1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
4 */
5
6#ifndef __ASM_CPUFEATURE_H
7#define __ASM_CPUFEATURE_H
8
9#include <asm/cpucaps.h>
10#include <asm/cputype.h>
11#include <asm/hwcap.h>
12#include <asm/sysreg.h>
13
14#define MAX_CPU_FEATURES	64
15#define cpu_feature(x)		KERNEL_HWCAP_ ## x
16
17#ifndef __ASSEMBLY__
18
19#include <linux/bug.h>
20#include <linux/jump_label.h>
21#include <linux/kernel.h>
22
23/*
24 * CPU feature register tracking
25 *
26 * The safe value of a CPUID feature field is dependent on the implications
27 * of the values assigned to it by the architecture. Based on the relationship
28 * between the values, the features are classified into 3 types - LOWER_SAFE,
29 * HIGHER_SAFE and EXACT.
30 *
31 * The lowest value of all the CPUs is chosen for LOWER_SAFE and highest
32 * for HIGHER_SAFE. It is expected that all CPUs have the same value for
33 * a field when EXACT is specified, failing which, the safe value specified
34 * in the table is chosen.
35 */
36
37enum ftr_type {
38	FTR_EXACT,			/* Use a predefined safe value */
39	FTR_LOWER_SAFE,			/* Smaller value is safe */
40	FTR_HIGHER_SAFE,		/* Bigger value is safe */
41	FTR_HIGHER_OR_ZERO_SAFE,	/* Bigger value is safe, but 0 is biggest */
42};
43
44#define FTR_STRICT	true	/* SANITY check strict matching required */
45#define FTR_NONSTRICT	false	/* SANITY check ignored */
46
47#define FTR_SIGNED	true	/* Value should be treated as signed */
48#define FTR_UNSIGNED	false	/* Value should be treated as unsigned */
49
50#define FTR_VISIBLE	true	/* Feature visible to the user space */
51#define FTR_HIDDEN	false	/* Feature is hidden from the user */
52
53#define FTR_VISIBLE_IF_IS_ENABLED(config)		\
54	(IS_ENABLED(config) ? FTR_VISIBLE : FTR_HIDDEN)
55
56struct arm64_ftr_bits {
57	bool		sign;	/* Value is signed ? */
58	bool		visible;
59	bool		strict;	/* CPU Sanity check: strict matching required ? */
60	enum ftr_type	type;
61	u8		shift;
62	u8		width;
63	s64		safe_val; /* safe value for FTR_EXACT features */
64};
65
66/*
67 * @arm64_ftr_reg - Feature register
68 * @strict_mask		Bits which should match across all CPUs for sanity.
69 * @sys_val		Safe value across the CPUs (system view)
70 */
71struct arm64_ftr_reg {
72	const char			*name;
73	u64				strict_mask;
74	u64				user_mask;
75	u64				sys_val;
76	u64				user_val;
77	const struct arm64_ftr_bits	*ftr_bits;
78};
79
80extern struct arm64_ftr_reg arm64_ftr_reg_ctrel0;
81
82/*
83 * CPU capabilities:
84 *
85 * We use arm64_cpu_capabilities to represent system features, errata work
86 * arounds (both used internally by kernel and tracked in cpu_hwcaps) and
87 * ELF HWCAPs (which are exposed to user).
88 *
89 * To support systems with heterogeneous CPUs, we need to make sure that we
90 * detect the capabilities correctly on the system and take appropriate
91 * measures to ensure there are no incompatibilities.
92 *
93 * This comment tries to explain how we treat the capabilities.
94 * Each capability has the following list of attributes :
95 *
96 * 1) Scope of Detection : The system detects a given capability by
97 *    performing some checks at runtime. This could be, e.g, checking the
98 *    value of a field in CPU ID feature register or checking the cpu
99 *    model. The capability provides a call back ( @matches() ) to
100 *    perform the check. Scope defines how the checks should be performed.
