xref: /kernel/linux/linux-5.10/arch/arm/vfp/vfpmodule.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/arm/vfp/vfpmodule.c
4 *
5 *  Copyright (C) 2004 ARM Limited.
6 *  Written by Deep Blue Solutions Limited.
7 */
8#include <linux/types.h>
9#include <linux/cpu.h>
10#include <linux/cpu_pm.h>
11#include <linux/hardirq.h>
12#include <linux/kernel.h>
13#include <linux/notifier.h>
14#include <linux/signal.h>
15#include <linux/sched/signal.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/uaccess.h>
19#include <linux/user.h>
20#include <linux/export.h>
21
22#include <asm/cp15.h>
23#include <asm/cputype.h>
24#include <asm/system_info.h>
25#include <asm/thread_notify.h>
26#include <asm/traps.h>
27#include <asm/vfp.h>
28
29#include "vfpinstr.h"
30#include "vfp.h"
31
32/*
33 * Our undef handlers (in entry.S)
34 */
35asmlinkage void vfp_support_entry(void);
36asmlinkage void vfp_null_entry(void);
37
38asmlinkage void (*vfp_vector)(void) = vfp_null_entry;
39
40/*
41 * Dual-use variable.
42 * Used in startup: set to non-zero if VFP checks fail
43 * After startup, holds VFP architecture
44 */
45static unsigned int __initdata VFP_arch;
46
47/*
48 * The pointer to the vfpstate structure of the thread which currently
49 * owns the context held in the VFP hardware, or NULL if the hardware
50 * context is invalid.
51 *
52 * For UP, this is sufficient to tell which thread owns the VFP context.
53 * However, for SMP, we also need to check the CPU number stored in the
54 * saved state too to catch migrations.
55 */
56union vfp_state *vfp_current_hw_state[NR_CPUS];
57
58/*
59 * Is 'thread's most up to date state stored in this CPUs hardware?
60 * Must be called from non-preemptible context.
61 */
62static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
63{
64#ifdef CONFIG_SMP
65	if (thread->vfpstate.hard.cpu != cpu)
66		return false;
67#endif
68	return vfp_current_hw_state[cpu] == &thread->vfpstate;
69}
70
71/*
72 * Force a reload of the VFP context from the thread structure.  We do
73 * this by ensuring that access to the VFP hardware is disabled, and
74 * clear vfp_current_hw_state.  Must be called from non-preemptible context.
75 */
76static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
77{
78	if (vfp_state_in_hw(cpu, thread)) {
79		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
80		vfp_current_hw_state[cpu] = NULL;
81	}
82#ifdef CONFIG_SMP
83	thread->vfpstate.hard.cpu = NR_CPUS;
84#endif
85}
86
87/*
88 * Per-thread VFP initialization.
89 */
90static void vfp_thread_flush(struct thread_info *thread)
91{
92	union vfp_state *vfp = &thread->vfpstate;
93	unsigned int cpu;
94
95	/*
96	 * Disable VFP to ensure we initialize it first.  We must ensure
97	 * that the modification of vfp_current_hw_state[] and hardware
98	 * disable are done for the same CPU and without preemption.
99	 *
100	 * Do this first to ensure that preemption won't overwrite our
101	 * state saving should access to the VFP be enabled at this point.
102	 */
103	cpu = get_cpu();
104	if (vfp_current_hw_state[cpu] == vfp)
105		vfp_current_hw_state[cpu] = NULL;
106	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
107	put_cpu();
108
109	memset(vfp, 0, sizeof(union vfp_state));
110
111	vfp->hard.fpexc = FPEXC_EN;
112	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
113#ifdef CONFIG_SMP
114	vfp->hard.cpu = NR_CPUS;
115#endif
116}
117
118static void vfp_thread_exit(struct thread_info *thread)
119{
120	/* release case: Per-thread VFP cleanup. */
121	union vfp_state *vfp = &thread->vfpstate;
122	unsigned int cpu = get_cpu();
123
124	if (vfp_current_hw_state[cpu] == vfp)
125		vfp_current_hw_state[cpu] = NULL;
126	put_cpu();
127}
128
129static void vfp_thread_copy(struct thread_info *thread)
130{
131	struct thread_info *parent = current_thread_info();
132
133	vfp_sync_hwstate(parent);
134	thread->vfpstate = parent->vfpstate;
135#ifdef CONFIG_SMP
136	thread->vfpstate.hard.cpu = NR_CPUS;
137#endif
138}
139
140/*
141 * When this function is called with the following 'cmd's, the following
142 * is true while this function is being run:
143 *  THREAD_NOFTIFY_SWTICH:
144 *   - the previously running thread will not be scheduled onto another CPU.
