xref: /kernel/linux/linux-5.10/arch/arm/mm/fault.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/arch/arm/mm/fault.c
4 *
5 *  Copyright (C) 1995  Linus Torvalds
6 *  Modifications for ARM processor (c) 1995-2004 Russell King
7 */
8#include <linux/extable.h>
9#include <linux/signal.h>
10#include <linux/mm.h>
11#include <linux/hardirq.h>
12#include <linux/init.h>
13#include <linux/kprobes.h>
14#include <linux/uaccess.h>
15#include <linux/page-flags.h>
16#include <linux/sched/signal.h>
17#include <linux/sched/debug.h>
18#include <linux/highmem.h>
19#include <linux/perf_event.h>
20
21#include <asm/system_misc.h>
22#include <asm/system_info.h>
23#include <asm/tlbflush.h>
24
25#include "fault.h"
26
27#ifdef CONFIG_MMU
28
29/*
30 * This is useful to dump out the page tables associated with
31 * 'addr' in mm 'mm'.
32 */
33void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
34{
35	pgd_t *pgd;
36
37	if (!mm)
38		mm = &init_mm;
39
40	pgd = pgd_offset(mm, addr);
41	printk("%s[%08lx] *pgd=%08llx", lvl, addr, (long long)pgd_val(*pgd));
42
43	do {
44		p4d_t *p4d;
45		pud_t *pud;
46		pmd_t *pmd;
47		pte_t *pte;
48
49		p4d = p4d_offset(pgd, addr);
50		if (p4d_none(*p4d))
51			break;
52
53		if (p4d_bad(*p4d)) {
54			pr_cont("(bad)");
55			break;
56		}
57
58		pud = pud_offset(p4d, addr);
59		if (PTRS_PER_PUD != 1)
60			pr_cont(", *pud=%08llx", (long long)pud_val(*pud));
61
62		if (pud_none(*pud))
63			break;
64
65		if (pud_bad(*pud)) {
66			pr_cont("(bad)");
67			break;
68		}
69
70		pmd = pmd_offset(pud, addr);
71		if (PTRS_PER_PMD != 1)
72			pr_cont(", *pmd=%08llx", (long long)pmd_val(*pmd));
73
74		if (pmd_none(*pmd))
75			break;
76
77		if (pmd_bad(*pmd)) {
78			pr_cont("(bad)");
79			break;
80		}
81
82		/* We must not map this if we have highmem enabled */
83		if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
84			break;
85
86		pte = pte_offset_map(pmd, addr);
87		pr_cont(", *pte=%08llx", (long long)pte_val(*pte));
88#ifndef CONFIG_ARM_LPAE
89		pr_cont(", *ppte=%08llx",
90		       (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
91#endif
92		pte_unmap(pte);
93	} while(0);
94
95	pr_cont("\n");
96}
97#else					/* CONFIG_MMU */
98void show_pte(const char *lvl, struct mm_struct *mm, unsigned long addr)
99{ }
100#endif					/* CONFIG_MMU */
101
102static void die_kernel_fault(const char *msg, struct mm_struct *mm,
103			     unsigned long addr, unsigned int fsr,
104			     struct pt_regs *regs)
105{
106	bust_spinlocks(1);
107	pr_alert("8<--- cut here ---\n");
108	pr_alert("Unable to handle kernel %s at virtual address %08lx\n",
109		 msg, addr);
110
111	show_pte(KERN_ALERT, mm, addr);
112	die("Oops", regs, fsr);
113	bust_spinlocks(0);
114	make_task_dead(SIGKILL);
115}
116
117/*
118 * Oops.  The kernel tried to access some page that wasn't present.
119 */
120static void
121__do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
122		  struct pt_regs *regs)
123{
124	const char *msg;
125	/*
126	 * Are we prepared to handle this kernel fault?
127	 */
128	if (fixup_exception(regs))
129		return;
130
131	/*
132	 * No handler, we'll have to terminate things with extreme prejudice.
133	 */
134	if (addr < PAGE_SIZE)
135		msg = "NULL pointer dereference";
136	else
137		msg = "paging request";
138
139	die_kernel_fault(msg, mm, addr, fsr, regs);
140}
141
142/*
143 * Something tried to access memory that isn't in our memory map..
