18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci *  linux/arch/arm/mm/fault-armv.c
48c2ecf20Sopenharmony_ci *
58c2ecf20Sopenharmony_ci *  Copyright (C) 1995  Linus Torvalds
68c2ecf20Sopenharmony_ci *  Modifications for ARM processor (c) 1995-2002 Russell King
78c2ecf20Sopenharmony_ci */
88c2ecf20Sopenharmony_ci#include <linux/sched.h>
98c2ecf20Sopenharmony_ci#include <linux/kernel.h>
108c2ecf20Sopenharmony_ci#include <linux/mm.h>
118c2ecf20Sopenharmony_ci#include <linux/bitops.h>
128c2ecf20Sopenharmony_ci#include <linux/vmalloc.h>
138c2ecf20Sopenharmony_ci#include <linux/init.h>
148c2ecf20Sopenharmony_ci#include <linux/pagemap.h>
158c2ecf20Sopenharmony_ci#include <linux/gfp.h>
168c2ecf20Sopenharmony_ci
178c2ecf20Sopenharmony_ci#include <asm/bugs.h>
188c2ecf20Sopenharmony_ci#include <asm/cacheflush.h>
198c2ecf20Sopenharmony_ci#include <asm/cachetype.h>
208c2ecf20Sopenharmony_ci#include <asm/tlbflush.h>
218c2ecf20Sopenharmony_ci
228c2ecf20Sopenharmony_ci#include "mm.h"
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_cistatic pteval_t shared_pte_mask = L_PTE_MT_BUFFERABLE;
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci#if __LINUX_ARM_ARCH__ < 6
278c2ecf20Sopenharmony_ci/*
288c2ecf20Sopenharmony_ci * We take the easy way out of this problem - we make the
298c2ecf20Sopenharmony_ci * PTE uncacheable.  However, we leave the write buffer on.
308c2ecf20Sopenharmony_ci *
318c2ecf20Sopenharmony_ci * Note that the pte lock held when calling update_mmu_cache must also
328c2ecf20Sopenharmony_ci * guard the pte (somewhere else in the same mm) that we modify here.
338c2ecf20Sopenharmony_ci * Therefore those configurations which might call adjust_pte (those
348c2ecf20Sopenharmony_ci * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
358c2ecf20Sopenharmony_ci */
368c2ecf20Sopenharmony_cistatic int do_adjust_pte(struct vm_area_struct *vma, unsigned long address,
378c2ecf20Sopenharmony_ci	unsigned long pfn, pte_t *ptep)
388c2ecf20Sopenharmony_ci{
398c2ecf20Sopenharmony_ci	pte_t entry = *ptep;
408c2ecf20Sopenharmony_ci	int ret;
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci	/*
438c2ecf20Sopenharmony_ci	 * If this page is present, it's actually being shared.
448c2ecf20Sopenharmony_ci	 */
458c2ecf20Sopenharmony_ci	ret = pte_present(entry);
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_ci	/*
488c2ecf20Sopenharmony_ci	 * If this page isn't present, or is already setup to
498c2ecf20Sopenharmony_ci	 * fault (ie, is old), we can safely ignore any issues.
508c2ecf20Sopenharmony_ci	 */
518c2ecf20Sopenharmony_ci	if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
528c2ecf20Sopenharmony_ci		flush_cache_page(vma, address, pfn);
538c2ecf20Sopenharmony_ci		outer_flush_range((pfn << PAGE_SHIFT),
548c2ecf20Sopenharmony_ci				  (pfn << PAGE_SHIFT) + PAGE_SIZE);
558c2ecf20Sopenharmony_ci		pte_val(entry) &= ~L_PTE_MT_MASK;
568c2ecf20Sopenharmony_ci		pte_val(entry) |= shared_pte_mask;
578c2ecf20Sopenharmony_ci		set_pte_at(vma->vm_mm, address, ptep, entry);
588c2ecf20Sopenharmony_ci		flush_tlb_page(vma, address);
598c2ecf20Sopenharmony_ci	}
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	return ret;
628c2ecf20Sopenharmony_ci}
638c2ecf20Sopenharmony_ci
648c2ecf20Sopenharmony_ci#if USE_SPLIT_PTE_PTLOCKS
658c2ecf20Sopenharmony_ci/*
668c2ecf20Sopenharmony_ci * If we are using split PTE locks, then we need to take the page
678c2ecf20Sopenharmony_ci * lock here.  Otherwise we are using shared mm->page_table_lock
688c2ecf20Sopenharmony_ci * which is already locked, thus cannot take it.