101 *    There are three cases:
102 *
103 *     a) SCOPE_LOCAL_CPU: check all the CPUs and "detect" if at least one
104 *        matches. This implies, we have to run the check on all the
105 *        booting CPUs, until the system decides that state of the
106 *        capability is finalised. (See section 2 below)
107 *		Or
108 *     b) SCOPE_SYSTEM: check all the CPUs and "detect" if all the CPUs
109 *        matches. This implies, we run the check only once, when the
110 *        system decides to finalise the state of the capability. If the
111 *        capability relies on a field in one of the CPU ID feature
112 *        registers, we use the sanitised value of the register from the
113 *        CPU feature infrastructure to make the decision.
114 *		Or
115 *     c) SCOPE_BOOT_CPU: Check only on the primary boot CPU to detect the
116 *        feature. This category is for features that are "finalised"
117 *        (or used) by the kernel very early even before the SMP cpus
118 *        are brought up.
119 *
120 *    The process of detection is usually denoted by "update" capability
121 *    state in the code.
122 *
123 * 2) Finalise the state : The kernel should finalise the state of a
124 *    capability at some point during its execution and take necessary
125 *    actions if any. Usually, this is done, after all the boot-time
126 *    enabled CPUs are brought up by the kernel, so that it can make
127 *    better decision based on the available set of CPUs. However, there
128 *    are some special cases, where the action is taken during the early
129 *    boot by the primary boot CPU. (e.g, running the kernel at EL2 with
130 *    Virtualisation Host Extensions). The kernel usually disallows any
131 *    changes to the state of a capability once it finalises the capability
132 *    and takes any action, as it may be impossible to execute the actions
133 *    safely. A CPU brought up after a capability is "finalised" is
134 *    referred to as "Late CPU" w.r.t the capability. e.g, all secondary
135 *    CPUs are treated "late CPUs" for capabilities determined by the boot
136 *    CPU.
137 *
138 *    At the moment there are two passes of finalising the capabilities.
139 *      a) Boot CPU scope capabilities - Finalised by primary boot CPU via
140 *         setup_boot_cpu_capabilities().
141 *      b) Everything except (a) - Run via setup_system_capabilities().
142 *
143 * 3) Verification: When a CPU is brought online (e.g, by user or by the
144 *    kernel), the kernel should make sure that it is safe to use the CPU,
145 *    by verifying that the CPU is compliant with the state of the
146 *    capabilities finalised already. This happens via :
147 *
148 *	secondary_start_kernel()-> check_local_cpu_capabilities()
149 *
150 *    As explained in (2) above, capabilities could be finalised at
151 *    different points in the execution. Each newly booted CPU is verified
152 *    against the capabilities that have been finalised by the time it
153 *    boots.
154 *
155 *	a) SCOPE_BOOT_CPU : All CPUs are verified against the capability
156 *	except for the primary boot CPU.
157 *
158 *	b) SCOPE_LOCAL_CPU, SCOPE_SYSTEM: All CPUs hotplugged on by the
159 *	user after the kernel boot are verified against the capability.
160 *
161 *    If there is a conflict, the kernel takes an action, based on the
162 *    severity (e.g, a CPU could be prevented from booting or cause a
163 *    kernel panic). The CPU is allowed to "affect" the state of the
164 *    capability, if it has not been finalised already. See section 5
165 *    for more details on conflicts.
166 *
167 * 4) Action: As mentioned in (2), the kernel can take an action for each
168 *    detected capability, on all CPUs on the system. Appropriate actions
169 *    include, turning on an architectural feature, modifying the control
170 *    registers (e.g, SCTLR, TCR etc.) or patching the kernel via
171 *    alternatives. The kernel patching is batched and performed at later
172 *    point. The actions are always initiated only after the capability
173 *    is finalised. This is usally denoted by "enabling" the capability.
174 *    The actions are initiated as follows :
175 *	a) Action is triggered on all online CPUs, after the capability is
176 *	finalised, invoked within the stop_machine() context from
177 *	enable_cpu_capabilitie().
178 *
179 *	b) Any late CPU, brought up after (1), the action is triggered via:
180 *
181 *	  check_local_cpu_capabilities() -> verify_local_cpu_capabilities()
182 *
183 * 5) Conflicts: Based on the state of the capability on a late CPU vs.
