1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 ARM Ltd.
4 */
5#ifndef __ASM_PGTABLE_H
6#define __ASM_PGTABLE_H
7
8#include <asm/bug.h>
9#include <asm/proc-fns.h>
10
11#include <asm/memory.h>
12#include <asm/mte.h>
13#include <asm/pgtable-hwdef.h>
14#include <asm/pgtable-prot.h>
15#include <asm/tlbflush.h>
16
17/*
18 * VMALLOC range.
19 *
20 * VMALLOC_START: beginning of the kernel vmalloc space
21 * VMALLOC_END: extends to the available space below vmemmap, PCI I/O space
22 *	and fixed mappings
23 */
24#define VMALLOC_START		(MODULES_END)
25#define VMALLOC_END		(- PUD_SIZE - VMEMMAP_SIZE - SZ_64K)
26
27#define vmemmap			((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT))
28
29#define FIRST_USER_ADDRESS	0UL
30
31#ifndef __ASSEMBLY__
32
33#include <asm/cmpxchg.h>
34#include <asm/fixmap.h>
35#include <linux/mmdebug.h>
36#include <linux/mm_types.h>
37#include <linux/sched.h>
38
39#ifdef CONFIG_TRANSPARENT_HUGEPAGE
40#define __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
41
42/* Set stride and tlb_level in flush_*_tlb_range */
43#define flush_pmd_tlb_range(vma, addr, end)	\
44	__flush_tlb_range(vma, addr, end, PMD_SIZE, false, 2)
45#define flush_pud_tlb_range(vma, addr, end)	\
46	__flush_tlb_range(vma, addr, end, PUD_SIZE, false, 1)
47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
48
49/*
50 * Outside of a few very special situations (e.g. hibernation), we always
51 * use broadcast TLB invalidation instructions, therefore a spurious page
52 * fault on one CPU which has been handled concurrently by another CPU
53 * does not need to perform additional invalidation.
54 */
55#define flush_tlb_fix_spurious_fault(vma, address) do { } while (0)
56
57/*
58 * ZERO_PAGE is a global shared page that is always zero: used
59 * for zero-mapped memory areas etc..
60 */
61extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
62#define ZERO_PAGE(vaddr)	phys_to_page(__pa_symbol(empty_zero_page))
63
64#define pte_ERROR(e)	\
65	pr_err("%s:%d: bad pte %016llx.\n", __FILE__, __LINE__, pte_val(e))
66
67/*
68 * Macros to convert between a physical address and its placement in a
69 * page table entry, taking care of 52-bit addresses.
70 */
71#ifdef CONFIG_ARM64_PA_BITS_52
72static inline phys_addr_t __pte_to_phys(pte_t pte)
73{
74	return (pte_val(pte) & PTE_ADDR_LOW) |
75		((pte_val(pte) & PTE_ADDR_HIGH) << 36);
76}
77static inline pteval_t __phys_to_pte_val(phys_addr_t phys)
78{
79	return (phys | (phys >> 36)) & PTE_ADDR_MASK;
80}
81#else
82#define __pte_to_phys(pte)	(pte_val(pte) & PTE_ADDR_MASK)
83#define __phys_to_pte_val(phys)	(phys)
84#endif
85
86#define pte_pfn(pte)		(__pte_to_phys(pte) >> PAGE_SHIFT)
87#define pfn_pte(pfn,prot)	\
88	__pte(__phys_to_pte_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
89
90#define pte_none(pte)		(!pte_val(pte))
91#define pte_clear(mm,addr,ptep)	set_pte(ptep, __pte(0))
92#define pte_page(pte)		(pfn_to_page(pte_pfn(pte)))
93
94/*
95 * The following only work if pte_present(). Undefined behaviour otherwise.
96 */
97#define pte_present(pte)	(!!(pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)))
98#define pte_young(pte)		(!!(pte_val(pte) & PTE_AF))
99#define pte_special(pte)	(!!(pte_val(pte) & PTE_SPECIAL))
100#define pte_write(pte)		(!!(pte_val(pte) & PTE_WRITE))
101#define pte_user_exec(pte)	(!(pte_val(pte) & PTE_UXN))
102#define pte_cont(pte)		(!!(pte_val(pte) & PTE_CONT))
103#define pte_devmap(pte)		(!!(pte_val(pte) & PTE_DEVMAP))
104#define pte_tagged(pte)		((pte_val(pte) & PTE_ATTRINDX_MASK) == \
105				 PTE_ATTRINDX(MT_NORMAL_TAGGED))
106
107#define pte_cont_addr_end(addr, end)						\
108({	unsigned long __boundary = ((addr) + CONT_PTE_SIZE) & CONT_PTE_MASK;	\
109	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
110})
111
112#define pmd_cont_addr_end(addr, end)						\
113({	unsigned long __boundary = ((addr) + CONT_PMD_SIZE) & CONT_PMD_MASK;	\
114	(__boundary - 1 < (end) - 1) ? __boundary : (end);			\
115})
116
117#define pte_hw_dirty(pte)	(pte_write(pte) && !(pte_val(pte) & PTE_RDONLY))
118#define pte_sw_dirty(pte)	(!!(pte_val(pte) & PTE_DIRTY))
119#define pte_dirty(pte)		(pte_sw_dirty(pte) || pte_hw_dirty(pte))
120
121#define pte_valid(pte)		(!!(pte_val(pte) & PTE_VALID))
122#define pte_valid_not_user(pte) \
123	((pte_val(pte) & (PTE_VALID | PTE_USER)) == PTE_VALID)
124#define pte_valid_user(pte) \
125	((pte_val(pte) & (PTE_VALID | PTE_USER)) == (PTE_VALID | PTE_USER))
126
127/*
128 * Could the pte be present in the TLB? We must check mm_tlb_flush_pending
129 * so that we don't erroneously return false for pages that have been
130 * remapped as PROT_NONE but are yet to be flushed from the TLB.