698c2ecf20Sopenharmony_ci */
708c2ecf20Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl)
718c2ecf20Sopenharmony_ci{
728c2ecf20Sopenharmony_ci	/*
738c2ecf20Sopenharmony_ci	 * Use nested version here to indicate that we are already
748c2ecf20Sopenharmony_ci	 * holding one similar spinlock.
758c2ecf20Sopenharmony_ci	 */
768c2ecf20Sopenharmony_ci	spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
778c2ecf20Sopenharmony_ci}
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl)
808c2ecf20Sopenharmony_ci{
818c2ecf20Sopenharmony_ci	spin_unlock(ptl);
828c2ecf20Sopenharmony_ci}
838c2ecf20Sopenharmony_ci#else /* !USE_SPLIT_PTE_PTLOCKS */
848c2ecf20Sopenharmony_cistatic inline void do_pte_lock(spinlock_t *ptl) {}
858c2ecf20Sopenharmony_cistatic inline void do_pte_unlock(spinlock_t *ptl) {}
868c2ecf20Sopenharmony_ci#endif /* USE_SPLIT_PTE_PTLOCKS */
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_cistatic int adjust_pte(struct vm_area_struct *vma, unsigned long address,
898c2ecf20Sopenharmony_ci	unsigned long pfn)
908c2ecf20Sopenharmony_ci{
918c2ecf20Sopenharmony_ci	spinlock_t *ptl;
928c2ecf20Sopenharmony_ci	pgd_t *pgd;
938c2ecf20Sopenharmony_ci	p4d_t *p4d;
948c2ecf20Sopenharmony_ci	pud_t *pud;
958c2ecf20Sopenharmony_ci	pmd_t *pmd;
968c2ecf20Sopenharmony_ci	pte_t *pte;
978c2ecf20Sopenharmony_ci	int ret;
988c2ecf20Sopenharmony_ci
998c2ecf20Sopenharmony_ci	pgd = pgd_offset(vma->vm_mm, address);
1008c2ecf20Sopenharmony_ci	if (pgd_none_or_clear_bad(pgd))
1018c2ecf20Sopenharmony_ci		return 0;
1028c2ecf20Sopenharmony_ci
1038c2ecf20Sopenharmony_ci	p4d = p4d_offset(pgd, address);
1048c2ecf20Sopenharmony_ci	if (p4d_none_or_clear_bad(p4d))
1058c2ecf20Sopenharmony_ci		return 0;
1068c2ecf20Sopenharmony_ci
1078c2ecf20Sopenharmony_ci	pud = pud_offset(p4d, address);
1088c2ecf20Sopenharmony_ci	if (pud_none_or_clear_bad(pud))
1098c2ecf20Sopenharmony_ci		return 0;
1108c2ecf20Sopenharmony_ci
1118c2ecf20Sopenharmony_ci	pmd = pmd_offset(pud, address);
1128c2ecf20Sopenharmony_ci	if (pmd_none_or_clear_bad(pmd))
1138c2ecf20Sopenharmony_ci		return 0;
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	/*
1168c2ecf20Sopenharmony_ci	 * This is called while another page table is mapped, so we
1178c2ecf20Sopenharmony_ci	 * must use the nested version.  This also means we need to
1188c2ecf20Sopenharmony_ci	 * open-code the spin-locking.
1198c2ecf20Sopenharmony_ci	 */
1208c2ecf20Sopenharmony_ci	ptl = pte_lockptr(vma->vm_mm, pmd);
1218c2ecf20Sopenharmony_ci	pte = pte_offset_map(pmd, address);
1228c2ecf20Sopenharmony_ci	do_pte_lock(ptl);
1238c2ecf20Sopenharmony_ci
1248c2ecf20Sopenharmony_ci	ret = do_adjust_pte(vma, address, pfn, pte);
1258c2ecf20Sopenharmony_ci
1268c2ecf20Sopenharmony_ci	do_pte_unlock(ptl);
1278c2ecf20Sopenharmony_ci	pte_unmap(pte);
1288c2ecf20Sopenharmony_ci
1298c2ecf20Sopenharmony_ci	return ret;
1308c2ecf20Sopenharmony_ci}
1318c2ecf20Sopenharmony_ci
1328c2ecf20Sopenharmony_cistatic void
1338c2ecf20Sopenharmony_cimake_coherent(struct address_space *mapping, struct vm_area_struct *vma,
1348c2ecf20Sopenharmony_ci	unsigned long addr, pte_t *ptep, unsigned long pfn)
1358c2ecf20Sopenharmony_ci{
1368c2ecf20Sopenharmony_ci	struct mm_struct *mm = vma->vm_mm;
1378c2ecf20Sopenharmony_ci	struct vm_area_struct *mpnt;
1388c2ecf20Sopenharmony_ci	unsigned long offset;
1398c2ecf20Sopenharmony_ci	pgoff_t pgoff;
1408c2ecf20Sopenharmony_ci	int aliases = 0;
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
1438c2ecf20Sopenharmony_ci
1448c2ecf20Sopenharmony_ci	/*
1458c2ecf20Sopenharmony_ci	 * If we have any shared mappings that are in the same mm
1468c2ecf20Sopenharmony_ci	 * space, then we need to handle them specially to maintain
1478c2ecf20Sopenharmony_ci	 * cache coherency.