184 *    the system state, we could have the following combinations :
185 *
186 *		x-----------------------------x
187 *		| Type  | System   | Late CPU |
188 *		|-----------------------------|
189 *		|  a    |   y      |    n     |
190 *		|-----------------------------|
191 *		|  b    |   n      |    y     |
192 *		x-----------------------------x
193 *
194 *     Two separate flag bits are defined to indicate whether each kind of
195 *     conflict can be allowed:
196 *		ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU - Case(a) is allowed
197 *		ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU - Case(b) is allowed
198 *
199 *     Case (a) is not permitted for a capability that the system requires
200 *     all CPUs to have in order for the capability to be enabled. This is
201 *     typical for capabilities that represent enhanced functionality.
202 *
203 *     Case (b) is not permitted for a capability that must be enabled
204 *     during boot if any CPU in the system requires it in order to run
205 *     safely. This is typical for erratum work arounds that cannot be
206 *     enabled after the corresponding capability is finalised.
207 *
208 *     In some non-typical cases either both (a) and (b), or neither,
209 *     should be permitted. This can be described by including neither
210 *     or both flags in the capability's type field.
211 *
212 *     In case of a conflict, the CPU is prevented from booting. If the
213 *     ARM64_CPUCAP_PANIC_ON_CONFLICT flag is specified for the capability,
214 *     then a kernel panic is triggered.
215 */
216
217
218/*
219 * Decide how the capability is detected.
220 * On any local CPU vs System wide vs the primary boot CPU
221 */
222#define ARM64_CPUCAP_SCOPE_LOCAL_CPU		((u16)BIT(0))
223#define ARM64_CPUCAP_SCOPE_SYSTEM		((u16)BIT(1))
224/*
225 * The capabilitiy is detected on the Boot CPU and is used by kernel
226 * during early boot. i.e, the capability should be "detected" and
227 * "enabled" as early as possibly on all booting CPUs.
228 */
229#define ARM64_CPUCAP_SCOPE_BOOT_CPU		((u16)BIT(2))
230#define ARM64_CPUCAP_SCOPE_MASK			\
231	(ARM64_CPUCAP_SCOPE_SYSTEM	|	\
232	 ARM64_CPUCAP_SCOPE_LOCAL_CPU	|	\
233	 ARM64_CPUCAP_SCOPE_BOOT_CPU)
234
235#define SCOPE_SYSTEM				ARM64_CPUCAP_SCOPE_SYSTEM
236#define SCOPE_LOCAL_CPU				ARM64_CPUCAP_SCOPE_LOCAL_CPU
237#define SCOPE_BOOT_CPU				ARM64_CPUCAP_SCOPE_BOOT_CPU
238#define SCOPE_ALL				ARM64_CPUCAP_SCOPE_MASK
239
240/*
241 * Is it permitted for a late CPU to have this capability when system
242 * hasn't already enabled it ?
243 */
244#define ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU	((u16)BIT(4))
245/* Is it safe for a late CPU to miss this capability when system has it */
246#define ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	((u16)BIT(5))
247/* Panic when a conflict is detected */
248#define ARM64_CPUCAP_PANIC_ON_CONFLICT		((u16)BIT(6))
249
250/*
251 * CPU errata workarounds that need to be enabled at boot time if one or
252 * more CPUs in the system requires it. When one of these capabilities
253 * has been enabled, it is safe to allow any CPU to boot that doesn't
254 * require the workaround. However, it is not safe if a "late" CPU
255 * requires a workaround and the system hasn't enabled it already.
256 */
257#define ARM64_CPUCAP_LOCAL_CPU_ERRATUM		\
258	(ARM64_CPUCAP_SCOPE_LOCAL_CPU | ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
259/*
260 * CPU feature detected at boot time based on system-wide value of a
261 * feature. It is safe for a late CPU to have this feature even though
262 * the system hasn't enabled it, although the feature will not be used
263 * by Linux in this case. If the system has enabled this feature already,
264 * then every late CPU must have it.
265 */
266#define ARM64_CPUCAP_SYSTEM_FEATURE	\
267	(ARM64_CPUCAP_SCOPE_SYSTEM | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
268/*
269 * CPU feature detected at boot time based on feature of one or more CPUs.