144 * User mode accesses just cause a SIGSEGV
145 */
146static void
147__do_user_fault(unsigned long addr, unsigned int fsr, unsigned int sig,
148		int code, struct pt_regs *regs)
149{
150	struct task_struct *tsk = current;
151
152	if (addr > TASK_SIZE)
153		harden_branch_predictor();
154
155#ifdef CONFIG_DEBUG_USER
156	if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
157	    ((user_debug & UDBG_BUS)  && (sig == SIGBUS))) {
158		pr_err("8<--- cut here ---\n");
159		pr_err("%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
160		       tsk->comm, sig, addr, fsr);
161		show_pte(KERN_ERR, tsk->mm, addr);
162		show_regs(regs);
163	}
164#endif
165#ifndef CONFIG_KUSER_HELPERS
166	if ((sig == SIGSEGV) && ((addr & PAGE_MASK) == 0xffff0000))
167		printk_ratelimited(KERN_DEBUG
168				   "%s: CONFIG_KUSER_HELPERS disabled at 0x%08lx\n",
169				   tsk->comm, addr);
170#endif
171
172	tsk->thread.address = addr;
173	tsk->thread.error_code = fsr;
174	tsk->thread.trap_no = 14;
175	force_sig_fault(sig, code, (void __user *)addr);
176}
177
178void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
179{
180	struct task_struct *tsk = current;
181	struct mm_struct *mm = tsk->active_mm;
182
183	/*
184	 * If we are in kernel mode at this point, we
185	 * have no context to handle this fault with.
186	 */
187	if (user_mode(regs))
188		__do_user_fault(addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
189	else
190		__do_kernel_fault(mm, addr, fsr, regs);
191}
192
193#ifdef CONFIG_MMU
194#define VM_FAULT_BADMAP		0x010000
195#define VM_FAULT_BADACCESS	0x020000
196
197static inline bool is_permission_fault(unsigned int fsr)
198{
199	int fs = fsr_fs(fsr);
200#ifdef CONFIG_ARM_LPAE
201	if ((fs & FS_PERM_NOLL_MASK) == FS_PERM_NOLL)
202		return true;
203#else
204	if (fs == FS_L1_PERM || fs == FS_L2_PERM)
205		return true;
206#endif
207	return false;
208}
209
210static vm_fault_t __kprobes
211__do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int flags,
212		unsigned long vma_flags, struct pt_regs *regs)
213{
214	struct vm_area_struct *vma = find_vma(mm, addr);
215	if (unlikely(!vma))
216		return VM_FAULT_BADMAP;
217
218	if (unlikely(vma->vm_start > addr)) {
219		if (!(vma->vm_flags & VM_GROWSDOWN))
220			return VM_FAULT_BADMAP;
221		if (addr < FIRST_USER_ADDRESS)
222			return VM_FAULT_BADMAP;
223		if (expand_stack(vma, addr))
224			return VM_FAULT_BADMAP;
225	}
226
227	/*
228	 * ok, we have a good vm_area for this memory access, check the
229	 * permissions on the VMA allow for the fault which occurred.
230	 */
231	if (!(vma->vm_flags & vma_flags))
232		return VM_FAULT_BADACCESS;
233
234	return handle_mm_fault(vma, addr & PAGE_MASK, flags, regs);
235}
236
237static int __kprobes
238do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
239{
240	struct mm_struct *mm = current->mm;
241	int sig, code;
242	vm_fault_t fault;
243	unsigned int flags = FAULT_FLAG_DEFAULT;
244	unsigned long vm_flags = VM_ACCESS_FLAGS;
245
246	if (kprobe_page_fault(regs, fsr))
247		return 0;
248
249
250	/* Enable interrupts if they were enabled in the parent context. */
251	if (interrupts_enabled(regs))
252		local_irq_enable();
253
254	/*
255	 * If we're in an interrupt or have no user
256	 * context, we must not take the fault..
257	 */
258	if (faulthandler_disabled() || !mm)
259		goto no_context;
260
261	if (user_mode(regs))
262		flags |= FAULT_FLAG_USER;
263
264	if ((fsr & FSR_WRITE) && !(fsr & FSR_CM)) {
265		flags |= FAULT_FLAG_WRITE;
266		vm_flags = VM_WRITE;
267	}
268
269	if (fsr & FSR_LNX_PF) {
270		vm_flags = VM_EXEC;
271
272		if (is_permission_fault(fsr) && !user_mode(regs))
273			die_kernel_fault("execution of memory",
274					 mm, addr, fsr, regs);
275	}
276
277	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
278
279	/*
280	 * As per x86, we may deadlock here.  However, since the kernel only
281	 * validly references user space from well defined areas of the code,
282	 * we can bug out early if this is from code which shouldn't.