1488c2ecf20Sopenharmony_ci	 */
1498c2ecf20Sopenharmony_ci	flush_dcache_mmap_lock(mapping);
1508c2ecf20Sopenharmony_ci	vma_interval_tree_foreach(mpnt, &mapping->i_mmap, pgoff, pgoff) {
1518c2ecf20Sopenharmony_ci		/*
1528c2ecf20Sopenharmony_ci		 * If this VMA is not in our MM, we can ignore it.
1538c2ecf20Sopenharmony_ci		 * Note that we intentionally mask out the VMA
1548c2ecf20Sopenharmony_ci		 * that we are fixing up.
1558c2ecf20Sopenharmony_ci		 */
1568c2ecf20Sopenharmony_ci		if (mpnt->vm_mm != mm || mpnt == vma)
1578c2ecf20Sopenharmony_ci			continue;
1588c2ecf20Sopenharmony_ci		if (!(mpnt->vm_flags & VM_MAYSHARE))
1598c2ecf20Sopenharmony_ci			continue;
1608c2ecf20Sopenharmony_ci		offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
1618c2ecf20Sopenharmony_ci		aliases += adjust_pte(mpnt, mpnt->vm_start + offset, pfn);
1628c2ecf20Sopenharmony_ci	}
1638c2ecf20Sopenharmony_ci	flush_dcache_mmap_unlock(mapping);
1648c2ecf20Sopenharmony_ci	if (aliases)
1658c2ecf20Sopenharmony_ci		do_adjust_pte(vma, addr, pfn, ptep);
1668c2ecf20Sopenharmony_ci}
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci/*
1698c2ecf20Sopenharmony_ci * Take care of architecture specific things when placing a new PTE into
1708c2ecf20Sopenharmony_ci * a page table, or changing an existing PTE.  Basically, there are two
1718c2ecf20Sopenharmony_ci * things that we need to take care of:
1728c2ecf20Sopenharmony_ci *
1738c2ecf20Sopenharmony_ci *  1. If PG_dcache_clean is not set for the page, we need to ensure
1748c2ecf20Sopenharmony_ci *     that any cache entries for the kernels virtual memory
1758c2ecf20Sopenharmony_ci *     range are written back to the page.
1768c2ecf20Sopenharmony_ci *  2. If we have multiple shared mappings of the same space in
1778c2ecf20Sopenharmony_ci *     an object, we need to deal with the cache aliasing issues.
1788c2ecf20Sopenharmony_ci *
1798c2ecf20Sopenharmony_ci * Note that the pte lock will be held.
1808c2ecf20Sopenharmony_ci */
1818c2ecf20Sopenharmony_civoid update_mmu_cache(struct vm_area_struct *vma, unsigned long addr,
1828c2ecf20Sopenharmony_ci	pte_t *ptep)
1838c2ecf20Sopenharmony_ci{
1848c2ecf20Sopenharmony_ci	unsigned long pfn = pte_pfn(*ptep);
1858c2ecf20Sopenharmony_ci	struct address_space *mapping;
1868c2ecf20Sopenharmony_ci	struct page *page;
1878c2ecf20Sopenharmony_ci
1888c2ecf20Sopenharmony_ci	if (!pfn_valid(pfn))
1898c2ecf20Sopenharmony_ci		return;
1908c2ecf20Sopenharmony_ci
1918c2ecf20Sopenharmony_ci	/*
1928c2ecf20Sopenharmony_ci	 * The zero page is never written to, so never has any dirty
1938c2ecf20Sopenharmony_ci	 * cache lines, and therefore never needs to be flushed.
