_tags();
434
435		/* make the crash dump kernel image protected again */
436		crash_post_resume();
437
438		/*
439		 * Tell the hibernation core that we've just restored
440		 * the memory
441		 */
442		in_suspend = 0;
443
444		sleep_cpu = -EINVAL;
445		__cpu_suspend_exit();
446
447		/*
448		 * Just in case the boot kernel did turn the SSBD
449		 * mitigation off behind our back, let's set the state
450		 * to what we expect it to be.
451		 */
452		spectre_v4_enable_mitigation(NULL);
453	}
454
455	local_daif_restore(flags);
456
457	return ret;
458}
459
460static void _copy_pte(pte_t *dst_ptep, pte_t *src_ptep, unsigned long addr)
461{
462	pte_t pte = READ_ONCE(*src_ptep);
463
464	if (pte_valid(pte)) {
465		/*
466		 * Resume will overwrite areas that may be marked
467		 * read only (code, rodata). Clear the RDONLY bit from
468		 * the temporary mappings we use during restore.
469		 */
470		set_pte(dst_ptep, pte_mkwrite(pte));
471	} else if (debug_pagealloc_enabled() && !pte_none(pte)) {
472		/*
473		 * debug_pagealloc will removed the PTE_VALID bit if
474		 * the page isn't in use by the resume kernel. It may have
475		 * been in use by the original kernel, in which case we need
476		 * to put it back in our copy to do the restore.
477		 *
478		 * Before marking this entry valid, check the pfn should
479		 * be mapped.
480		 */
481		BUG_ON(!pfn_valid(pte_pfn(pte)));
482
483		set_pte(dst_ptep, pte_mkpresent(pte_mkwrite(pte)));
484	}
485}
486
487static int copy_pte(pmd_t *dst_pmdp, pmd_t *src_pmdp, unsigned long start,
488		    unsigned long end)
489{
490	pte_t *src_ptep;
491	pte_t *dst_ptep;
492	unsigned long addr = start;
493
494	dst_ptep = (pte_t *)get_safe_page(GFP_ATOMIC);
495	if (!dst_ptep)
496		return -ENOMEM;
497	pmd_populate_kernel(&init_mm, dst_pmdp, dst_ptep);
498	dst_ptep = pte_offset_kernel(dst_pmdp, start);
499
500	src_ptep = pte_offset_kernel(src_pmdp, start);
501	do {
502		_copy_pte(dst_ptep, src_ptep, addr);
503	} while (dst_ptep++, src_ptep++, addr += PAGE_SIZE, addr != end);
504
505	return 0;
506}
507
508static int copy_pmd(pud_t *dst_pudp, pud_t *src_pudp, unsigned long start,
509		    unsigned long end)
510{
511	pmd_t *src_pmdp;
512	pmd_t *dst_pmdp;
513	unsigned long next;
514	unsigned long addr = start;
515
516	if (pud_none(READ_ONCE(*dst_pudp))) {
517		dst_pmdp = (pmd_t *)get_safe_page(GFP_ATOMIC);
518		if (!dst_pmdp)
519			return -ENOMEM;
520		pud_populate(&init_mm, dst_pudp, dst_pmdp);
521	}
522	dst_pmdp = pmd_offset(dst_pudp, start);
523
524	src_pmdp = pmd_offset(src_pudp, start);
525	do {
526		pmd_t pmd = READ_ONCE(*src_pmdp);
527
528		next = pmd_addr_end(addr, end);
529		if (pmd_none(pmd))
530			continue;
531		if (pmd_table(pmd)) {
532			if (copy_pte(dst_pmdp, src_pmdp, addr, next))
533				return -ENOMEM;
534		} else {
535			set_pmd(dst_pmdp,
536				__pmd(pmd_val(pmd) & ~PMD_SECT_RDONLY));
537		}
538	} while (dst_pmdp++, src_pmdp++, addr = next, addr != end);
539
540	return 0;
541}
542
543static int copy_pud(p4d_t *dst_p4dp, p4d_t *src_p4dp, unsigned long start,
544		    unsigned long end)
545{
546	pud_t *dst_pudp;
547	pud_t *src_pudp;
548	unsigned long next;
549	unsigned long addr = start;
550
551	if (p4d_none(READ_ONCE(*dst_p4dp))) {
552		dst_pudp = (pud_t *)get_safe_page(GFP_ATOMIC);
553		if (!dst_pudp)
554			return -ENOMEM;
555		p4d_populate(&init_mm, dst_p4dp, dst_pudp);
556	}
557	dst_pudp = pud_offset(dst_p4dp, start);
558
559	src_pudp = pud_offset(src_p4dp, start);
560	do {
561		pud_t pud = READ_ONCE(*src_pudp);
562
563		next = pud_addr_end(addr, end);
564		if (pud_none(pud))
565			continue;
566		if (pud_table(pud)) {
567			if (copy_pmd(dst_pudp, src_pudp, addr, next))
568				return -ENOMEM;
569		} else {
570			set_pud(dst_pudp,
571				__pud(pud_val(pud) & ~PUD_SECT_RDONLY));
572		}
573	} while (dst_pudp++, src_pudp++, addr = next, addr != end);
574
575	return 0;
576}
577
578static int copy_p4d(pgd_t *dst_pgdp, pgd_t *src_pgdp, unsigned long start,
579		    unsigned long end)
580{
581	p4d_t *dst_p4dp;
582	p4d_t *src_p4dp;
583	unsigned long next;
584	unsigned long addr = start;
585