283	 */
284	if (!mmap_read_trylock(mm)) {
285		if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
286			goto no_context;
287retry:
288		mmap_read_lock(mm);
289	} else {
290		/*
291		 * The above down_read_trylock() might have succeeded in
292		 * which case, we'll have missed the might_sleep() from
293		 * down_read()
294		 */
295		might_sleep();
296#ifdef CONFIG_DEBUG_VM
297		if (!user_mode(regs) &&
298		    !search_exception_tables(regs->ARM_pc))
299			goto no_context;
300#endif
301	}
302
303	fault = __do_page_fault(mm, addr, flags, vm_flags, regs);
304
305	/* If we need to retry but a fatal signal is pending, handle the
306	 * signal first. We do not need to release the mmap_lock because
307	 * it would already be released in __lock_page_or_retry in
308	 * mm/filemap.c. */
309	if (fault_signal_pending(fault, regs)) {
310		if (!user_mode(regs))
311			goto no_context;
312		return 0;
313	}
314
315	if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
316		if (fault & VM_FAULT_RETRY) {
317			flags |= FAULT_FLAG_TRIED;
318			goto retry;
319		}
320	}
321
322	mmap_read_unlock(mm);
323
324	/*
325	 * Handle the "normal" case first - VM_FAULT_MAJOR
326	 */
327	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
328		return 0;
329
330	/*
331	 * If we are in kernel mode at this point, we
332	 * have no context to handle this fault with.
333	 */
334	if (!user_mode(regs))
335		goto no_context;
336
337	if (fault & VM_FAULT_OOM) {
338		/*
339		 * We ran out of memory, call the OOM killer, and return to
340		 * userspace (which will retry the fault, or kill us if we
341		 * got oom-killed)
342		 */
343		pagefault_out_of_memory();
344		return 0;
345	}
346
347	if (fault & VM_FAULT_SIGBUS) {
348		/*
349		 * We had some memory, but were unable to
350		 * successfully fix up this page fault.
351		 */
352		sig = SIGBUS;
353		code = BUS_ADRERR;
354	} else {
355		/*
356		 * Something tried to access memory that
357		 * isn't in our memory map..
358		 */
359		sig = SIGSEGV;
360		code = fault == VM_FAULT_BADACCESS ?
361			SEGV_ACCERR : SEGV_MAPERR;
362	}
363
364	__do_user_fault(addr, fsr, sig, code, regs);
365	return 0;
366
367no_context:
368	__do_kernel_fault(mm, addr, fsr, regs);
369	return 0;
370}
371#else					/* CONFIG_MMU */
372static int
373do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
374{
375	return 0;
376}
377#endif					/* CONFIG_MMU */
378
379/*
380 * First Level Translation Fault Handler
381 *
382 * We enter here because the first level page table doesn't contain
383 * a valid entry for the address.
384 *
385 * If the address is in kernel space (>= TASK_SIZE), then we are
386 * probably faulting in the vmalloc() area.
387 *
388 * If the init_task's first level page tables contains the relevant
389 * entry, we copy the it to this task.  If not, we send the process
390 * a signal, fixup the exception, or oops the kernel.
391 *
392 * NOTE! We MUST NOT take any locks for this case. We may be in an
393 * interrupt or a critical region, and should only copy the information
394 * from the master page table, nothing more.
395 */
396#ifdef CONFIG_MMU
397static int __kprobes
398do_translation_fault(unsigned long addr, unsigned int fsr,
399		     struct pt_regs *regs)
400{
401	unsigned int index;
402	pgd_t *pgd, *pgd_k;
403	p4d_t *p4d, *p4d_k;
404	pud_t *pud, *pud_k;
405	pmd_t *pmd, *pmd_k;
406
407	if (addr < TASK_SIZE)
408		return do_page_fault(addr, fsr, regs);
409
410	if (user_mode(regs))
411		goto bad_area;
412
413	index = pgd_index(addr);
414
415	pgd = cpu_get_pgd() + index;
416	pgd_k = init_mm.pgd + index;
417
418	p4d = p4d_offset(pgd, addr);
419	p4d_k = p4d_offset(pgd_k, addr);
420
421	if (p4d_none(*p4d_k))
422		goto bad_area;
423	if (!p4d_present(*p4d))
424		set_p4d(p4d, *p4d_k);
425
426	pud = pud_offset(p4d, addr);
427	pud_k = pud_offset(p4d_k, addr);
428
429	if (pud_none(*pud_k))
430		goto bad_area;
431	if (!pud_present(*pud))
432		set_pud(pud, *pud_k);
433
434	pmd = pmd_offset(pud, addr);
435	pmd_k = pmd_offset(pud_k, addr);
436
437#ifdef CONFIG_ARM_LPAE
438	/*
439	 * Only one hardware entry per PMD with LPAE.