145 *   - the next thread to be run (v) will not be running on another CPU.
146 *   - thread->cpu is the local CPU number
147 *   - not preemptible as we're called in the middle of a thread switch
148 *  THREAD_NOTIFY_FLUSH:
149 *   - the thread (v) will be running on the local CPU, so
150 *	v === current_thread_info()
151 *   - thread->cpu is the local CPU number at the time it is accessed,
152 *	but may change at any time.
153 *   - we could be preempted if tree preempt rcu is enabled, so
154 *	it is unsafe to use thread->cpu.
155 *  THREAD_NOTIFY_EXIT
156 *   - we could be preempted if tree preempt rcu is enabled, so
157 *	it is unsafe to use thread->cpu.
158 */
159static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
160{
161	struct thread_info *thread = v;
162	u32 fpexc;
163#ifdef CONFIG_SMP
164	unsigned int cpu;
165#endif
166
167	switch (cmd) {
168	case THREAD_NOTIFY_SWITCH:
169		fpexc = fmrx(FPEXC);
170
171#ifdef CONFIG_SMP
172		cpu = thread->cpu;
173
174		/*
175		 * On SMP, if VFP is enabled, save the old state in
176		 * case the thread migrates to a different CPU. The
177		 * restoring is done lazily.
178		 */
179		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
180			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
181#endif
182
183		/*
184		 * Always disable VFP so we can lazily save/restore the
185		 * old state.
186		 */
187		fmxr(FPEXC, fpexc & ~FPEXC_EN);
188		break;
189
190	case THREAD_NOTIFY_FLUSH:
191		vfp_thread_flush(thread);
192		break;
193
194	case THREAD_NOTIFY_EXIT:
195		vfp_thread_exit(thread);
196		break;
197
198	case THREAD_NOTIFY_COPY:
199		vfp_thread_copy(thread);
200		break;
201	}
202
203	return NOTIFY_DONE;
204}
205
206static struct notifier_block vfp_notifier_block = {
207	.notifier_call	= vfp_notifier,
208};
209
210/*
211 * Raise a SIGFPE for the current process.
212 * sicode describes the signal being raised.
213 */
214static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
215{
216	/*
217	 * This is the same as NWFPE, because it's not clear what
218	 * this is used for
219	 */
220	current->thread.error_code = 0;
221	current->thread.trap_no = 6;
222
223	send_sig_fault(SIGFPE, sicode,
224		       (void __user *)(instruction_pointer(regs) - 4),
225		       current);
226}
227
228static void vfp_panic(char *reason, u32 inst)
229{
230	int i;
231
232	pr_err("VFP: Error: %s\n", reason);
233	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
234		fmrx(FPEXC), fmrx(FPSCR), inst);
235	for (i = 0; i < 32; i += 2)
236		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
237		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
238}
239
240/*
241 * Process bitmask of exception conditions.
242 */
243static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
244{
245	int si_code = 0;
246
247	pr_debug("VFP: raising exceptions %08x\n", exceptions);
248
249	if (exceptions == VFP_EXCEPTION_ERROR) {
250		vfp_panic("unhandled bounce", inst);
251		vfp_raise_sigfpe(FPE_FLTINV, regs);
252		return;
253	}
254
255	/*
256	 * If any of the status flags are set, update the FPSCR.
257	 * Comparison instructions always return at least one of
258	 * these flags set.
259	 */
260	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
261		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
262
263	fpscr |= exceptions;
264
265	fmxr(FPSCR, fpscr);
266
267#define RAISE(stat,en,sig)				\
268	if (exceptions & stat && fpscr & en)		\
269		si_code = sig;
270
271	/*
272	 * These are arranged in priority order, least to highest.