270 * All possible conflicts for a late CPU are ignored.
271 * NOTE: this means that a late CPU with the feature will *not* cause the
272 * capability to be advertised by cpus_have_*cap()!
273 */
274#define ARM64_CPUCAP_WEAK_LOCAL_CPU_FEATURE		\
275	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
276	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU	|	\
277	 ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
278
279/*
280 * CPU feature detected at boot time, on one or more CPUs. A late CPU
281 * is not allowed to have the capability when the system doesn't have it.
282 * It is Ok for a late CPU to miss the feature.
283 */
284#define ARM64_CPUCAP_BOOT_RESTRICTED_CPU_LOCAL_FEATURE	\
285	(ARM64_CPUCAP_SCOPE_LOCAL_CPU		|	\
286	 ARM64_CPUCAP_OPTIONAL_FOR_LATE_CPU)
287
288/*
289 * CPU feature used early in the boot based on the boot CPU. All secondary
290 * CPUs must match the state of the capability as detected by the boot CPU. In
291 * case of a conflict, a kernel panic is triggered.
292 */
293#define ARM64_CPUCAP_STRICT_BOOT_CPU_FEATURE		\
294	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PANIC_ON_CONFLICT)
295
296/*
297 * CPU feature used early in the boot based on the boot CPU. It is safe for a
298 * late CPU to have this feature even though the boot CPU hasn't enabled it,
299 * although the feature will not be used by Linux in this case. If the boot CPU
300 * has enabled this feature already, then every late CPU must have it.
301 */
302#define ARM64_CPUCAP_BOOT_CPU_FEATURE                  \
303	(ARM64_CPUCAP_SCOPE_BOOT_CPU | ARM64_CPUCAP_PERMITTED_FOR_LATE_CPU)
304
305struct arm64_cpu_capabilities {
306	const char *desc;
307	u16 capability;
308	u16 type;
309	bool (*matches)(const struct arm64_cpu_capabilities *caps, int scope);
310	/*
311	 * Take the appropriate actions to configure this capability
312	 * for this CPU. If the capability is detected by the kernel
313	 * this will be called on all the CPUs in the system,
314	 * including the hotplugged CPUs, regardless of whether the
315	 * capability is available on that specific CPU. This is
316	 * useful for some capabilities (e.g, working around CPU
317	 * errata), where all the CPUs must take some action (e.g,
318	 * changing system control/configuration). Thus, if an action
319	 * is required only if the CPU has the capability, then the
320	 * routine must check it before taking any action.
321	 */
322	void (*cpu_enable)(const struct arm64_cpu_capabilities *cap);
323	union {
324		struct {	/* To be used for erratum handling only */
325			struct midr_range midr_range;
326			const struct arm64_midr_revidr {
327				u32 midr_rv;		/* revision/variant */
328				u32 revidr_mask;
329			} * const fixed_revs;
330		};
331
332		const struct midr_range *midr_range_list;
333		struct {	/* Feature register checking */
334			u32 sys_reg;
335			u8 field_pos;
336			u8 min_field_value;
337			u8 hwcap_type;
338			bool sign;
339			unsigned long hwcap;
340		};
341	};
342
343	/*
344	 * An optional list of "matches/cpu_enable" pair for the same
345	 * "capability" of the same "type" as described by the parent.
346	 * Only matches(), cpu_enable() and fields relevant to these
347	 * methods are significant in the list. The cpu_enable is
348	 * invoked only if the corresponding entry "matches()".
349	 * However, if a cpu_enable() method is associated
350	 * with multiple matches(), care should be taken that either
351	 * the match criteria are mutually exclusive, or that the
352	 * method is robust against being called multiple times.
353	 */
354	const struct arm64_cpu_capabilities *match_list;
355};
356
357static inline int cpucap_default_scope(const struct arm64_cpu_capabilities *cap)
358{
359	return cap->type & ARM64_CPUCAP_SCOPE_MASK;
360}
361
362/*
363 * Generic helper for handling capabilities with multiple (match,enable) pairs
364 * of call backs, sharing the same capability bit.