440	 */
441	index = 0;
442#else
443	/*
444	 * On ARM one Linux PGD entry contains two hardware entries (see page
445	 * tables layout in pgtable.h). We normally guarantee that we always
446	 * fill both L1 entries. But create_mapping() doesn't follow the rule.
447	 * It can create inidividual L1 entries, so here we have to call
448	 * pmd_none() check for the entry really corresponded to address, not
449	 * for the first of pair.
450	 */
451	index = (addr >> SECTION_SHIFT) & 1;
452#endif
453	if (pmd_none(pmd_k[index]))
454		goto bad_area;
455
456	copy_pmd(pmd, pmd_k);
457	return 0;
458
459bad_area:
460	do_bad_area(addr, fsr, regs);
461	return 0;
462}
463#else					/* CONFIG_MMU */
464static int
465do_translation_fault(unsigned long addr, unsigned int fsr,
466		     struct pt_regs *regs)
467{
468	return 0;
469}
470#endif					/* CONFIG_MMU */
471
472/*
473 * Some section permission faults need to be handled gracefully.
474 * They can happen due to a __{get,put}_user during an oops.
475 */
476#ifndef CONFIG_ARM_LPAE
477static int
478do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
479{
480	do_bad_area(addr, fsr, regs);
481	return 0;
482}
483#endif /* CONFIG_ARM_LPAE */
484
485/*
486 * This abort handler always returns "fault".
487 */
488static int
489do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
490{
491	return 1;
492}
493
494struct fsr_info {
495	int	(*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
496	int	sig;
497	int	code;
498	const char *name;
499};
500
501/* FSR definition */
502#ifdef CONFIG_ARM_LPAE
503#include "fsr-3level.c"
504#else
505#include "fsr-2level.c"
506#endif
507
508void __init
509hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
510		int sig, int code, const char *name)
511{
512	if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
513		BUG();
514
515	fsr_info[nr].fn   = fn;
516	fsr_info[nr].sig  = sig;
517	fsr_info[nr].code = code;
518	fsr_info[nr].name = name;
519}
520
521/*
522 * Dispatch a data abort to the relevant handler.
523 */
524asmlinkage void
525do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
526{
527	const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
528
529	if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
530		return;
531
532	pr_alert("8<--- cut here ---\n");
533	pr_alert("Unhandled fault: %s (0x%03x) at 0x%08lx\n",
534		inf->name, fsr, addr);
535	show_pte(KERN_ALERT, current->mm, addr);
536
537	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
538		       fsr, 0);
539}
540
541void __init
542hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
543		 int sig, int code, const char *name)
544{
545	if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
546		BUG();
547
548	ifsr_info[nr].fn   = fn;
549	ifsr_info[nr].sig  = sig;
550	ifsr_info[nr].code = code;
551	ifsr_info[nr].name = name;
552}
553
554asmlinkage void
555do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
556{
557	const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
558
559	if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
560		return;
561
562	pr_alert("Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
563		inf->name, ifsr, addr);
564
565	arm_notify_die("", regs, inf->sig, inf->code, (void __user *)addr,
566		       ifsr, 0);
567}
568
569/*
570 * Abort handler to be used only during first unmasking of asynchronous aborts
571 * on the boot CPU. This makes sure that the machine will not die if the
572 * firmware/bootloader left an imprecise abort pending for us to trip over.
573 */
574static int __init early_abort_handler(unsigned long addr, unsigned int fsr,
575				      struct pt_regs *regs)
576{
577	pr_warn("Hit pending asynchronous external abort (FSR=0x%08x) during "
578		"first unmask, this is most likely caused by a "
579		"firmware/bootloader bug.\n", fsr);
580
581	return 0;
582}
583
584void __init early_abt_enable(void)
585{
586	fsr_info[FSR_FS_AEA].fn = early_abort_handler;
587	local_abt_enable();
588	fsr_info[FSR_FS_AEA].fn = do_bad;
589}
590
591#ifndef CONFIG_ARM_LPAE
592static int __init exceptions_init(void)
593{
594	if (cpu_architecture() >= CPU_ARCH_ARMv6) {
595		hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
596				"I-cache maintenance fault");
597	}
598
599	if (cpu_architecture() >= CPU_ARCH_ARMv7) {
600		/*
601		 * TODO: Access flag faults introduced in ARMv6K.
602		 * Runtime check for 'K' extension is needed
603		 */
604		hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
605				"section access flag fault");
606		hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
607				"section access flag fault");
608	}
609
610	return 0;
611}
612
613arch_initcall(exceptions_init);
614#endif
615