273	 */
274	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
275	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
276	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
277	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
278	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
279
280	if (si_code)
281		vfp_raise_sigfpe(si_code, regs);
282}
283
284/*
285 * Emulate a VFP instruction.
286 */
287static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
288{
289	u32 exceptions = VFP_EXCEPTION_ERROR;
290
291	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
292
293	if (INST_CPRTDO(inst)) {
294		if (!INST_CPRT(inst)) {
295			/*
296			 * CPDO
297			 */
298			if (vfp_single(inst)) {
299				exceptions = vfp_single_cpdo(inst, fpscr);
300			} else {
301				exceptions = vfp_double_cpdo(inst, fpscr);
302			}
303		} else {
304			/*
305			 * A CPRT instruction can not appear in FPINST2, nor
306			 * can it cause an exception.  Therefore, we do not
307			 * have to emulate it.
308			 */
309		}
310	} else {
311		/*
312		 * A CPDT instruction can not appear in FPINST2, nor can
313		 * it cause an exception.  Therefore, we do not have to
314		 * emulate it.
315		 */
316	}
317	return exceptions & ~VFP_NAN_FLAG;
318}
319
320/*
321 * Package up a bounce condition.
322 */
323void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
324{
325	u32 fpscr, orig_fpscr, fpsid, exceptions;
326
327	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
328
329	/*
330	 * At this point, FPEXC can have the following configuration:
331	 *
332	 *  EX DEX IXE
333	 *  0   1   x   - synchronous exception
334	 *  1   x   0   - asynchronous exception
335	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
336	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
337	 *                implementation), undefined otherwise
338	 *
339	 * Clear various bits and enable access to the VFP so we can
340	 * handle the bounce.
341	 */
342	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
343
344	fpsid = fmrx(FPSID);
345	orig_fpscr = fpscr = fmrx(FPSCR);
346
347	/*
348	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
349	 */
350	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
351	    && (fpscr & FPSCR_IXE)) {
352		/*
353		 * Synchronous exception, emulate the trigger instruction
354		 */
355		goto emulate;
356	}
357
358	if (fpexc & FPEXC_EX) {
359#ifndef CONFIG_CPU_FEROCEON
360		/*
361		 * Asynchronous exception. The instruction is read from FPINST
362		 * and the interrupted instruction has to be restarted.
363		 */
364		trigger = fmrx(FPINST);
365		regs->ARM_pc -= 4;
366#endif
367	} else if (!(fpexc & FPEXC_DEX)) {
368		/*
369		 * Illegal combination of bits. It can be caused by an
370		 * unallocated VFP instruction but with FPSCR.IXE set and not
371		 * on VFP subarch 1.
372		 */
373		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
374		goto exit;
375	}
376
377	/*
378	 * Modify fpscr to indicate the number of iterations remaining.
379	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
380	 * whether FPEXC.VECITR or FPSCR.LEN is used.
381	 */
382	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
383		u32 len;
384
385		len = fpexc + (1 << FPEXC_LENGTH_BIT);
386
387		fpscr &= ~FPSCR_LENGTH_MASK;
388		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
389	}
390
391	/*
392	 * Handle the first FP instruction.  We used to take note of the
393	 * FPEXC bounce reason, but this appears to be unreliable.
394	 * Emulate the bounced instruction instead.
395	 */
396	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
397	if (exceptions)
398		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
399
400	/*
401	 * If there isn't a second FP instruction, exit now. Note that
402	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
403	 */
404	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
405		goto exit;
406
407	/*
408	 * The barrier() here prevents fpinst2 being read
409	 * before the condition above.
410	 */
411	barrier();
412	trigger = fmrx(FPINST2);
413
414 emulate:
415	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
416	if (exceptions)
417		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
418 exit:
419	preempt_enable();
420}
421
422static void vfp_enable(void *unused)
423{
424	u32 access;
425
426	BUG_ON(preemptible());
427	access = get_copro_access();
428
429	/*
430	 * Enable full access to VFP (cp10 and cp11)
431	 */
432	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
433}
434
435/* Called by platforms on which we want to disable VFP because it may not be
436 * present on all CPUs within a SMP complex. Needs to be called prior to
437 * vfp_init().