131 * Note that we can't make any assumptions based on the state of the access
132 * flag, since ptep_clear_flush_young() elides a DSB when invalidating the
133 * TLB.
134 */
135#define pte_accessible(mm, pte)	\
136	(mm_tlb_flush_pending(mm) ? pte_present(pte) : pte_valid(pte))
137
138/*
139 * p??_access_permitted() is true for valid user mappings (subject to the
140 * write permission check). PROT_NONE mappings do not have the PTE_VALID bit
141 * set.
142 */
143#define pte_access_permitted(pte, write) \
144	(pte_valid_user(pte) && (!(write) || pte_write(pte)))
145#define pmd_access_permitted(pmd, write) \
146	(pte_access_permitted(pmd_pte(pmd), (write)))
147#define pud_access_permitted(pud, write) \
148	(pte_access_permitted(pud_pte(pud), (write)))
149
150static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
151{
152	pte_val(pte) &= ~pgprot_val(prot);
153	return pte;
154}
155
156static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
157{
158	pte_val(pte) |= pgprot_val(prot);
159	return pte;
160}
161
162static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
163{
164	pmd_val(pmd) &= ~pgprot_val(prot);
165	return pmd;
166}
167
168static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
169{
170	pmd_val(pmd) |= pgprot_val(prot);
171	return pmd;
172}
173
174static inline pte_t pte_mkwrite(pte_t pte)
175{
176	pte = set_pte_bit(pte, __pgprot(PTE_WRITE));
177	pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
178	return pte;
179}
180
181static inline pte_t pte_mkclean(pte_t pte)
182{
183	pte = clear_pte_bit(pte, __pgprot(PTE_DIRTY));
184	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
185
186	return pte;
187}
188
189static inline pte_t pte_mkdirty(pte_t pte)
190{
191	pte = set_pte_bit(pte, __pgprot(PTE_DIRTY));
192
193	if (pte_write(pte))
194		pte = clear_pte_bit(pte, __pgprot(PTE_RDONLY));
195
196	return pte;
197}
198
199static inline pte_t pte_wrprotect(pte_t pte)
200{
201	/*
202	 * If hardware-dirty (PTE_WRITE/DBM bit set and PTE_RDONLY
203	 * clear), set the PTE_DIRTY bit.
204	 */
205	if (pte_hw_dirty(pte))
206		pte = pte_mkdirty(pte);
207
208	pte = clear_pte_bit(pte, __pgprot(PTE_WRITE));
209	pte = set_pte_bit(pte, __pgprot(PTE_RDONLY));
210	return pte;
211}
212
213static inline pte_t pte_mkold(pte_t pte)
214{
215	return clear_pte_bit(pte, __pgprot(PTE_AF));
216}
217
218static inline pte_t pte_mkyoung(pte_t pte)
219{
220	return set_pte_bit(pte, __pgprot(PTE_AF));
221}
222
223static inline pte_t pte_mkspecial(pte_t pte)
224{
225	return set_pte_bit(pte, __pgprot(PTE_SPECIAL));
226}
227
228static inline pte_t pte_mkcont(pte_t pte)
229{
230	pte = set_pte_bit(pte, __pgprot(PTE_CONT));
231	return set_pte_bit(pte, __pgprot(PTE_TYPE_PAGE));
232}
233
234static inline pte_t pte_mknoncont(pte_t pte)
235{
236	return clear_pte_bit(pte, __pgprot(PTE_CONT));
237}
238
239static inline pte_t pte_mkpresent(pte_t pte)
240{
241	return set_pte_bit(pte, __pgprot(PTE_VALID));
242}
243
244static inline pmd_t pmd_mkcont(pmd_t pmd)
245{
246	return __pmd(pmd_val(pmd) | PMD_SECT_CONT);
247}
248
249static inline pte_t pte_mkdevmap(pte_t pte)
250{
251	return set_pte_bit(pte, __pgprot(PTE_DEVMAP | PTE_SPECIAL));
252}
253
254static inline void set_pte(pte_t *ptep, pte_t pte)
255{
256	WRITE_ONCE(*ptep, pte);
257
258	/*
259	 * Only if the new pte is valid and kernel, otherwise TLB maintenance
260	 * or update_mmu_cache() have the necessary barriers.
