1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Based on arch/arm/include/asm/mmu_context.h 4 * 5 * Copyright (C) 1996 Russell King. 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8#ifndef __ASM_MMU_CONTEXT_H 9#define __ASM_MMU_CONTEXT_H 10 11#ifndef __ASSEMBLY__ 12 13#include <linux/compiler.h> 14#include <linux/sched.h> 15#include <linux/sched/hotplug.h> 16#include <linux/mm_types.h> 17#include <linux/pgtable.h> 18 19#include <asm/cacheflush.h> 20#include <asm/cpufeature.h> 21#include <asm/proc-fns.h> 22#include <asm-generic/mm_hooks.h> 23#include <asm/cputype.h> 24#include <asm/sysreg.h> 25#include <asm/tlbflush.h> 26 27extern bool rodata_full; 28 29static inline void contextidr_thread_switch(struct task_struct *next) 30{ 31 if (!IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR)) 32 return; 33 34 write_sysreg(task_pid_nr(next), contextidr_el1); 35 isb(); 36} 37 38/* 39 * Set TTBR0 to reserved_pg_dir. No translations will be possible via TTBR0. 40 */ 41static inline void cpu_set_reserved_ttbr0(void) 42{ 43 unsigned long ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); 44 45 write_sysreg(ttbr, ttbr0_el1); 46 isb(); 47} 48 49void cpu_do_switch_mm(phys_addr_t pgd_phys, struct mm_struct *mm); 50 51static inline void cpu_switch_mm(pgd_t *pgd, struct mm_struct *mm) 52{ 53 BUG_ON(pgd == swapper_pg_dir); 54 cpu_set_reserved_ttbr0(); 55 cpu_do_switch_mm(virt_to_phys(pgd),mm); 56} 57 58/* 59 * TCR.T0SZ value to use when the ID map is active. Usually equals 60 * TCR_T0SZ(VA_BITS), unless system RAM is positioned very high in 61 * physical memory, in which case it will be smaller. 62 */ 63extern u64 idmap_t0sz; 64extern u64 idmap_ptrs_per_pgd; 65 66static inline bool __cpu_uses_extended_idmap(void) 67{ 68 return unlikely(idmap_t0sz != TCR_T0SZ(vabits_actual)); 69} 70 71/* 72 * True if the extended ID map requires an extra level of translation table 73 * to be configured. 74 */ 75static inline bool __cpu_uses_extended_idmap_level(void) 76{ 77 return ARM64_HW_PGTABLE_LEVELS(64 - idmap_t0sz) > CONFIG_PGTABLE_LEVELS; 78} 79 80/* 81 * Set TCR.T0SZ to its default value (based on VA_BITS) 82 */ 83static inline void __cpu_set_tcr_t0sz(unsigned long t0sz) 84{ 85 unsigned long tcr; 86 87 if (!__cpu_uses_extended_idmap()) 88 return; 89 90 tcr = read_sysreg(tcr_el1); 91 tcr &= ~TCR_T0SZ_MASK; 92 tcr |= t0sz << TCR_T0SZ_OFFSET; 93 write_sysreg(tcr, tcr_el1); 94 isb(); 95} 96 97#define cpu_set_default_tcr_t0sz() __cpu_set_tcr_t0sz(TCR_T0SZ(vabits_actual)) 98#define cpu_set_idmap_tcr_t0sz() __cpu_set_tcr_t0sz(idmap_t0sz) 99 100/* 101 * Remove the idmap from TTBR0_EL1 and install the pgd of the active mm. 102 * 103 * The idmap lives in the same VA range as userspace, but uses global entries 104 * and may use a different TCR_EL1.T0SZ. To avoid issues resulting from 105 * speculative TLB fetches, we must temporarily install the reserved page 106 * tables while we invalidate the TLBs and set up the correct TCR_EL1.T0SZ. 107 * 108 * If current is a not a user task, the mm covers the TTBR1_EL1 page tables, 109 * which should not be installed in TTBR0_EL1. In this case we can leave the 110 * reserved page tables in place. 111 */ 112static inline void cpu_uninstall_idmap(void) 113{ 114 struct mm_struct *mm = current->active_mm; 115 116 cpu_set_reserved_ttbr0(); 117 local_flush_tlb_all(); 118 cpu_set_default_tcr_t0sz(); 119 120 if (mm != &init_mm && !system_uses_ttbr0_pan()) 121 cpu_switch_mm(mm->pgd, mm); 122} 123 124static inline void cpu_install_idmap(void) 125{ 126 cpu_set_reserved_ttbr0(); 127 local_flush_tlb_all(); 128 cpu_set_idmap_tcr_t0sz(); 129 130 cpu_switch_mm(lm_alias(idmap_pg_dir), &init_mm); 131} 132 133/* 134 * Atomically replaces the active TTBR1_EL1 PGD with a new VA-compatible PGD, 135 * avoiding the possibility of conflicting TLB entries being allocated. 