438 */
439void __init vfp_disable(void)
440{
441	if (VFP_arch) {
442		pr_debug("%s: should be called prior to vfp_init\n", __func__);
443		return;
444	}
445	VFP_arch = 1;
446}
447
448#ifdef CONFIG_CPU_PM
449static int vfp_pm_suspend(void)
450{
451	struct thread_info *ti = current_thread_info();
452	u32 fpexc = fmrx(FPEXC);
453
454	/* if vfp is on, then save state for resumption */
455	if (fpexc & FPEXC_EN) {
456		pr_debug("%s: saving vfp state\n", __func__);
457		vfp_save_state(&ti->vfpstate, fpexc);
458
459		/* disable, just in case */
460		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
461	} else if (vfp_current_hw_state[ti->cpu]) {
462#ifndef CONFIG_SMP
463		fmxr(FPEXC, fpexc | FPEXC_EN);
464		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
465		fmxr(FPEXC, fpexc);
466#endif
467	}
468
469	/* clear any information we had about last context state */
470	vfp_current_hw_state[ti->cpu] = NULL;
471
472	return 0;
473}
474
475static void vfp_pm_resume(void)
476{
477	/* ensure we have access to the vfp */
478	vfp_enable(NULL);
479
480	/* and disable it to ensure the next usage restores the state */
481	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
482}
483
484static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
485	void *v)
486{
487	switch (cmd) {
488	case CPU_PM_ENTER:
489		vfp_pm_suspend();
490		break;
491	case CPU_PM_ENTER_FAILED:
492	case CPU_PM_EXIT:
493		vfp_pm_resume();
494		break;
495	}
496	return NOTIFY_OK;
497}
498
499static struct notifier_block vfp_cpu_pm_notifier_block = {
500	.notifier_call = vfp_cpu_pm_notifier,
501};
502
503static void vfp_pm_init(void)
504{
505	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
506}
507
508#else
509static inline void vfp_pm_init(void) { }
510#endif /* CONFIG_CPU_PM */
511
512/*
513 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
514 * with the hardware state.
515 */
516void vfp_sync_hwstate(struct thread_info *thread)
517{
518	unsigned int cpu = get_cpu();
519
520	if (vfp_state_in_hw(cpu, thread)) {
521		u32 fpexc = fmrx(FPEXC);
522
523		/*
524		 * Save the last VFP state on this CPU.
525		 */
526		fmxr(FPEXC, fpexc | FPEXC_EN);
527		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
528		fmxr(FPEXC, fpexc);
529	}
530
531	put_cpu();
532}
533
534/* Ensure that the thread reloads the hardware VFP state on the next use. */
535void vfp_flush_hwstate(struct thread_info *thread)
536{
537	unsigned int cpu = get_cpu();
538
539	vfp_force_reload(cpu, thread);
540
541	put_cpu();
542}
543
544/*
545 * Save the current VFP state into the provided structures and prepare
546 * for entry into a new function (signal handler).
547 */
548int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
549				    struct user_vfp_exc *ufp_exc)
550{
551	struct thread_info *thread = current_thread_info();
552	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
553
554	/* Ensure that the saved hwstate is up-to-date. */
555	vfp_sync_hwstate(thread);
556
557	/*
558	 * Copy the floating point registers. There can be unused
559	 * registers see asm/hwcap.h for details.
560	 */
561	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
562
563	/*
564	 * Copy the status and control register.
565	 */
566	ufp->fpscr = hwstate->fpscr;
567
568	/*
569	 * Copy the exception registers.
570	 */
571	ufp_exc->fpexc = hwstate->fpexc;
572	ufp_exc->fpinst = hwstate->fpinst;
573	ufp_exc->fpinst2 = hwstate->fpinst2;
574
575	/* Ensure that VFP is disabled. */
576	vfp_flush_hwstate(thread);
577
578	/*
579	 * As per the PCS, clear the length and stride bits for function
580	 * entry.
581	 */
582	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
583	return 0;
584}
585
586/* Sanitise and restore the current VFP state from the provided structures. */
587int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
588{
589	struct thread_info *thread = current_thread_info();
590	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
591	unsigned long fpexc;
592
593	/* Disable VFP to avoid corrupting the new thread state. */
594	vfp_flush_hwstate(thread);
595
596	/*
597	 * Copy the floating point registers. There can be unused
598	 * registers see asm/hwcap.h for details.