261	 */
262	if (pte_valid_not_user(pte)) {
263		dsb(ishst);
264		isb();
265	}
266}
267
268extern void __sync_icache_dcache(pte_t pteval);
269
270/*
271 * PTE bits configuration in the presence of hardware Dirty Bit Management
272 * (PTE_WRITE == PTE_DBM):
273 *
274 * Dirty  Writable | PTE_RDONLY  PTE_WRITE  PTE_DIRTY (sw)
275 *   0      0      |   1           0          0
276 *   0      1      |   1           1          0
277 *   1      0      |   1           0          1
278 *   1      1      |   0           1          x
279 *
280 * When hardware DBM is not present, the sofware PTE_DIRTY bit is updated via
281 * the page fault mechanism. Checking the dirty status of a pte becomes:
282 *
283 *   PTE_DIRTY || (PTE_WRITE && !PTE_RDONLY)
284 */
285
286static inline void __check_racy_pte_update(struct mm_struct *mm, pte_t *ptep,
287					   pte_t pte)
288{
289	pte_t old_pte;
290
291	if (!IS_ENABLED(CONFIG_DEBUG_VM))
292		return;
293
294	old_pte = READ_ONCE(*ptep);
295
296	if (!pte_valid(old_pte) || !pte_valid(pte))
297		return;
298	if (mm != current->active_mm && atomic_read(&mm->mm_users) <= 1)
299		return;
300
301	/*
302	 * Check for potential race with hardware updates of the pte
303	 * (ptep_set_access_flags safely changes valid ptes without going
304	 * through an invalid entry).
305	 */
306	VM_WARN_ONCE(!pte_young(pte),
307		     "%s: racy access flag clearing: 0x%016llx -> 0x%016llx",
308		     __func__, pte_val(old_pte), pte_val(pte));
309	VM_WARN_ONCE(pte_write(old_pte) && !pte_dirty(pte),
310		     "%s: racy dirty state clearing: 0x%016llx -> 0x%016llx",
311		     __func__, pte_val(old_pte), pte_val(pte));
312}
313
314static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
315			      pte_t *ptep, pte_t pte)
316{
317	if (pte_present(pte) && pte_user_exec(pte) && !pte_special(pte))
318		__sync_icache_dcache(pte);
319
320	if (system_supports_mte() &&
321	    pte_present(pte) && pte_tagged(pte) && !pte_special(pte))
322		mte_sync_tags(ptep, pte);
323
324	__check_racy_pte_update(mm, ptep, pte);
325
326	set_pte(ptep, pte);
327}
328
329/*
330 * Huge pte definitions.
331 */
332#define pte_mkhuge(pte)		(__pte(pte_val(pte) & ~PTE_TABLE_BIT))
333
334/*
335 * Hugetlb definitions.
336 */
337#define HUGE_MAX_HSTATE		4
338#define HPAGE_SHIFT		PMD_SHIFT
339#define HPAGE_SIZE		(_AC(1, UL) << HPAGE_SHIFT)
340#define HPAGE_MASK		(~(HPAGE_SIZE - 1))
341#define HUGETLB_PAGE_ORDER	(HPAGE_SHIFT - PAGE_SHIFT)
342
343static inline pte_t pgd_pte(pgd_t pgd)
344{
345	return __pte(pgd_val(pgd));
346}
347
348static inline pte_t p4d_pte(p4d_t p4d)
349{
350	return __pte(p4d_val(p4d));
351}
352
353static inline pte_t pud_pte(pud_t pud)
354{
355	return __pte(pud_val(pud));
356}
357
358static inline pud_t pte_pud(pte_t pte)
359{
360	return __pud(pte_val(pte));
361}
362
363static inline pmd_t pud_pmd(pud_t pud)
364{
365	return __pmd(pud_val(pud));
366}
367
368static inline pte_t pmd_pte(pmd_t pmd)
369{
370	return __pte(pmd_val(pmd));
371}
372
373static inline pmd_t pte_pmd(pte_t pte)
374{
375	return __pmd(pte_val(pte));
376}
377
378static inline pgprot_t mk_pud_sect_prot(pgprot_t prot)
379{
380	return __pgprot((pgprot_val(prot) & ~PUD_TABLE_BIT) | PUD_TYPE_SECT);
381}
382
383static inline pgprot_t mk_pmd_sect_prot(pgprot_t prot)
384{
385	return __pgprot((pgprot_val(prot) & ~PMD_TABLE_BIT) | PMD_TYPE_SECT);
386}
387
388#ifdef CONFIG_NUMA_BALANCING
389/*
390 * See the comment in include/linux/pgtable.h
391 */
392static inline int pte_protnone(pte_t pte)
393{
394	return (pte_val(pte) & (PTE_VALID | PTE_PROT_NONE)) == PTE_PROT_NONE;
395}
396
397static inline int pmd_protnone(pmd_t pmd)
398{
399	return pte_protnone(pmd_pte(pmd));
400}
401#endif
402
403#define pmd_present_invalid(pmd)     (!!(pmd_val(pmd) & PMD_PRESENT_INVALID))
404
405static inline int pmd_present(pmd_t pmd)
406{
407	return pte_present(pmd_pte(pmd)) || pmd_present_invalid(pmd);
408}
409
410/*
411 * THP definitions.