365 * Iterate over each entry to see if at least one matches.
366 */
367static inline bool
368cpucap_multi_entry_cap_matches(const struct arm64_cpu_capabilities *entry,
369			       int scope)
370{
371	const struct arm64_cpu_capabilities *caps;
372
373	for (caps = entry->match_list; caps->matches; caps++)
374		if (caps->matches(caps, scope))
375			return true;
376
377	return false;
378}
379
380static __always_inline bool is_vhe_hyp_code(void)
381{
382	/* Only defined for code run in VHE hyp context */
383	return __is_defined(__KVM_VHE_HYPERVISOR__);
384}
385
386static __always_inline bool is_nvhe_hyp_code(void)
387{
388	/* Only defined for code run in NVHE hyp context */
389	return __is_defined(__KVM_NVHE_HYPERVISOR__);
390}
391
392static __always_inline bool is_hyp_code(void)
393{
394	return is_vhe_hyp_code() || is_nvhe_hyp_code();
395}
396
397extern DECLARE_BITMAP(cpu_hwcaps, ARM64_NCAPS);
398extern struct static_key_false cpu_hwcap_keys[ARM64_NCAPS];
399extern struct static_key_false arm64_const_caps_ready;
400
401/* ARM64 CAPS + alternative_cb */
402#define ARM64_NPATCHABLE (ARM64_NCAPS + 1)
403extern DECLARE_BITMAP(boot_capabilities, ARM64_NPATCHABLE);
404
405#define for_each_available_cap(cap)		\
406	for_each_set_bit(cap, cpu_hwcaps, ARM64_NCAPS)
407
408bool this_cpu_has_cap(unsigned int cap);
409void cpu_set_feature(unsigned int num);
410bool cpu_have_feature(unsigned int num);
411unsigned long cpu_get_elf_hwcap(void);
412unsigned long cpu_get_elf_hwcap2(void);
413
414#define cpu_set_named_feature(name) cpu_set_feature(cpu_feature(name))
415#define cpu_have_named_feature(name) cpu_have_feature(cpu_feature(name))
416
417static __always_inline bool system_capabilities_finalized(void)
418{
419	return static_branch_likely(&arm64_const_caps_ready);
420}
421
422/*
423 * Test for a capability with a runtime check.
424 *
425 * Before the capability is detected, this returns false.
426 */
427static inline bool cpus_have_cap(unsigned int num)
428{
429	if (num >= ARM64_NCAPS)
430		return false;
431	return test_bit(num, cpu_hwcaps);
432}
433
434/*
435 * Test for a capability without a runtime check.
436 *
437 * Before capabilities are finalized, this returns false.
438 * After capabilities are finalized, this is patched to avoid a runtime check.
439 *
440 * @num must be a compile-time constant.
441 */
442static __always_inline bool __cpus_have_const_cap(int num)
443{
444	if (num >= ARM64_NCAPS)
445		return false;
446	return static_branch_unlikely(&cpu_hwcap_keys[num]);
447}
448
449/*
450 * Test for a capability without a runtime check.
451 *
452 * Before capabilities are finalized, this will BUG().
453 * After capabilities are finalized, this is patched to avoid a runtime check.
454 *
455 * @num must be a compile-time constant.
456 */
457static __always_inline bool cpus_have_final_cap(int num)
458{
459	if (system_capabilities_finalized())
460		return __cpus_have_const_cap(num);
461	else
462		BUG();
463}
464
465/*
466 * Test for a capability, possibly with a runtime check for non-hyp code.
467 *
468 * For hyp code, this behaves the same as cpus_have_final_cap().
469 *
470 * For non-hyp code:
471 * Before capabilities are finalized, this behaves as cpus_have_cap().
472 * After capabilities are finalized, this is patched to avoid a runtime check.
473 *
474 * @num must be a compile-time constant.