599	 */
600	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
601	/*
602	 * Copy the status and control register.
603	 */
604	hwstate->fpscr = ufp->fpscr;
605
606	/*
607	 * Sanitise and restore the exception registers.
608	 */
609	fpexc = ufp_exc->fpexc;
610
611	/* Ensure the VFP is enabled. */
612	fpexc |= FPEXC_EN;
613
614	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
615	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
616	hwstate->fpexc = fpexc;
617
618	hwstate->fpinst = ufp_exc->fpinst;
619	hwstate->fpinst2 = ufp_exc->fpinst2;
620
621	return 0;
622}
623
624/*
625 * VFP hardware can lose all context when a CPU goes offline.
626 * As we will be running in SMP mode with CPU hotplug, we will save the
627 * hardware state at every thread switch.  We clear our held state when
628 * a CPU has been killed, indicating that the VFP hardware doesn't contain
629 * a threads VFP state.  When a CPU starts up, we re-enable access to the
630 * VFP hardware. The callbacks below are called on the CPU which
631 * is being offlined/onlined.
632 */
633static int vfp_dying_cpu(unsigned int cpu)
634{
635	vfp_current_hw_state[cpu] = NULL;
636	return 0;
637}
638
639static int vfp_starting_cpu(unsigned int unused)
640{
641	vfp_enable(NULL);
642	return 0;
643}
644
645#ifdef CONFIG_KERNEL_MODE_NEON
646
647static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
648{
649	/*
650	 * If we reach this point, a floating point exception has been raised
651	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
652	 * time, it means a VFP instruction has been issued that requires
653	 * software assistance to complete, something which is not currently
654	 * supported in kernel mode.
655	 * If the NEON/VFP unit was disabled, and the location pointed to below
656	 * is properly preceded by a call to kernel_neon_begin(), something has
657	 * caused the task to be scheduled out and back in again. In this case,
658	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
659	 * be helpful in localizing the problem.
660	 */
661	if (fmrx(FPEXC) & FPEXC_EN)
662		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
663	else
664		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
665	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
666	return 1;
667}
668
669static struct undef_hook vfp_kmode_exception_hook[] = {{
670	.instr_mask	= 0xfe000000,
671	.instr_val	= 0xf2000000,
672	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
673	.cpsr_val	= SVC_MODE,
674	.fn		= vfp_kmode_exception,
675}, {
676	.instr_mask	= 0xff100000,
677	.instr_val	= 0xf4000000,
678	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
679	.cpsr_val	= SVC_MODE,
680	.fn		= vfp_kmode_exception,
681}, {
682	.instr_mask	= 0xef000000,
683	.instr_val	= 0xef000000,
684	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
685	.cpsr_val	= SVC_MODE | PSR_T_BIT,
686	.fn		= vfp_kmode_exception,
687}, {
688	.instr_mask	= 0xff100000,
689	.instr_val	= 0xf9000000,
690	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
691	.cpsr_val	= SVC_MODE | PSR_T_BIT,
692	.fn		= vfp_kmode_exception,
693}, {
694	.instr_mask	= 0x0c000e00,
695	.instr_val	= 0x0c000a00,
696	.cpsr_mask	= MODE_MASK,
697	.cpsr_val	= SVC_MODE,
698	.fn		= vfp_kmode_exception,
699}};
700
701static int __init vfp_kmode_exception_hook_init(void)
702{
703	int i;
704
705	for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
706		register_undef_hook(&vfp_kmode_exception_hook[i]);
707	return 0;
708}
709subsys_initcall(vfp_kmode_exception_hook_init);
710
711/*
712 * Kernel-side NEON support functions
713 */
714void kernel_neon_begin(void)
715{
716	struct thread_info *thread = current_thread_info();
717	unsigned int cpu;
718	u32 fpexc;
719
720	/*
721	 * Kernel mode NEON is only allowed outside of interrupt context
722	 * with preemption disabled. This will make sure that the kernel
723	 * mode NEON register contents never need to be preserved.