412 */
413
414#ifdef CONFIG_TRANSPARENT_HUGEPAGE
415static inline int pmd_trans_huge(pmd_t pmd)
416{
417	return pmd_val(pmd) && pmd_present(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
418}
419#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
420
421#define pmd_dirty(pmd)		pte_dirty(pmd_pte(pmd))
422#define pmd_young(pmd)		pte_young(pmd_pte(pmd))
423#define pmd_valid(pmd)		pte_valid(pmd_pte(pmd))
424#define pmd_wrprotect(pmd)	pte_pmd(pte_wrprotect(pmd_pte(pmd)))
425#define pmd_mkold(pmd)		pte_pmd(pte_mkold(pmd_pte(pmd)))
426#define pmd_mkwrite(pmd)	pte_pmd(pte_mkwrite(pmd_pte(pmd)))
427#define pmd_mkclean(pmd)	pte_pmd(pte_mkclean(pmd_pte(pmd)))
428#define pmd_mkdirty(pmd)	pte_pmd(pte_mkdirty(pmd_pte(pmd)))
429#define pmd_mkyoung(pmd)	pte_pmd(pte_mkyoung(pmd_pte(pmd)))
430
431static inline pmd_t pmd_mkinvalid(pmd_t pmd)
432{
433	pmd = set_pmd_bit(pmd, __pgprot(PMD_PRESENT_INVALID));
434	pmd = clear_pmd_bit(pmd, __pgprot(PMD_SECT_VALID));
435
436	return pmd;
437}
438
439#define pmd_thp_or_huge(pmd)	(pmd_huge(pmd) || pmd_trans_huge(pmd))
440
441#define pmd_write(pmd)		pte_write(pmd_pte(pmd))
442
443#define pmd_mkhuge(pmd)		(__pmd(pmd_val(pmd) & ~PMD_TABLE_BIT))
444
445#ifdef CONFIG_TRANSPARENT_HUGEPAGE
446#define pmd_devmap(pmd)		pte_devmap(pmd_pte(pmd))
447#endif
448static inline pmd_t pmd_mkdevmap(pmd_t pmd)
449{
450	return pte_pmd(set_pte_bit(pmd_pte(pmd), __pgprot(PTE_DEVMAP)));
451}
452
453#define __pmd_to_phys(pmd)	__pte_to_phys(pmd_pte(pmd))
454#define __phys_to_pmd_val(phys)	__phys_to_pte_val(phys)
455#define pmd_pfn(pmd)		((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT)
456#define pfn_pmd(pfn,prot)	__pmd(__phys_to_pmd_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
457#define mk_pmd(page,prot)	pfn_pmd(page_to_pfn(page),prot)
458
459#define pud_young(pud)		pte_young(pud_pte(pud))
460#define pud_mkyoung(pud)	pte_pud(pte_mkyoung(pud_pte(pud)))
461#define pud_write(pud)		pte_write(pud_pte(pud))
462
463#define pud_mkhuge(pud)		(__pud(pud_val(pud) & ~PUD_TABLE_BIT))
464
465#define __pud_to_phys(pud)	__pte_to_phys(pud_pte(pud))
466#define __phys_to_pud_val(phys)	__phys_to_pte_val(phys)
467#define pud_pfn(pud)		((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT)
468#define pfn_pud(pfn,prot)	__pud(__phys_to_pud_val((phys_addr_t)(pfn) << PAGE_SHIFT) | pgprot_val(prot))
469
470#define set_pmd_at(mm, addr, pmdp, pmd)	set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd))
471
472#define __p4d_to_phys(p4d)	__pte_to_phys(p4d_pte(p4d))
473#define __phys_to_p4d_val(phys)	__phys_to_pte_val(phys)
474
475#define __pgd_to_phys(pgd)	__pte_to_phys(pgd_pte(pgd))
476#define __phys_to_pgd_val(phys)	__phys_to_pte_val(phys)
477
478#define __pgprot_modify(prot,mask,bits) \
479	__pgprot((pgprot_val(prot) & ~(mask)) | (bits))
480
481#define pgprot_nx(prot) \
482	__pgprot_modify(prot, PTE_MAYBE_GP, PTE_PXN)
483
484/*
485 * Mark the prot value as uncacheable and unbufferable.