475 */
476static __always_inline bool cpus_have_const_cap(int num)
477{
478	if (is_hyp_code())
479		return cpus_have_final_cap(num);
480	else if (system_capabilities_finalized())
481		return __cpus_have_const_cap(num);
482	else
483		return cpus_have_cap(num);
484}
485
486static inline void cpus_set_cap(unsigned int num)
487{
488	if (num >= ARM64_NCAPS) {
489		pr_warn("Attempt to set an illegal CPU capability (%d >= %d)\n",
490			num, ARM64_NCAPS);
491	} else {
492		__set_bit(num, cpu_hwcaps);
493	}
494}
495
496static inline int __attribute_const__
497cpuid_feature_extract_signed_field_width(u64 features, int field, int width)
498{
499	return (s64)(features << (64 - width - field)) >> (64 - width);
500}
501
502static inline int __attribute_const__
503cpuid_feature_extract_signed_field(u64 features, int field)
504{
505	return cpuid_feature_extract_signed_field_width(features, field, 4);
506}
507
508static __always_inline unsigned int __attribute_const__
509cpuid_feature_extract_unsigned_field_width(u64 features, int field, int width)
510{
511	return (u64)(features << (64 - width - field)) >> (64 - width);
512}
513
514static __always_inline unsigned int __attribute_const__
515cpuid_feature_extract_unsigned_field(u64 features, int field)
516{
517	return cpuid_feature_extract_unsigned_field_width(features, field, 4);
518}
519
520/*
521 * Fields that identify the version of the Performance Monitors Extension do
522 * not follow the standard ID scheme. See ARM DDI 0487E.a page D13-2825,
523 * "Alternative ID scheme used for the Performance Monitors Extension version".
524 */
525static inline u64 __attribute_const__
526cpuid_feature_cap_perfmon_field(u64 features, int field, u64 cap)
527{
528	u64 val = cpuid_feature_extract_unsigned_field(features, field);
529	u64 mask = GENMASK_ULL(field + 3, field);
530
531	/* Treat IMPLEMENTATION DEFINED functionality as unimplemented */
532	if (val == 0xf)
533		val = 0;
534
535	if (val > cap) {
536		features &= ~mask;
537		features |= (cap << field) & mask;
538	}
539
540	return features;
541}
542
543static inline u64 arm64_ftr_mask(const struct arm64_ftr_bits *ftrp)
544{
545	return (u64)GENMASK(ftrp->shift + ftrp->width - 1, ftrp->shift);
546}
547
548static inline u64 arm64_ftr_reg_user_value(const struct arm64_ftr_reg *reg)
549{
550	return (reg->user_val | (reg->sys_val & reg->user_mask));
551}
552
553static inline int __attribute_const__
554cpuid_feature_extract_field_width(u64 features, int field, int width, bool sign)
555{
556	return (sign) ?
557		cpuid_feature_extract_signed_field_width(features, field, width) :
558		cpuid_feature_extract_unsigned_field_width(features, field, width);
559}
560
561static inline int __attribute_const__
562cpuid_feature_extract_field(u64 features, int field, bool sign)
563{
564	return cpuid_feature_extract_field_width(features, field, 4, sign);
565}
566
567static inline s64 arm64_ftr_value(const struct arm64_ftr_bits *ftrp, u64 val)
568{
569	return (s64)cpuid_feature_extract_field_width(val, ftrp->shift, ftrp->width, ftrp->sign);
570}
571
572static inline bool id_aa64mmfr0_mixed_endian_el0(u64 mmfr0)
573{
574	return cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL_SHIFT) == 0x1 ||
575		cpuid_feature_extract_unsigned_field(mmfr0, ID_AA64MMFR0_BIGENDEL0_SHIFT) == 0x1;
576}
577
578static inline bool id_aa64pfr0_32bit_el1(u64 pfr0)