586	dst_p4dp = p4d_offset(dst_pgdp, start);
587	src_p4dp = p4d_offset(src_pgdp, start);
588	do {
589		next = p4d_addr_end(addr, end);
590		if (p4d_none(READ_ONCE(*src_p4dp)))
591			continue;
592		if (copy_pud(dst_p4dp, src_p4dp, addr, next))
593			return -ENOMEM;
594	} while (dst_p4dp++, src_p4dp++, addr = next, addr != end);
595
596	return 0;
597}
598
599static int copy_page_tables(pgd_t *dst_pgdp, unsigned long start,
600			    unsigned long end)
601{
602	unsigned long next;
603	unsigned long addr = start;
604	pgd_t *src_pgdp = pgd_offset_k(start);
605
606	dst_pgdp = pgd_offset_pgd(dst_pgdp, start);
607	do {
608		next = pgd_addr_end(addr, end);
609		if (pgd_none(READ_ONCE(*src_pgdp)))
610			continue;
611		if (copy_p4d(dst_pgdp, src_pgdp, addr, next))
612			return -ENOMEM;
613	} while (dst_pgdp++, src_pgdp++, addr = next, addr != end);
614
615	return 0;
616}
617
618static int trans_pgd_create_copy(pgd_t **dst_pgdp, unsigned long start,
619			  unsigned long end)
620{
621	int rc;
622	pgd_t *trans_pgd = (pgd_t *)get_safe_page(GFP_ATOMIC);
623
624	if (!trans_pgd) {
625		pr_err("Failed to allocate memory for temporary page tables.\n");
626		return -ENOMEM;
627	}
628
629	rc = copy_page_tables(trans_pgd, start, end);
630	if (!rc)
631		*dst_pgdp = trans_pgd;
632
633	return rc;
634}
635
636/*
637 * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit().
638 *
639 * Memory allocated by get_safe_page() will be dealt with by the hibernate code,
640 * we don't need to free it here.
641 */
642int swsusp_arch_resume(void)
643{
644	int rc;
645	void *zero_page;
646	size_t exit_size;
647	pgd_t *tmp_pg_dir;
648	phys_addr_t phys_hibernate_exit;
649	void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *,
650					  void *, phys_addr_t, phys_addr_t);
651
652	/*
653	 * Restoring the memory image will overwrite the ttbr1 page tables.
654	 * Create a second copy of just the linear map, and use this when
655	 * restoring.
656	 */
657	rc = trans_pgd_create_copy(&tmp_pg_dir, PAGE_OFFSET, PAGE_END);
658	if (rc)
659		return rc;
660
661	/*
662	 * We need a zero page that is zero before & after resume in order to
663	 * to break before make on the ttbr1 page tables.
664	 */
665	zero_page = (void *)get_safe_page(GFP_ATOMIC);
666	if (!zero_page) {
667		pr_err("Failed to allocate zero page.\n");
668		return -ENOMEM;
669	}
670
671	/*
672	 * Locate the exit code in the bottom-but-one page, so that *NULL
673	 * still has disastrous affects.
674	 */
675	hibernate_exit = (void *)PAGE_SIZE;
676	exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start;
677	/*
678	 * Copy swsusp_arch_suspend_exit() to a safe page. This will generate
679	 * a new set of ttbr0 page tables and load them.
680	 */
681	rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size,
682				   (unsigned long)hibernate_exit,
683				   &phys_hibernate_exit);
684	if (rc) {
685		pr_err("Failed to create safe executable page for hibernate_exit code.\n");
686		return rc;
687	}
688
689	/*
690	 * The hibernate exit text contains a set of el2 vectors, that will
691	 * be executed at el2 with the mmu off in order to reload hyp-stub.
692	 */
693	__flush_dcache_area(hibernate_exit, exit_size);
694
695	/*
696	 * KASLR will cause the el2 vectors to be in a different location in
697	 * the resumed kernel. Load hibernate's temporary copy into el2.
698	 *
699	 * We can skip this step if we booted at EL1, or are running with VHE.
700	 */
701	if (el2_reset_needed()) {
702		phys_addr_t el2_vectors = phys_hibernate_exit;  /* base */
703		el2_vectors += hibernate_el2_vectors -
704			       __hibernate_exit_text_start;     /* offset */
705
706		__hyp_set_vectors(el2_vectors);
707	}
708
709	hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1,
710		       resume_hdr.reenter_kernel, restore_pblist,
711		       resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page));
712
713	return 0;
714}
715
716int hibernate_resume_nonboot_cpu_disable(void)
717{
718	if (sleep_cpu < 0) {
719		pr_err("Failing to resume from hibernate on an unknown CPU.\n");
720		return -ENODEV;
721	}
722
723	return freeze_secondary_cpus(sleep_cpu);
724}
725