486 */
487#define pgprot_noncached(prot) \
488	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRnE) | PTE_PXN | PTE_UXN)
489#define pgprot_writecombine(prot) \
490	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
491#define pgprot_device(prot) \
492	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_PXN | PTE_UXN)
493#define pgprot_tagged(prot) \
494	__pgprot_modify(prot, PTE_ATTRINDX_MASK, PTE_ATTRINDX(MT_NORMAL_TAGGED))
495#define pgprot_mhp	pgprot_tagged
496/*
497 * DMA allocations for non-coherent devices use what the Arm architecture calls
498 * "Normal non-cacheable" memory, which permits speculation, unaligned accesses
499 * and merging of writes.  This is different from "Device-nGnR[nE]" memory which
500 * is intended for MMIO and thus forbids speculation, preserves access size,
501 * requires strict alignment and can also force write responses to come from the
502 * endpoint.
503 */
504#define pgprot_dmacoherent(prot) \
505	__pgprot_modify(prot, PTE_ATTRINDX_MASK, \
506			PTE_ATTRINDX(MT_NORMAL_NC) | PTE_PXN | PTE_UXN)
507
508#define __HAVE_PHYS_MEM_ACCESS_PROT
509struct file;
510extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
511				     unsigned long size, pgprot_t vma_prot);
512
513#define pmd_none(pmd)		(!pmd_val(pmd))
514
515#define pmd_table(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
516				 PMD_TYPE_TABLE)
517#define pmd_sect(pmd)		((pmd_val(pmd) & PMD_TYPE_MASK) == \
518				 PMD_TYPE_SECT)
519#define pmd_leaf(pmd)		(pmd_present(pmd) && !pmd_table(pmd))
520#define pmd_bad(pmd)		(!pmd_table(pmd))
521
522#if defined(CONFIG_ARM64_64K_PAGES) || CONFIG_PGTABLE_LEVELS < 3
523static inline bool pud_sect(pud_t pud) { return false; }
524static inline bool pud_table(pud_t pud) { return true; }
525#else
526#define pud_sect(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
527				 PUD_TYPE_SECT)
528#define pud_table(pud)		((pud_val(pud) & PUD_TYPE_MASK) == \
529				 PUD_TYPE_TABLE)
530#endif
531
532extern pgd_t init_pg_dir[PTRS_PER_PGD];
533extern pgd_t init_pg_end[];
534extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
535extern pgd_t idmap_pg_dir[PTRS_PER_PGD];
536extern pgd_t idmap_pg_end[];
537extern pgd_t tramp_pg_dir[PTRS_PER_PGD];
538extern pgd_t reserved_pg_dir[PTRS_PER_PGD];
539
540extern void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd);
541
542static inline bool in_swapper_pgdir(void *addr)
543{
544	return ((unsigned long)addr & PAGE_MASK) ==
545	        ((unsigned long)swapper_pg_dir & PAGE_MASK);
546}
547
548static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
549{
550#ifdef __PAGETABLE_PMD_FOLDED
551	if (in_swapper_pgdir(pmdp)) {
552		set_swapper_pgd((pgd_t *)pmdp, __pgd(pmd_val(pmd)));
553		return;
554	}
555#endif /* __PAGETABLE_PMD_FOLDED */
556
557	WRITE_ONCE(*pmdp, pmd);
558
559	if (pmd_valid(pmd)) {
560		dsb(ishst);
561		isb();
562	}
563}
564
565static inline void pmd_clear(pmd_t *pmdp)
566{
567	set_pmd(pmdp, __pmd(0));
568}
569
570static inline phys_addr_t pmd_page_paddr(pmd_t pmd)
571{
572	return __pmd_to_phys(pmd);
573}
574
575static inline unsigned long pmd_page_vaddr(pmd_t pmd)
576{
577	return (unsigned long)__va(pmd_page_paddr(pmd));
578}
579
580/* Find an entry in the third-level page table. */
581#define pte_offset_phys(dir,addr)	(pmd_page_paddr(READ_ONCE(*(dir))) + pte_index(addr) * sizeof(pte_t))
582
583#define pte_set_fixmap(addr)		((pte_t *)set_fixmap_offset(FIX_PTE, addr))
584#define pte_set_fixmap_offset(pmd, addr)	pte_set_fixmap(pte_offset_phys(pmd, addr))
585#define pte_clear_fixmap()		clear_fixmap(FIX_PTE)
586
587#define pmd_page(pmd)			phys_to_page(__pmd_to_phys(pmd))
588
589/* use ONLY for statically allocated translation tables */
590#define pte_offset_kimg(dir,addr)	((pte_t *)__phys_to_kimg(pte_offset_phys((dir), (addr))))
591
592/*
593 * Conversion functions: convert a page and protection to a page entry,
594 * and a page entry and page directory to the page they refer to.