579{
580	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL1_SHIFT);
581
582	return val == ID_AA64PFR0_EL1_32BIT_64BIT;
583}
584
585static inline bool id_aa64pfr0_32bit_el0(u64 pfr0)
586{
587	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_EL0_SHIFT);
588
589	return val == ID_AA64PFR0_EL0_32BIT_64BIT;
590}
591
592static inline bool id_aa64pfr0_sve(u64 pfr0)
593{
594	u32 val = cpuid_feature_extract_unsigned_field(pfr0, ID_AA64PFR0_SVE_SHIFT);
595
596	return val > 0;
597}
598
599void __init setup_cpu_features(void);
600void check_local_cpu_capabilities(void);
601
602u64 read_sanitised_ftr_reg(u32 id);
603
604static inline bool cpu_supports_mixed_endian_el0(void)
605{
606	return id_aa64mmfr0_mixed_endian_el0(read_cpuid(ID_AA64MMFR0_EL1));
607}
608
609static inline bool supports_csv2p3(int scope)
610{
611	u64 pfr0;
612	u8 csv2_val;
613
614	if (scope == SCOPE_LOCAL_CPU)
615		pfr0 = read_sysreg_s(SYS_ID_AA64PFR0_EL1);
616	else
617		pfr0 = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
618
619	csv2_val = cpuid_feature_extract_unsigned_field(pfr0,
620							ID_AA64PFR0_CSV2_SHIFT);
621	return csv2_val == 3;
622}
623
624static inline bool supports_clearbhb(int scope)
625{
626	u64 isar2;
627
628	if (scope == SCOPE_LOCAL_CPU)
629		isar2 = read_sysreg_s(SYS_ID_AA64ISAR2_EL1);
630	else
631		isar2 = read_sanitised_ftr_reg(SYS_ID_AA64ISAR2_EL1);
632
633	return cpuid_feature_extract_unsigned_field(isar2,
634						    ID_AA64ISAR2_CLEARBHB_SHIFT);
635}
636
637static inline bool system_supports_32bit_el0(void)
638{
639	return cpus_have_const_cap(ARM64_HAS_32BIT_EL0);
640}
641
642static inline bool system_supports_4kb_granule(void)
643{
644	u64 mmfr0;
645	u32 val;
646
647	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
648	val = cpuid_feature_extract_unsigned_field(mmfr0,
649						ID_AA64MMFR0_TGRAN4_SHIFT);
650
651	return (val >= ID_AA64MMFR0_TGRAN4_SUPPORTED_MIN) &&
652	       (val <= ID_AA64MMFR0_TGRAN4_SUPPORTED_MAX);
653}
654
655static inline bool system_supports_64kb_granule(void)
656{
657	u64 mmfr0;
658	u32 val;
659
660	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
661	val = cpuid_feature_extract_unsigned_field(mmfr0,
662						ID_AA64MMFR0_TGRAN64_SHIFT);
663
664	return (val >= ID_AA64MMFR0_TGRAN64_SUPPORTED_MIN) &&
665	       (val <= ID_AA64MMFR0_TGRAN64_SUPPORTED_MAX);
666}
667
668static inline bool system_supports_16kb_granule(void)
669{
670	u64 mmfr0;
671	u32 val;
672
673	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
674	val = cpuid_feature_extract_unsigned_field(mmfr0,
675						ID_AA64MMFR0_TGRAN16_SHIFT);
676
677	return (val >= ID_AA64MMFR0_TGRAN16_SUPPORTED_MIN) &&
678	       (val <= ID_AA64MMFR0_TGRAN16_SUPPORTED_MAX);
679}
680
681static inline bool system_supports_mixed_endian_el0(void)
682{
683	return id_aa64mmfr0_mixed_endian_el0(read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1));
684}
685
686static inline bool system_supports_mixed_endian(void)
687{
688	u64 mmfr0;
689	u32 val;
690
691	mmfr0 =	read_sanitised_ftr_reg(SYS_ID_AA64MMFR0_EL1);
692	val = cpuid_feature_extract_unsigned_field(mmfr0,
693						ID_AA64MMFR0_BIGENDEL_SHIFT);
694
695	return val == 0x1;
696}
697
698static __always_inline bool system_supports_fpsimd(void)
699{
700	return !cpus_have_const_cap(ARM64_HAS_NO_FPSIMD);
701}
702
703static inline bool system_uses_ttbr0_pan(void)
704{