1948c2ecf20Sopenharmony_ci	 */
1958c2ecf20Sopenharmony_ci	page = pfn_to_page(pfn);
1968c2ecf20Sopenharmony_ci	if (page == ZERO_PAGE(0))
1978c2ecf20Sopenharmony_ci		return;
1988c2ecf20Sopenharmony_ci
1998c2ecf20Sopenharmony_ci	mapping = page_mapping_file(page);
2008c2ecf20Sopenharmony_ci	if (!test_and_set_bit(PG_dcache_clean, &page->flags))
2018c2ecf20Sopenharmony_ci		__flush_dcache_page(mapping, page);
2028c2ecf20Sopenharmony_ci	if (mapping) {
2038c2ecf20Sopenharmony_ci		if (cache_is_vivt())
2048c2ecf20Sopenharmony_ci			make_coherent(mapping, vma, addr, ptep, pfn);
2058c2ecf20Sopenharmony_ci		else if (vma->vm_flags & VM_EXEC)
2068c2ecf20Sopenharmony_ci			__flush_icache_all();
2078c2ecf20Sopenharmony_ci	}
2088c2ecf20Sopenharmony_ci}
2098c2ecf20Sopenharmony_ci#endif	/* __LINUX_ARM_ARCH__ < 6 */
2108c2ecf20Sopenharmony_ci
2118c2ecf20Sopenharmony_ci/*
2128c2ecf20Sopenharmony_ci * Check whether the write buffer has physical address aliasing
2138c2ecf20Sopenharmony_ci * issues.  If it has, we need to avoid them for the case where
2148c2ecf20Sopenharmony_ci * we have several shared mappings of the same object in user
2158c2ecf20Sopenharmony_ci * space.
2168c2ecf20Sopenharmony_ci */
2178c2ecf20Sopenharmony_cistatic int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
2188c2ecf20Sopenharmony_ci{
2198c2ecf20Sopenharmony_ci	register unsigned long zero = 0, one = 1, val;
2208c2ecf20Sopenharmony_ci
2218c2ecf20Sopenharmony_ci	local_irq_disable();
2228c2ecf20Sopenharmony_ci	mb();
2238c2ecf20Sopenharmony_ci	*p1 = one;
2248c2ecf20Sopenharmony_ci	mb();
2258c2ecf20Sopenharmony_ci	*p2 = zero;
2268c2ecf20Sopenharmony_ci	mb();
2278c2ecf20Sopenharmony_ci	val = *p1;
2288c2ecf20Sopenharmony_ci	mb();
2298c2ecf20Sopenharmony_ci	local_irq_enable();
2308c2ecf20Sopenharmony_ci	return val != zero;
2318c2ecf20Sopenharmony_ci}
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_civoid __init check_writebuffer_bugs(void)
2348c2ecf20Sopenharmony_ci{
2358c2ecf20Sopenharmony_ci	struct page *page;
2368c2ecf20Sopenharmony_ci	const char *reason;
2378c2ecf20Sopenharmony_ci	unsigned long v = 1;
2388c2ecf20Sopenharmony_ci
2398c2ecf20Sopenharmony_ci	pr_info("CPU: Testing write buffer coherency: ");
2408c2ecf20Sopenharmony_ci
2418c2ecf20Sopenharmony_ci	page = alloc_page(GFP_KERNEL);
2428c2ecf20Sopenharmony_ci	if (page) {
2438c2ecf20Sopenharmony_ci		unsigned long *p1, *p2;
2448c2ecf20Sopenharmony_ci		pgprot_t prot = __pgprot_modify(PAGE_KERNEL,
2458c2ecf20Sopenharmony_ci					L_PTE_MT_MASK, L_PTE_MT_BUFFERABLE);
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_ci		p1 = vmap(&page, 1, VM_IOREMAP, prot);
2488c2ecf20Sopenharmony_ci		p2 = vmap(&page, 1, VM_IOREMAP, prot);
2498c2ecf20Sopenharmony_ci
2508c2ecf20Sopenharmony_ci		if (p1 && p2) {
2518c2ecf20Sopenharmony_ci			v = check_writebuffer(p1, p2);
2528c2ecf20Sopenharmony_ci			reason = "enabling work-around";
2538c2ecf20Sopenharmony_ci		} else {
2548c2ecf20Sopenharmony_ci			reason = "unable to map memory\n";
2558c2ecf20Sopenharmony_ci		}
2568c2ecf20Sopenharmony_ci
2578c2ecf20Sopenharmony_ci		vunmap(p1);
2588c2ecf20Sopenharmony_ci		vunmap(p2);
2598c2ecf20Sopenharmony_ci		put_page(page);
2608c2ecf20Sopenharmony_ci	} else {
2618c2ecf20Sopenharmony_ci		reason = "unable to grab page\n";
2628c2ecf20Sopenharmony_ci	}
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci	if (v) {
2658c2ecf20Sopenharmony_ci		pr_cont("failed, %s\n", reason);
2668c2ecf20Sopenharmony_ci		shared_pte_mask = L_PTE_MT_UNCACHED;
2678c2ecf20Sopenharmony_ci	} else {
2688c2ecf20Sopenharmony_ci		pr_cont("ok\n");
2698c2ecf20Sopenharmony_ci	}
2708c2ecf20Sopenharmony_ci}
271