595 */
596#define mk_pte(page,prot)	pfn_pte(page_to_pfn(page),prot)
597
598#if CONFIG_PGTABLE_LEVELS > 2
599
600#define pmd_ERROR(e)	\
601	pr_err("%s:%d: bad pmd %016llx.\n", __FILE__, __LINE__, pmd_val(e))
602
603#define pud_none(pud)		(!pud_val(pud))
604#define pud_bad(pud)		(!pud_table(pud))
605#define pud_present(pud)	pte_present(pud_pte(pud))
606#define pud_leaf(pud)		(pud_present(pud) && !pud_table(pud))
607#define pud_valid(pud)		pte_valid(pud_pte(pud))
608
609static inline void set_pud(pud_t *pudp, pud_t pud)
610{
611#ifdef __PAGETABLE_PUD_FOLDED
612	if (in_swapper_pgdir(pudp)) {
613		set_swapper_pgd((pgd_t *)pudp, __pgd(pud_val(pud)));
614		return;
615	}
616#endif /* __PAGETABLE_PUD_FOLDED */
617
618	WRITE_ONCE(*pudp, pud);
619
620	if (pud_valid(pud)) {
621		dsb(ishst);
622		isb();
623	}
624}
625
626static inline void pud_clear(pud_t *pudp)
627{
628	set_pud(pudp, __pud(0));
629}
630
631static inline phys_addr_t pud_page_paddr(pud_t pud)
632{
633	return __pud_to_phys(pud);
634}
635
636static inline pmd_t *pud_pgtable(pud_t pud)
637{
638	return (pmd_t *)__va(pud_page_paddr(pud));
639}
640
641/* Find an entry in the second-level page table. */
642#define pmd_offset_phys(dir, addr)	(pud_page_paddr(READ_ONCE(*(dir))) + pmd_index(addr) * sizeof(pmd_t))
643
644#define pmd_set_fixmap(addr)		((pmd_t *)set_fixmap_offset(FIX_PMD, addr))
645#define pmd_set_fixmap_offset(pud, addr)	pmd_set_fixmap(pmd_offset_phys(pud, addr))
646#define pmd_clear_fixmap()		clear_fixmap(FIX_PMD)
647
648#define pud_page(pud)			phys_to_page(__pud_to_phys(pud))
649
650/* use ONLY for statically allocated translation tables */
651#define pmd_offset_kimg(dir,addr)	((pmd_t *)__phys_to_kimg(pmd_offset_phys((dir), (addr))))
652
653#else
654
655#define pud_page_paddr(pud)	({ BUILD_BUG(); 0; })
656
657/* Match pmd_offset folding in <asm/generic/pgtable-nopmd.h> */
658#define pmd_set_fixmap(addr)		NULL
659#define pmd_set_fixmap_offset(pudp, addr)	((pmd_t *)pudp)
660#define pmd_clear_fixmap()
661
662#define pmd_offset_kimg(dir,addr)	((pmd_t *)dir)
663
664#endif	/* CONFIG_PGTABLE_LEVELS > 2 */
665
666#if CONFIG_PGTABLE_LEVELS > 3
667
668#define pud_ERROR(e)	\
669	pr_err("%s:%d: bad pud %016llx.\n", __FILE__, __LINE__, pud_val(e))
670
671#define p4d_none(p4d)		(!p4d_val(p4d))
672#define p4d_bad(p4d)		(!(p4d_val(p4d) & 2))
673#define p4d_present(p4d)	(p4d_val(p4d))
674
675static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
676{
677	if (in_swapper_pgdir(p4dp)) {
678		set_swapper_pgd((pgd_t *)p4dp, __pgd(p4d_val(p4d)));
679		return;
680	}
681
682	WRITE_ONCE(*p4dp, p4d);
683	dsb(ishst);
684	isb();
685}
686
687static inline void p4d_clear(p4d_t *p4dp)
688{
689	set_p4d(p4dp, __p4d(0));
690}
691
692static inline phys_addr_t p4d_page_paddr(p4d_t p4d)
693{
694	return __p4d_to_phys(p4d);
695}
696
697static inline pud_t *p4d_pgtable(p4d_t p4d)
698{
699	return (pud_t *)__va(p4d_page_paddr(p4d));
700}
701
702/* Find an entry in the frst-level page table. */
703#define pud_offset_phys(dir, addr)	(p4d_page_paddr(READ_ONCE(*(dir))) + pud_index(addr) * sizeof(pud_t))
704
705#define pud_set_fixmap(addr)		((pud_t *)set_fixmap_offset(FIX_PUD, addr))
706#define pud_set_fixmap_offset(p4d, addr)	pud_set_fixmap(pud_offset_phys(p4d, addr))
707#define pud_clear_fixmap()		clear_fixmap(FIX_PUD)
708
709#define p4d_page(p4d)		pfn_to_page(__phys_to_pfn(__p4d_to_phys(p4d)))
710
711/* use ONLY for statically allocated translation tables */
712#define pud_offset_kimg(dir,addr)	((pud_t *)__phys_to_kimg(pud_offset_phys((dir), (addr))))
713
714#else
715
716#define p4d_page_paddr(p4d)	({ BUILD_BUG(); 0;})
717#define pgd_page_paddr(pgd)	({ BUILD_BUG(); 0;})
718
719/* Match pud_offset folding in <asm/generic/pgtable-nopud.h> */
720#define pud_set_fixmap(addr)		NULL
721#define pud_set_fixmap_offset(pgdp, addr)	((pud_t *)pgdp)
722#define pud_clear_fixmap()
723
724#define pud_offset_kimg(dir,addr)	((pud_t *)dir)
725
726#endif  /* CONFIG_PGTABLE_LEVELS > 3 */
727
728#define pgd_ERROR(e)	\
729	pr_err("%s:%d: bad pgd %016llx.\n", __FILE__, __LINE__, pgd_val(e))
730
731#define pgd_set_fixmap(addr)	((pgd_t *)set_fixmap_offset(FIX_PGD, addr))
732#define pgd_clear_fixmap()	clear_fixmap(FIX_PGD)
733
734static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
735{
736	/*
737	 * Normal and Normal-Tagged are two different memory types and indices
738	 * in MAIR_EL1. The mask below has to include PTE_ATTRINDX_MASK.