705	return IS_ENABLED(CONFIG_ARM64_SW_TTBR0_PAN) &&
706		!cpus_have_const_cap(ARM64_HAS_PAN);
707}
708
709static __always_inline bool system_supports_sve(void)
710{
711	return IS_ENABLED(CONFIG_ARM64_SVE) &&
712		cpus_have_const_cap(ARM64_SVE);
713}
714
715static __always_inline bool system_supports_cnp(void)
716{
717	return IS_ENABLED(CONFIG_ARM64_CNP) &&
718		cpus_have_const_cap(ARM64_HAS_CNP);
719}
720
721static inline bool system_supports_address_auth(void)
722{
723	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
724		cpus_have_const_cap(ARM64_HAS_ADDRESS_AUTH);
725}
726
727static inline bool system_supports_generic_auth(void)
728{
729	return IS_ENABLED(CONFIG_ARM64_PTR_AUTH) &&
730		cpus_have_const_cap(ARM64_HAS_GENERIC_AUTH);
731}
732
733static __always_inline bool system_uses_irq_prio_masking(void)
734{
735	return IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) &&
736	       cpus_have_const_cap(ARM64_HAS_IRQ_PRIO_MASKING);
737}
738
739static inline bool system_supports_mte(void)
740{
741	return IS_ENABLED(CONFIG_ARM64_MTE) &&
742		cpus_have_const_cap(ARM64_MTE);
743}
744
745static inline bool system_has_prio_mask_debugging(void)
746{
747	return IS_ENABLED(CONFIG_ARM64_DEBUG_PRIORITY_MASKING) &&
748	       system_uses_irq_prio_masking();
749}
750
751static inline bool system_supports_bti(void)
752{
753	return IS_ENABLED(CONFIG_ARM64_BTI) && cpus_have_const_cap(ARM64_BTI);
754}
755
756static inline bool system_supports_tlb_range(void)
757{
758	return IS_ENABLED(CONFIG_ARM64_TLB_RANGE) &&
759		cpus_have_const_cap(ARM64_HAS_TLB_RANGE);
760}
761
762int do_emulate_mrs(struct pt_regs *regs, u32 sys_reg, u32 rt);
763bool try_emulate_mrs(struct pt_regs *regs, u32 isn);
764
765static inline u32 id_aa64mmfr0_parange_to_phys_shift(int parange)
766{
767	switch (parange) {
768	case 0: return 32;
769	case 1: return 36;
770	case 2: return 40;
771	case 3: return 42;
772	case 4: return 44;
773	case 5: return 48;
774	case 6: return 52;
775	/*
776	 * A future PE could use a value unknown to the kernel.
777	 * However, by the "D10.1.4 Principles of the ID scheme
778	 * for fields in ID registers", ARM DDI 0487C.a, any new
779	 * value is guaranteed to be higher than what we know already.
780	 * As a safe limit, we return the limit supported by the kernel.
781	 */
782	default: return CONFIG_ARM64_PA_BITS;
783	}
784}
785
786/* Check whether hardware update of the Access flag is supported */
787static inline bool cpu_has_hw_af(void)
788{
789	u64 mmfr1;
790
791	if (!IS_ENABLED(CONFIG_ARM64_HW_AFDBM))
792		return false;
793
794	mmfr1 = read_cpuid(ID_AA64MMFR1_EL1);
795	return cpuid_feature_extract_unsigned_field(mmfr1,
796						ID_AA64MMFR1_HADBS_SHIFT);
797}
798
799#ifdef CONFIG_ARM64_AMU_EXTN
800/* Check whether the cpu supports the Activity Monitors Unit (AMU) */
801extern bool cpu_has_amu_feat(int cpu);
802#endif
803
804static inline unsigned int get_vmid_bits(u64 mmfr1)
805{
806	int vmid_bits;
807
808	vmid_bits = cpuid_feature_extract_unsigned_field(mmfr1,
809						ID_AA64MMFR1_VMIDBITS_SHIFT);
810	if (vmid_bits == ID_AA64MMFR1_VMIDBITS_16)
811		return 16;
812
813	/*
814	 * Return the default here even if any reserved
815	 * value is fetched from the system register.
816	 */
817	return 8;
818}
819
820u32 get_kvm_ipa_limit(void);
821void dump_cpu_features(void);
822
823#endif /* __ASSEMBLY__ */
824
825#endif
826