724	 */
725	BUG_ON(in_interrupt());
726	cpu = get_cpu();
727
728	fpexc = fmrx(FPEXC) | FPEXC_EN;
729	fmxr(FPEXC, fpexc);
730
731	/*
732	 * Save the userland NEON/VFP state. Under UP,
733	 * the owner could be a task other than 'current'
734	 */
735	if (vfp_state_in_hw(cpu, thread))
736		vfp_save_state(&thread->vfpstate, fpexc);
737#ifndef CONFIG_SMP
738	else if (vfp_current_hw_state[cpu] != NULL)
739		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
740#endif
741	vfp_current_hw_state[cpu] = NULL;
742}
743EXPORT_SYMBOL(kernel_neon_begin);
744
745void kernel_neon_end(void)
746{
747	/* Disable the NEON/VFP unit. */
748	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
749	put_cpu();
750}
751EXPORT_SYMBOL(kernel_neon_end);
752
753#endif /* CONFIG_KERNEL_MODE_NEON */
754
755static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
756{
757	VFP_arch = UINT_MAX;	/* mark as not present */
758	regs->ARM_pc += 4;
759	return 0;
760}
761
762static struct undef_hook vfp_detect_hook __initdata = {
763	.instr_mask	= 0x0c000e00,
764	.instr_val	= 0x0c000a00,
765	.cpsr_mask	= MODE_MASK,
766	.cpsr_val	= SVC_MODE,
767	.fn		= vfp_detect,
768};
769
770/*
771 * VFP support code initialisation.
772 */
773static int __init vfp_init(void)
774{
775	unsigned int vfpsid;
776	unsigned int cpu_arch = cpu_architecture();
777
778	/*
779	 * Enable the access to the VFP on all online CPUs so the
780	 * following test on FPSID will succeed.
781	 */
782	if (cpu_arch >= CPU_ARCH_ARMv6)
783		on_each_cpu(vfp_enable, NULL, 1);
784
785	/*
786	 * First check that there is a VFP that we can use.
787	 * The handler is already setup to just log calls, so
788	 * we just need to read the VFPSID register.
789	 */
790	register_undef_hook(&vfp_detect_hook);
791	barrier();
792	vfpsid = fmrx(FPSID);
793	barrier();
794	unregister_undef_hook(&vfp_detect_hook);
795	vfp_vector = vfp_null_entry;
796
797	pr_info("VFP support v0.3: ");
798	if (VFP_arch) {
799		pr_cont("not present\n");
800		return 0;
801	/* Extract the architecture on CPUID scheme */
802	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
803		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
804		VFP_arch >>= FPSID_ARCH_BIT;
805		/*
806		 * Check for the presence of the Advanced SIMD
807		 * load/store instructions, integer and single
808		 * precision floating point operations. Only check
809		 * for NEON if the hardware has the MVFR registers.
810		 */
811		if (IS_ENABLED(CONFIG_NEON) &&
812		   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
813			elf_hwcap |= HWCAP_NEON;
814
815		if (IS_ENABLED(CONFIG_VFPv3)) {
816			u32 mvfr0 = fmrx(MVFR0);
817			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
818			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
819				elf_hwcap |= HWCAP_VFPv3;
820				/*
821				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
822				 * this configuration only have 16 x 64bit
823				 * registers.
824				 */
825				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
826					/* also v4-D16 */
827					elf_hwcap |= HWCAP_VFPv3D16;
828				else
829					elf_hwcap |= HWCAP_VFPD32;
830			}
831
832			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
833				elf_hwcap |= HWCAP_VFPv4;
834		}
835	/* Extract the architecture version on pre-cpuid scheme */
836	} else {
837		if (vfpsid & FPSID_NODOUBLE) {
838			pr_cont("no double precision support\n");
839			return 0;
840		}
841
842		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
843	}
844
845	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
846				  "arm/vfp:starting", vfp_starting_cpu,
847				  vfp_dying_cpu);
848
849	vfp_vector = vfp_support_entry;
850
851	thread_register_notifier(&vfp_notifier_block);
852	vfp_pm_init();
853
854	/*
855	 * We detected VFP, and the support code is
856	 * in place; report VFP support to userspace.
857	 */
858	elf_hwcap |= HWCAP_VFP;
859
860	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
861		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
862		VFP_arch,
863		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
864		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
865		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
866
867	return 0;
868}
869
870core_initcall(vfp_init);
871