136 */ 137static inline void __nocfi cpu_replace_ttbr1(pgd_t *pgdp) 138{ 139 typedef void (ttbr_replace_func)(phys_addr_t); 140 extern ttbr_replace_func idmap_cpu_replace_ttbr1; 141 ttbr_replace_func *replace_phys; 142 143 /* phys_to_ttbr() zeros lower 2 bits of ttbr with 52-bit PA */ 144 phys_addr_t ttbr1 = phys_to_ttbr(virt_to_phys(pgdp)); 145 146 if (system_supports_cnp() && !WARN_ON(pgdp != lm_alias(swapper_pg_dir))) { 147 /* 148 * cpu_replace_ttbr1() is used when there's a boot CPU 149 * up (i.e. cpufeature framework is not up yet) and 150 * latter only when we enable CNP via cpufeature's 151 * enable() callback. 152 * Also we rely on the cpu_hwcap bit being set before 153 * calling the enable() function. 154 */ 155 ttbr1 |= TTBR_CNP_BIT; 156 } 157 158 replace_phys = (void *)__pa_symbol(function_nocfi(idmap_cpu_replace_ttbr1)); 159 160 cpu_install_idmap(); 161 replace_phys(ttbr1); 162 cpu_uninstall_idmap(); 163} 164 165/* 166 * It would be nice to return ASIDs back to the allocator, but unfortunately 167 * that introduces a race with a generation rollover where we could erroneously 168 * free an ASID allocated in a future generation. We could workaround this by 169 * freeing the ASID from the context of the dying mm (e.g. in arch_exit_mmap), 170 * but we'd then need to make sure that we didn't dirty any TLBs afterwards. 171 * Setting a reserved TTBR0 or EPD0 would work, but it all gets ugly when you 172 * take CPU migration into account. 173 */ 174#define destroy_context(mm) do { } while(0) 175void check_and_switch_context(struct mm_struct *mm); 176 177static inline int 178init_new_context(struct task_struct *tsk, struct mm_struct *mm) 179{ 180 atomic64_set(&mm->context.id, 0); 181 refcount_set(&mm->context.pinned, 0); 182 return 0; 183} 184 185#ifdef CONFIG_ARM64_SW_TTBR0_PAN 186static inline void update_saved_ttbr0(struct task_struct *tsk, 187 struct mm_struct *mm) 188{ 189 u64 ttbr; 190 191 if (!system_uses_ttbr0_pan()) 192 return; 193 194 if (mm == &init_mm) 195 ttbr = phys_to_ttbr(__pa_symbol(reserved_pg_dir)); 196 else 197 ttbr = phys_to_ttbr(virt_to_phys(mm->pgd)) | ASID(mm) << 48; 198 199 WRITE_ONCE(task_thread_info(tsk)->ttbr0, ttbr); 200} 201#else 202static inline void update_saved_ttbr0(struct task_struct *tsk, 203 struct mm_struct *mm) 204{ 205} 206#endif 207 208static inline void 209enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk) 210{ 211 /* 212 * We don't actually care about the ttbr0 mapping, so point it at the 213 * zero page. 214 */ 215 update_saved_ttbr0(tsk, &init_mm); 216} 217 218static inline void __switch_mm(struct mm_struct *next) 219{ 220 /* 221 * init_mm.pgd does not contain any user mappings and it is always 222 * active for kernel addresses in TTBR1. Just set the reserved TTBR0. 223 */ 224 if (next == &init_mm) { 225 cpu_set_reserved_ttbr0(); 226 return; 227 } 228 229 check_and_switch_context(next); 230} 231 232static inline void 233switch_mm(struct mm_struct *prev, struct mm_struct *next, 234 struct task_struct *tsk) 235{ 236 if (prev != next) 237 __switch_mm(next); 238 239 /* 240 * Update the saved TTBR0_EL1 of the scheduled-in task as the previous 241 * value may have not been initialised yet (activate_mm caller) or the 242 * ASID has changed since the last run (following the context switch 243 * of another thread of the same process). 244 */ 245 update_saved_ttbr0(tsk, next); 246} 247 248#define deactivate_mm(tsk,mm) do { } while (0) 249#define activate_mm(prev,next) switch_mm(prev, next, current) 250 251void verify_cpu_asid_bits(void); 252void post_ttbr_update_workaround(void); 253 254unsigned long arm64_mm_context_get(struct mm_struct *mm); 255void arm64_mm_context_put(struct mm_struct *mm); 256 257#endif /* !__ASSEMBLY__ */ 258 259#endif /* !__ASM_MMU_CONTEXT_H */ 260