739	 */
740	const pteval_t mask = PTE_USER | PTE_PXN | PTE_UXN | PTE_RDONLY |
741			      PTE_PROT_NONE | PTE_VALID | PTE_WRITE | PTE_GP |
742			      PTE_ATTRINDX_MASK;
743	/* preserve the hardware dirty information */
744	if (pte_hw_dirty(pte))
745		pte = pte_mkdirty(pte);
746	pte_val(pte) = (pte_val(pte) & ~mask) | (pgprot_val(newprot) & mask);
747	/*
748	 * If we end up clearing hw dirtiness for a sw-dirty PTE, set hardware
749	 * dirtiness again.
750	 */
751	if (pte_sw_dirty(pte))
752		pte = pte_mkdirty(pte);
753	return pte;
754}
755
756static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
757{
758	return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
759}
760
761#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
762extern int ptep_set_access_flags(struct vm_area_struct *vma,
763				 unsigned long address, pte_t *ptep,
764				 pte_t entry, int dirty);
765
766#ifdef CONFIG_TRANSPARENT_HUGEPAGE
767#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
768static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
769					unsigned long address, pmd_t *pmdp,
770					pmd_t entry, int dirty)
771{
772	return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
773}
774
775static inline int pud_devmap(pud_t pud)
776{
777	return 0;
778}
779
780static inline int pgd_devmap(pgd_t pgd)
781{
782	return 0;
783}
784#endif
785
786/*
787 * Atomic pte/pmd modifications.
788 */
789#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
790static inline int __ptep_test_and_clear_young(pte_t *ptep)
791{
792	pte_t old_pte, pte;
793
794	pte = READ_ONCE(*ptep);
795	do {
796		old_pte = pte;
797		pte = pte_mkold(pte);
798		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
799					       pte_val(old_pte), pte_val(pte));
800	} while (pte_val(pte) != pte_val(old_pte));
801
802	return pte_young(pte);
803}
804
805static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
806					    unsigned long address,
807					    pte_t *ptep)
808{
809	return __ptep_test_and_clear_young(ptep);
810}
811
812#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
813static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
814					 unsigned long address, pte_t *ptep)
815{
816	int young = ptep_test_and_clear_young(vma, address, ptep);
817
818	if (young) {
819		/*
820		 * We can elide the trailing DSB here since the worst that can
821		 * happen is that a CPU continues to use the young entry in its
822		 * TLB and we mistakenly reclaim the associated page. The
823		 * window for such an event is bounded by the next
824		 * context-switch, which provides a DSB to complete the TLB
825		 * invalidation.
826		 */
827		flush_tlb_page_nosync(vma, address);
828	}
829
830	return young;
831}
832
833#ifdef CONFIG_TRANSPARENT_HUGEPAGE
834#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
835static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
836					    unsigned long address,
837					    pmd_t *pmdp)
838{
839	return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
840}
841#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
842
843#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
844static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
845				       unsigned long address, pte_t *ptep)
846{
847	return __pte(xchg_relaxed(&pte_val(*ptep), 0));
848}
849
850#ifdef CONFIG_TRANSPARENT_HUGEPAGE
851#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
852static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
853					    unsigned long address, pmd_t *pmdp)
854{
855	return pte_pmd(ptep_get_and_clear(mm, address, (pte_t *)pmdp));
856}
857#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
858
859/*
860 * ptep_set_wrprotect - mark read-only while trasferring potential hardware
861 * dirty status (PTE_DBM && !PTE_RDONLY) to the software PTE_DIRTY bit.
862 */
863#define __HAVE_ARCH_PTEP_SET_WRPROTECT
864static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
865{
866	pte_t old_pte, pte;
867
868	pte = READ_ONCE(*ptep);
869	do {
870		old_pte = pte;
871		pte = pte_wrprotect(pte);
872		pte_val(pte) = cmpxchg_relaxed(&pte_val(*ptep),
873					       pte_val(old_pte), pte_val(pte));
874	} while (pte_val(pte) != pte_val(old_pte));
875}
876
877#ifdef CONFIG_TRANSPARENT_HUGEPAGE
878#define __HAVE_ARCH_PMDP_SET_WRPROTECT
879static inline void pmdp_set_wrprotect(struct mm_struct *mm,
880				      unsigned long address, pmd_t *pmdp)
881{
882	ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
883}
884
885#define pmdp_establish pmdp_establish
886static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
887		unsigned long address, pmd_t *pmdp, pmd_t pmd)
888{
889	return __pmd(xchg_relaxed(&pmd_val(*pmdp), pmd_val(pmd)));
890}
891#endif
892
893/*
894 * Encode and decode a swap entry:
895 *	bits 0-1:	present (must be zero)
896 *	bits 2-7:	swap type
897 *	bits 8-57:	swap offset
898 *	bit  58:	PTE_PROT_NONE (must be zero)
899 */
900#define __SWP_TYPE_SHIFT	2
901#define __SWP_TYPE_BITS		6
902#define __SWP_OFFSET_BITS	50
903#define __SWP_TYPE_MASK		((1 << __SWP_TYPE_BITS) - 1)
904#define __SWP_OFFSET_SHIFT	(__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
905#define __SWP_OFFSET_MASK	((1UL << __SWP_OFFSET_BITS) - 1)
906
907#define __swp_type(x)		(((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
908#define __swp_offset(x)		(((x).val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK)
909#define __swp_entry(type,offset) ((swp_entry_t) { ((type) << __SWP_TYPE_SHIFT) | ((offset) << __SWP_OFFSET_SHIFT) })
910
911#define __pte_to_swp_entry(pte)	((swp_entry_t) { pte_val(pte) })
912#define __swp_entry_to_pte(swp)	((pte_t) { (swp).val })
913
914#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
915#define __pmd_to_swp_entry(pmd)		((swp_entry_t) { pmd_val(pmd) })
916#define __swp_entry_to_pmd(swp)		__pmd((swp).val)
917#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
918
919/*
920 * Ensure that there are not more swap files than can be encoded in the kernel
921 * PTEs.
922 */
923#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
924
925extern int kern_addr_valid(unsigned long addr);
926
927#ifdef CONFIG_ARM64_MTE
928
929#define __HAVE_ARCH_PREPARE_TO_SWAP
930static inline int arch_prepare_to_swap(struct page *page)
931{
932	if (system_supports_mte())
933		return mte_save_tags(page);
934	return 0;
935}
936
937#define __HAVE_ARCH_SWAP_INVALIDATE
938static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
939{
940	if (system_supports_mte())
941		mte_invalidate_tags(type, offset);
942}
943
944static inline void arch_swap_invalidate_area(int type)
945{
946	if (system_supports_mte())
947		mte_invalidate_tags_area(type);
948}
949
950#define __HAVE_ARCH_SWAP_RESTORE
951static inline void arch_swap_restore(swp_entry_t entry, struct page *page)
952{
953	if (system_supports_mte() && mte_restore_tags(entry, page))
954		set_bit(PG_mte_tagged, &page->flags);
955}
956
957#endif /* CONFIG_ARM64_MTE */
958
959/*
960 * On AArch64, the cache coherency is handled via the set_pte_at() function.
961 */
962static inline void update_mmu_cache(struct vm_area_struct *vma,
963				    unsigned long addr, pte_t *ptep)
964{
965	/*
966	 * We don't do anything here, so there's a very small chance of
967	 * us retaking a user fault which we just fixed up. The alternative
968	 * is doing a dsb(ishst), but that penalises the fastpath.
969	 */
970}
971
972#define update_mmu_cache_pmd(vma, address, pmd) do { } while (0)
973
974#ifdef CONFIG_ARM64_PA_BITS_52
975#define phys_to_ttbr(addr)	(((addr) | ((addr) >> 46)) & TTBR_BADDR_MASK_52)
976#else
977#define phys_to_ttbr(addr)	(addr)
978#endif
979
980/*
981 * On arm64 without hardware Access Flag, copying from user will fail because
982 * the pte is old and cannot be marked young. So we always end up with zeroed
983 * page after fork() + CoW for pfn mappings. We don't always have a
984 * hardware-managed access flag on arm64.
985 */
986static inline bool arch_faults_on_old_pte(void)
987{
988	WARN_ON(preemptible());
989
990	return !cpu_has_hw_af();
991}
992#define arch_faults_on_old_pte arch_faults_on_old_pte
993
994#endif /* !__ASSEMBLY__ */
995
996#endif /* __ASM_PGTABLE_H */
997